JP3120884B2 - SiC coated C / C composite - Google Patents

SiC coated C / C composite

Info

Publication number
JP3120884B2
JP3120884B2 JP03351272A JP35127291A JP3120884B2 JP 3120884 B2 JP3120884 B2 JP 3120884B2 JP 03351272 A JP03351272 A JP 03351272A JP 35127291 A JP35127291 A JP 35127291A JP 3120884 B2 JP3120884 B2 JP 3120884B2
Authority
JP
Japan
Prior art keywords
sic
layer
composite
coated
reinforcing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03351272A
Other languages
Japanese (ja)
Other versions
JPH05163086A (en
Inventor
拓 山崎
春男 田添
茂男 加藤
照夫 菅井
弘明 小池
四郎 保立
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP03351272A priority Critical patent/JP3120884B2/en
Publication of JPH05163086A publication Critical patent/JPH05163086A/en
Application granted granted Critical
Publication of JP3120884B2 publication Critical patent/JP3120884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00862Uses not provided for elsewhere in C04B2111/00 for nuclear applications, e.g. ray-absorbing concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造工程で使用
されるサセプタ、ヒータ、ルツボ等や、核融合炉炉壁
材、タービンブレード、航空用ブレーキ材、宇宙航空機
体用SiC複合材として用いられるSiC被覆C/C複
合材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a susceptor, a heater, a crucible, etc. used in a semiconductor manufacturing process, a fusion reactor furnace wall material, a turbine blade, an aircraft brake material, and a SiC composite material for a space aircraft body. The C / C composite material to be coated.

【0002】[0002]

【従来の技術】従来、SiC被覆C/C複合材が半導体
分野で広く用いられている。これは、C/C複合基材の
表面に、CVD法等の気相成長法や、けい化法、塗布
法、含浸法等によってSiC層をコーティングしたもの
である。C/C複合基材は熱伝導性が良好で高周波誘導
加熱によって均一に加熱できると共に、耐熱衝撃性に優
れ、かつ高純度化が可能である。従って高温部材として
適している。しかし、C/C複合基材はガスを吸収し易
く加熱時にそれを放出するため、表面にSiC層を形成
してこれを防止している。
2. Description of the Related Art Hitherto, SiC-coated C / C composites have been widely used in the field of semiconductors. In this method, the surface of a C / C composite substrate is coated with a SiC layer by a vapor phase growth method such as a CVD method, a silicification method, a coating method, an impregnation method, or the like. The C / C composite substrate has good thermal conductivity, can be uniformly heated by high-frequency induction heating, has excellent thermal shock resistance, and can be highly purified. Therefore, it is suitable as a high-temperature member. However, since the C / C composite base material easily absorbs gas and releases it upon heating, a SiC layer is formed on the surface to prevent this.

【0003】しかしながら、SiC被膜とC/C複合基
材は熱膨張係数が異なるため、急熱急冷を繰り返すヒー
トサイクルによって、SiC被膜にクラックが生じたり
剥離する等の不都合が生じている。また、両者は機械的
性質も異なるので、全体的強度の点でもマイナスであ
る。
However, since the SiC coating and the C / C composite base material have different coefficients of thermal expansion, inconveniences such as cracking and peeling of the SiC coating are caused by repeated heat cycles of rapid heating and quenching. Also, since both have different mechanical properties, they are also negative in terms of overall strength.

【0004】SiC被膜とC/C複合基材の熱膨張差を
吸収緩和するために、両者の間に中間層を形成すること
が試みられている。例えば、SiC被膜をコーティング
する前にC/C複合基材にけい化処理を施し、その表層
部にけい化層を形成する。そして、けい化層の表面にS
iC被膜をコーティングするのである。
In order to absorb and reduce the difference in thermal expansion between the SiC coating and the C / C composite substrate, an attempt has been made to form an intermediate layer between them. For example, before the SiC film is coated, the C / C composite substrate is subjected to a silicidation treatment, and a silicide layer is formed on the surface layer. Then, S on the surface of the silicide layer
The iC film is coated.

【0005】[0005]

【発明が解決しようとする課題】しかし、このようにし
てSiC被膜とC/C複合基材の間に形成した従来のけ
い化層は、表層部が炭素繊維の中心部まで100%また
はそれに近い比率でけい化されている。このため、緩衝
層として充分に機能せず、他方では機械的強度の低下も
生じている。このため、依然として、SiC被膜の剥離
等の問題が生じ、充分な製品寿命が得られていない状況
にある。
However, the conventional silicide layer formed between the SiC coating and the C / C composite substrate in this manner has a surface layer portion of 100% or close to the center of the carbon fiber. It is silicified in proportion. For this reason, it does not function sufficiently as a buffer layer, and on the other hand, the mechanical strength is reduced. For this reason, problems such as peeling of the SiC film still occur, and a sufficient product life has not been obtained.

【0006】本発明は、C/C複合基材とSiC被膜の
熱的及び機械的マッチングを良好に行い、耐熱衝撃性に
優れ機械的強度も充分に高く、製品としての耐用寿命が
長いSiC被覆C/C複合材を提供することを目的とし
ている。
The present invention provides a SiC coating having good thermal and mechanical matching between a C / C composite base material and a SiC coating, excellent thermal shock resistance, sufficiently high mechanical strength, and a long service life as a product. It is intended to provide a C / C composite.

【0007】[0007]

【課題を解決するための手段】この発明は、C繊維を含
むC/C複合基材にSiC層を被覆したSiC被覆C/
C複合材において、C/C複合基材とSiC層の間に強
化層を設け、強化層がC/C複合基材を部分的にけい化
処理することによって構成されていて、強化層の厚さが
SiC層の厚さの7/10〜10/7倍でありかつC繊
維直径の10〜30倍であって、強化層におけるけい化
部分の総断面積がけい化されていないC繊維の総断面積
の1/9〜1倍であることを特徴とするSiC被覆C/
C複合材を要旨としている。
SUMMARY OF THE INVENTION The present invention relates to a SiC-coated C / C composite in which a C / C composite substrate containing C fibers is coated with a SiC layer.
In the C composite material, a reinforcing layer is provided between the C / C composite substrate and the SiC layer, and the reinforcing layer is formed by partially silicifying the C / C composite substrate. Is 7/10 to 10/7 times the thickness of the SiC layer and 10 to 30 times the diameter of the C fiber, and the total cross-sectional area of the silicided portion of the reinforcing layer SiC coated C /, characterized in that it is 1/9 to 1 times the total cross-sectional area
The gist is C composite material.

【0008】[0008]

【作用】C/C複合基材とSiC層の間に形成された強
化層は、熱的及び機械的にC/C複合基材とSiC層の
中間的性質を有する。従って、C/C複合基材とSiC
層を熱的及び機械的に良好にマッチングすることができ
る。
The reinforcing layer formed between the C / C composite substrate and the SiC layer has properties intermediate between the C / C composite substrate and the SiC layer both thermally and mechanically. Therefore, C / C composite substrate and SiC
The layers can be well matched thermally and mechanically.

【0009】[0009]

【実施例】強化層の厚さをSiC層の厚さの7/10〜
10/7倍にしたのは、これが7/10倍未満であると
C/C複合基材とSiC層の熱膨張差を充分に吸収でき
ないからである。また、10/7倍を超えると強化層が
厚くなりすぎて、けい化処理の段階で強化層の外側部分
のけい化が進みすぎてけい化度100%の層が形成され
る可能性があるからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thickness of the reinforcing layer was set to 7/10 of the thickness of the SiC layer.
The reason for increasing the ratio by 10/7 is that if the ratio is less than 7/10, the difference in thermal expansion between the C / C composite base material and the SiC layer cannot be sufficiently absorbed. On the other hand, if the ratio exceeds 10/7, the reinforcing layer becomes too thick, and the silicidation of the outer portion of the reinforcing layer proceeds excessively at the stage of the silicification treatment, so that a layer having a degree of silicidation of 100% may be formed. Because.

【0010】強化層の厚さをC繊維の直径の10〜30
倍に設定したのは、これが10倍未満であると強化層の
厚さが不充分となり、熱膨張差を充分に吸収できないか
らである。また30倍を超えると、強化層が厚くなりす
ぎて、前述したように、けい化処理によって部分的にけ
い化度100%の層が形成される恐れがあるからであ
る。
The thickness of the reinforcing layer is set to be 10 to 30 times the diameter of the C fiber.
The reason for setting the ratio to twice is that if the ratio is less than ten times, the thickness of the reinforcing layer becomes insufficient, and the difference in thermal expansion cannot be sufficiently absorbed. On the other hand, if it exceeds 30 times, the reinforcing layer becomes too thick, and as described above, there is a possibility that a layer having a degree of silicidation of 100% may be partially formed by the silicification treatment.

【0011】所定位置で断面をとった場合に、強化層に
おけるけい化部分の総断面積がけい化されていないC繊
維の総断面積の1/9〜1倍になるように設定したの
は、この範囲内であると、強化層の熱的及び機械的性質
がC/C複合基材とSiC層の性質の中間的値を有し、
良好なマッチングが可能になるからである。
The reason for setting the total cross-sectional area of the silicided portion in the reinforcing layer to be 1/9 to 1 times the total cross-sectional area of the non-silicified C fiber when a cross section is taken at a predetermined position is as follows. Within this range, the thermal and mechanical properties of the reinforcing layer have intermediate values between the properties of the C / C composite substrate and the SiC layer,
This is because good matching becomes possible.

【0012】SiC被覆C/C複合材の製造方法を簡単
に説明する。まず、C/C複合基材の表面に多孔性のS
iC被膜を形成する。被覆はCVD法や他の気相成長
法、または塗布法によって行ってもよい。次に、多孔性
SiC被膜の上からけい化処理を行って、強化層を形成
する。最後に、強化層の表面に緻密なSiC被膜を形成
する。緻密SiC被膜はCVD法によってSiC柱状結
晶となるように形成するのが望ましい。
A method for producing a SiC-coated C / C composite will be briefly described. First, porous S
An iC coating is formed. The coating may be performed by a CVD method, another vapor deposition method, or a coating method. Next, a siliconization treatment is performed on the porous SiC film to form a reinforcing layer. Finally, a dense SiC film is formed on the surface of the reinforcing layer. The dense SiC film is desirably formed by CVD to form SiC columnar crystals.

【0013】多孔性SiC被膜の膜厚は5〜50μmに
設定するのが望ましい。この範囲の膜厚ならば、けい化
処理の際に適度な浸透が得られるからである。また、多
孔性SiC被覆の孔径は、1〜50μmが望ましい。孔
径が1μm未満であると、この孔を通してのC/C複合
基材のけい化が行われにくくなる。50μmを超える
と、この孔を通してのC/C複合基材の表層部のけい化
が過度に進行し、けい化度が100%の層が形成される
可能性がある。さらに望ましくは10〜30μmに設定
する。
The thickness of the porous SiC film is desirably set to 5 to 50 μm. If the film thickness is in this range, appropriate penetration can be obtained during the silicidation treatment. Further, the pore diameter of the porous SiC coating is desirably 1 to 50 μm. When the pore size is less than 1 μm, it becomes difficult to silicate the C / C composite base material through the pores. If it exceeds 50 μm, the surface of the C / C composite base material through the pores may be excessively silicided, and a layer having a silicidation degree of 100% may be formed. More preferably, it is set to 10 to 30 μm.

【0014】強化層の厚さは前述の条件を満し、しかも
50〜150μmにするのが望ましい。
It is desirable that the thickness of the reinforcing layer satisfies the above-mentioned conditions, and that the thickness be 50 to 150 μm.

【0015】C繊維の直径が5〜10μmで、SiC層
の厚みが50〜200μmが好ましい。
The diameter of the C fiber is preferably 5 to 10 μm, and the thickness of the SiC layer is preferably 50 to 200 μm.

【0016】C/C複合基材は、PAN系、ピッチ系、
セルロール系のCファイバーがフィラーで、ピッチ含
浸、焼成、CVIによりカーボンを含浸したマトリック
スからなる材料である。C/C複合基材の種類は製品の
用途に合せて適当に選択する。例えば、半導体製造具と
しては密度が1.60〜1.85g/cm3 で2次元材
または短繊維系のものが用いられ、また、航空宇宙用耐
熱材としては密度が1.70〜1.85g/cm3 で1
次元の積層構造のものが用いられる。C/C複合基材の
厚さは半導体用が10〜30mmで、航空用が1〜10
mmであることが望ましい。
The C / C composite base material includes PAN-based, pitch-based,
Cellulol-based C fiber is a filler and is a material composed of a matrix impregnated with carbon by pitch impregnation, firing and CVI. The type of C / C composite substrate is appropriately selected according to the use of the product. For example, a two-dimensional material or a short fiber material having a density of 1.60 to 1.85 g / cm 3 is used as a semiconductor manufacturing tool, and a density of 1.70 to 1.85 is used as a heat-resistant material for aerospace. 1 at 85 g / cm 3
A one-dimensional laminated structure is used. The thickness of the C / C composite substrate is 10 to 30 mm for semiconductors and 1 to 10 for aviation.
mm.

【0017】緻密なSiC被膜の厚さは20〜2000
μmが望ましい。20μ未満であると表面の被覆が不充
分で耐酸化性に劣ってしまう。また2000μmを超え
ると使用に際しSiC被覆の歪が大きくなり、クラッ
ク、剥離を生じ易い。より望ましくは40〜120μm
である。
The thickness of the dense SiC film is 20 to 2000.
μm is desirable. If it is less than 20 μm, the coating on the surface is insufficient and the oxidation resistance is poor. On the other hand, if it exceeds 2000 μm, the strain of the SiC coating increases during use, and cracks and peeling are likely to occur. More preferably, 40 to 120 μm
It is.

【0018】図示例 以下、図面を参照して本発明の実施例を詳細に説明す
る。
The illustrated embodiment will now be described in detail embodiments of the present invention with reference to the drawings.

【0019】密度1.8g/cm3 、PAN系2次元の
黒鉛繊維を含有するC/C複合基材5(2×5×30m
m)を反応炉内に設置し、反応温度1500℃で反応ガ
スとしてSiCl4 ,CH4 及びH2 を流し、蒸着スピ
ード1〜10μm/hrでCVD反応を行い、厚さ20
μm、孔径1〜50μmの多孔性のSiC被膜3を形成
した。
A C / C composite substrate 5 (2 × 5 × 30 m) having a density of 1.8 g / cm 3 and containing PAN-based two-dimensional graphite fibers
m) was placed in a reaction furnace, SiCl 4 , CH 4, and H 2 were passed as reaction gases at a reaction temperature of 1500 ° C., and a CVD reaction was performed at a deposition speed of 1 to 10 μm / hr.
A porous SiC coating 3 having a thickness of 1 μm and a pore size of 1 to 50 μm was formed.

【0020】ついで、反応温度1500℃で反応ガスと
してSiOガスを流し、C/C複合基材1の表層部にけ
い化処理を施し、厚さ200μmの強化層4を形成し
た。このけい化処理に際し、多孔性のSiC被膜3はマ
スクとして機能する。多孔性SiC被膜3によって強化
層4の表層部におけるけい化が適度に抑制され、けい化
度100%の領域は形成されず、C/C複合基材の表層
部が選択的に深部までけい化される。図1では強化層4
におけるけい化部分を符号9で示した。また、反応等は
未だ充分解明されていないが、C充填物の方が繊維より
選択的にけい化され、繊維8のけい化はその表層部でわ
ずかに表面にとどまり、中心部までには達していない。
けい化部は0.05〜0.1μmのSiC微結晶層とな
る。強化層4では、けい化部分9の総断面積がけい化さ
れていないC繊維8の総断面積の約1倍になっている。
また、強化層4の厚さはSiC層2の厚さの約8〜10
倍、C繊維10の直径の約10倍になっている。図1の
例では強化層4とC/C複合基材5の境界が平面になっ
ているが、実際には図2に示すように凹凸になる。
Then, SiO gas was flowed as a reaction gas at a reaction temperature of 1500 ° C., and the surface layer of the C / C composite base material 1 was subjected to a silicidation treatment to form a 200 μm thick reinforcing layer 4. During this silicidation treatment, the porous SiC film 3 functions as a mask. By the porous SiC coating 3, silicidation in the surface layer of the reinforcing layer 4 is appropriately suppressed, a region having a degree of silicidation of 100% is not formed, and the surface layer of the C / C composite base material is selectively silicified to a deep portion. Is done. In FIG. 1, the reinforcing layer 4
The symbol 9 represents the silicidized portion in. Further, although the reaction and the like have not been sufficiently elucidated, the C-filled material is selectively silicified rather than the fiber, and the silicidation of the fiber 8 slightly remains on the surface at the surface layer and reaches the center. Not.
The silicified portion becomes a SiC microcrystal layer of 0.05 to 0.1 μm. In the reinforced layer 4, the total cross-sectional area of the silicided portion 9 is about one times the total cross-sectional area of the unsilicided C fibers 8.
The thickness of the reinforcing layer 4 is about 8 to 10 times the thickness of the SiC layer 2.
Twice as large as the diameter of the C fiber 10. In the example of FIG. 1, the boundary between the reinforcing layer 4 and the C / C composite base material 5 is a flat surface, but in reality, it becomes uneven as shown in FIG. 2.

【0021】上記けい化処理後、反応温度1300℃で
反応ガスとしてメチルトリクロロシラン(MTCS)と
2 を流し、蒸着スピード5〜10μm/hrでCVD
反応を行い、厚さ80μmの緻密なSiC柱状結晶から
なる被膜2を形成した。柱状結晶の径は5μmである。
このSiC被膜2は、表層部のけい化層及び多孔性のS
iC被膜3と一体となっている。
After the above-mentioned silicidation treatment, methyltrichlorosilane (MTCS) and H 2 are passed as reaction gases at a reaction temperature of 1300 ° C., and CVD is performed at a deposition speed of 5 to 10 μm / hr.
The reaction was performed to form a coating 2 made of dense SiC columnar crystals having a thickness of 80 μm. The diameter of the columnar crystal is 5 μm.
The SiC film 2 has a silicide layer on the surface and a porous S
It is integrated with the iC coating 3.

【0022】得られたSiC被覆C/C複合材は、以下
に述べるヒートサイクルテストを施したがマイクロクラ
ックは全く発生せず、また剥離も生じなかった。
The obtained SiC-coated C / C composite material was subjected to the heat cycle test described below. As a result, no microcracks occurred and no peeling occurred.

【0023】ヒートサイクルテストは、試験片を120
0℃まで昇温した炉内に挿入し、2分間保持した後、炉
外(室温約25℃)へ取り出す操作を繰り返し行うもの
で、5回おきにその表面状態を目視により観察し、50
回まで行った。
In the heat cycle test, the test piece was
After inserting into a furnace heated to 0 ° C., holding for 2 minutes, and taking it out of the furnace (room temperature of about 25 ° C.), the surface state is visually observed every 5 times,
I went up to times.

【0024】また、曲げ強度を測定したところ、65M
Paであった。
When the bending strength was measured, it was found to be 65M
Pa.

【0025】比較例 実験例と同様のC/C複合基材を反応炉内に納置し、反
応温度1500℃で反応ガスとしてSiOガスを流し、
C/C複合基材の表層部にけい化処理を施し、厚さ20
0μmのけい化層を形成した。このけい化処理によっ
て、けい化度100%領域が表面から80〜120μm
の深さで全面に亘って形成された。
Comparative Example A C / C composite base material similar to that of the experimental example was placed in a reaction furnace, and SiO gas was flowed as a reaction gas at a reaction temperature of 1500 ° C.
The surface layer of the C / C composite substrate is silicided to a thickness of 20
A silicide layer of 0 μm was formed. By this silicidation treatment, the region with a degree of silicidation of 100% is 80 to 120 μm from the surface.
Formed over the entire surface at a depth of.

【0026】ついで、反応温度1300℃で反応ガスと
してMTCS+H2を流し、蒸着スピード5〜10μm
/hrでCVD反応を行い、厚さ80μmの緻密なSi
C被膜を形成した。
Then, MTCS + H 2 is flowed as a reaction gas at a reaction temperature of 1300 ° C., and a vapor deposition speed of 5 to 10 μm
/ Hr CVD reaction and a dense 80 μm thick Si
A C film was formed.

【0027】得られたSiC被覆C/C複合体は、5回
のヒートサイクルテストでマイクロクラックが多数発生
し、SiC被膜が剥離した。また、曲げ強度を測定した
ところ、35MPaであった。
In the obtained SiC-coated C / C composite, a number of microcracks occurred in five heat cycle tests, and the SiC coating was peeled off. The flexural strength measured was 35 MPa.

【0028】従って、本発明に係る実施例によるもの
は、耐熱衝撃性に優れていると共に、強度も優れている
ことがわかる。
Therefore, it can be seen that the embodiment according to the present invention is excellent not only in thermal shock resistance but also in strength.

【0029】[0029]

【発明の効果】本発明のSiC被覆C/C複合材におい
ては、強化層によってC/C複合基材とSiC被膜のマ
ッチングが良好に行われているので、耐熱衝撃性に優
れ、機械的強度も充分に高い。従って、本発明のSiC
被覆C/C複合材は従来品にくらべて高品質であって耐
用寿命が飛躍的に長い。
According to the SiC-coated C / C composite material of the present invention, since the C / C composite base material and the SiC coating are well matched by the reinforcing layer, the thermal shock resistance is excellent and the mechanical strength is excellent. Is also high enough. Therefore, the SiC of the present invention
The coated C / C composite is of higher quality and has a significantly longer useful life than conventional products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSiC被覆C/C複合材の実施例を模
式的に示した断面図。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a SiC-coated C / C composite material of the present invention.

【図2】本発明のSiC被覆C/C複合材の実施例を示
す断面図。
FIG. 2 is a sectional view showing an embodiment of the SiC-coated C / C composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 SiC被覆C/C複合材 2 SiC柱状結晶被膜 3 多孔質SiC被膜 4 強化層 5 C/C複合基材 6 SiC柱状結晶 8 表層のみがけい化されたC繊維 9 けい化部 10 C繊維 11 境界 DESCRIPTION OF SYMBOLS 1 SiC coating C / C composite material 2 SiC columnar crystal coating 3 Porous SiC coating 4 Reinforcement layer 5 C / C composite base material 6 SiC columnar crystal 8 C fiber with only surface layer silicided 9 Silicified portion 10 C fiber 11 boundary

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 35/83 C04B 35/80 B (72)発明者 菅井 照夫 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社小国製造 所内 (72)発明者 小池 弘明 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社小国製造 所内 (72)発明者 保立 四郎 東京都新宿区西新宿1―26―2 東芝セ ラミックス株式会社内 (58)調査した分野(Int.Cl.7,DB名) C04B 41/80 - 41/91 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C04B 35/83 C04B 35/80 B (72) Inventor Teruo Suga 378 Oguni-cho, Oguni-cho, Oguni-machi, Nishiokitama-gun, Yamagata Toshiba Ceramics Corporation Oguni Works (72) Inventor Hiroaki Koike 378 Ogunimachi, Oguni-machi, Oguni-machi, Nishiokitama-gun, Yamagata Toshiba Ceramics Co., Ltd.Oguni Works (72) Inventor Shiro Hotate 1-26-2 Nishishinjuku, Shinjuku-ku, Tokyo Toshiba Sera (58) Investigated field (Int. Cl. 7 , DB name) C04B 41/80-41/91

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C繊維を含むC/C複合基材にSiC層
を被覆したSiC被覆C/C複合材において、C/C複
合基材とSiC層の間に強化層を設け、強化層がC/C
複合基材を部分的にけい化処理することによって構成さ
れていて、強化層の厚さがSiC層の厚さの7/10〜
10/7倍でありかつC繊維直径の10〜30倍であっ
て、強化層におけるけい化部分の総断面積がけい化され
ていないC繊維の総断面積の1/9〜1倍であることを
特徴とするSiC被覆C/C複合材。
In a SiC-coated C / C composite material in which a C / C composite substrate containing a C fiber is coated with a SiC layer, a reinforcing layer is provided between the C / C composite substrate and the SiC layer. C / C
It is constituted by partially silicifying the composite substrate, and the thickness of the reinforcing layer is 7/10 to the thickness of the SiC layer.
It is 10/7 times and 10 to 30 times the diameter of the C fiber, and the total cross-sectional area of the silicided portion in the reinforcing layer is 1/9 to 1 times the total cross-sectional area of the unsilicided C fiber. A SiC-coated C / C composite material, characterized in that:
JP03351272A 1991-12-13 1991-12-13 SiC coated C / C composite Expired - Fee Related JP3120884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03351272A JP3120884B2 (en) 1991-12-13 1991-12-13 SiC coated C / C composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03351272A JP3120884B2 (en) 1991-12-13 1991-12-13 SiC coated C / C composite

Publications (2)

Publication Number Publication Date
JPH05163086A JPH05163086A (en) 1993-06-29
JP3120884B2 true JP3120884B2 (en) 2000-12-25

Family

ID=18416196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03351272A Expired - Fee Related JP3120884B2 (en) 1991-12-13 1991-12-13 SiC coated C / C composite

Country Status (1)

Country Link
JP (1) JP3120884B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306890A2 (en) * 2001-10-25 2003-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and device comprising SiC and method for fabricating the same
EP2471764B1 (en) * 2010-12-28 2016-05-11 SGL Carbon SE Process for producing friction disks having a structured ceramic friction Layer
CN105645966B (en) * 2015-12-30 2018-02-23 南京航空航天大学 A kind of preparation method of C/C SiC ceramic matrix composite materials vacuum insulation panel

Also Published As

Publication number Publication date
JPH05163086A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
US6737120B1 (en) Oxidation-protective coatings for carbon-carbon components
JPH0813713B2 (en) SiC coated C / C composite
JP4753568B2 (en) SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same
JPWO2018212139A1 (en) Silicon carbide ceramics
CN109320253A (en) A kind of C/C composite material and preparation method
WO2005007597A2 (en) Improved fluidizing oxidation protection systems
CN114804895A (en) High-temperature self-healing BN/SiC fiber interface coating and preparation method thereof
Shimoo et al. Thermal stability of low‐oxygen silicon carbide fiber (Hi‐Nicalon) subjected to selected oxidation treatment
JP3120884B2 (en) SiC coated C / C composite
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP2812019B2 (en) Carbon fiber / carbon composite
JP2642604B2 (en) Manufacturing method of fiber reinforced ceramics
JPH11236286A (en) Production of boron carbide coating
JP3163551B2 (en) Stress relief type oxidation resistant coating construction method
Ahmad et al. Microwave-assisted pyrolysis of SiC and its application to joining
JP2001089254A (en) Composite ceramic material and its production process
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JPH0735313B2 (en) Surface treatment method for carbon / carbon composite material
JP4545872B2 (en) Method for producing molybdenum-coated carbon fiber reinforced carbon material
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP3060589B2 (en) High temperature heat resistant material
JP2021172542A (en) SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF
JPH08253874A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP2878399B2 (en) Carbon jig for semiconductor diffusion furnace
JPH09256168A (en) Coating method on graphite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees