JP2021172542A - SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF - Google Patents

SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2021172542A
JP2021172542A JP2020076209A JP2020076209A JP2021172542A JP 2021172542 A JP2021172542 A JP 2021172542A JP 2020076209 A JP2020076209 A JP 2020076209A JP 2020076209 A JP2020076209 A JP 2020076209A JP 2021172542 A JP2021172542 A JP 2021172542A
Authority
JP
Japan
Prior art keywords
sic
cvd
coated graphite
graphite
bonded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020076209A
Other languages
Japanese (ja)
Inventor
幸加 堀尾
Sachika HORIO
円香 野村
Madoka Nomura
直貴 樋口
Naoki Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2020076209A priority Critical patent/JP2021172542A/en
Publication of JP2021172542A publication Critical patent/JP2021172542A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a SiC-coated graphite member bonded body having high dimensional accuracy and no gaps, in which a plurality of graphite substrates are combined via CVD-SiC layers.SOLUTION: The bonded body of a SiC-coated graphite member is made up of a plurality of plate-shaped graphite substrates laminated so that their main surfaces face each other, in which each of the plurality of plate-shaped graphite substrates is coated with the CVD-SiC layer and is bonded to each other, in which the CVD-SiC layer is composed of a thick portion located on a side surface of the graphite substrates and a thin portion located on two main surfaces of the graphite substrates, the thin portions on the surface of the graphite substrates that face each other are in contact with each other without being bonded to each other, and the thick portions bond the graphite substrates to each other.SELECTED DRAWING: Figure 1

Description

本発明は、黒鉛基材の表面にCVD−SiC層を有する複合材を組み合わせたSiC被覆黒鉛部材の接合体、及び、該SiC被覆黒鉛部材の接合体の製造方法に関する。 The present invention relates to a bonded body of a SiC-coated graphite member in which a composite material having a CVD-SiC layer is combined on the surface of a graphite base material, and a method for producing the bonded body of the SiC-coated graphite member.

半導体製造において高品質の製品を供給することにより、半導体製品の歩留まりの向上及び安定的な操業を確保するため、シリコンウエハ等の熱処理工程において用いられるサセプタ、治具、炉部材等の半導体装置用部品には、黒鉛からなる基材の表面にCVD−SiC層がコーティングされた複合材が広く使用されている。黒鉛、SiCなどの素材は、シリコンに混入しても、シリコンをドープする作用がなく、導電率を変化させないので、得られるウエハの品質に与える影響が少ない点や、SiC、黒鉛とも高温で安定であり、消耗が少ない点で、半導体装置用部品として適しているからである。 For semiconductor devices such as susceptors, jigs, and furnace members used in the heat treatment process for silicon wafers, etc., in order to improve the yield of semiconductor products and ensure stable operation by supplying high-quality products in semiconductor manufacturing. As a component, a composite material in which a CVD-SiC layer is coated on the surface of a base material made of graphite is widely used. Even if materials such as graphite and SiC are mixed with silicon, they do not dope the silicon and do not change the conductivity, so they have little effect on the quality of the obtained wafer, and both SiC and graphite are stable at high temperatures. This is because it is suitable as a component for a semiconductor device in that it consumes less.

黒鉛は、加工しやすく、複雑な形状が容易に得られるが、酸素、水、水素などが接触することにより消耗しやすい欠点がある。一方、SiCは、表面に薄い酸化膜を形成しやすく、酸素、水、水素などによる消耗に強いという特徴を有しているが、硬くて加工しにくい欠点がある。これらの特徴、欠点をうまく生かしたものが、黒鉛からなる基材の表面にCVD−SiC層を形成した複合材である。このような複合材では、基材自体は非常に加工しやすいので容易に複雑な形状が得られ、さらに表面をCVD−SiC層で覆うので様々な雰囲気で使用可能な耐久性のある複合材となる。 Graphite is easy to process and a complicated shape can be easily obtained, but it has a drawback that it is easily consumed by contact with oxygen, water, hydrogen and the like. On the other hand, SiC has a feature that a thin oxide film is easily formed on the surface and is resistant to consumption by oxygen, water, hydrogen, etc., but has a drawback that it is hard and difficult to process. A composite material in which a CVD-SiC layer is formed on the surface of a base material made of graphite is a material that makes good use of these features and drawbacks. In such a composite material, the base material itself is very easy to process, so that a complicated shape can be easily obtained, and since the surface is covered with a CVD-SiC layer, it is a durable composite material that can be used in various atmospheres. Become.

特許文献1には、長孔を有する炭素部品の長孔内部に被膜を形成することにより、酸化性ガスや分解性ガスの雰囲気中でも消耗することなく使用できる炭素部品を提供し、特に孔内部からのパーティクル発生防止を図るために、内部に孔を有し、その外面がセラミック被膜で覆われた炭素部品であって、前記孔が二枚の板状の炭素体を重ね合わせて形成され、該板材は少なくとも一方の炭素体の重ね合わせ面に形成された溝と該溝に対向する他方の炭素体の重ね合わせ部とにより形成されており、前記溝を含む前記孔の内面全域がセラミック被膜で被覆されていることを特徴とする炭素部品が記載されている。 Patent Document 1 provides a carbon component that can be used without being consumed even in an atmosphere of oxidizing gas or degradable gas by forming a film inside the elongated hole of the carbon component having the elongated hole, and particularly from the inside of the pore. In order to prevent the generation of particles, it is a carbon component having holes inside and its outer surface covered with a ceramic coating, and the holes are formed by superimposing two plate-shaped carbon bodies. The plate material is formed by a groove formed on the overlapping surface of at least one carbon body and an overlapping portion of the other carbon body facing the groove, and the entire inner surface of the hole including the groove is covered with a ceramic coating. Carbon parts characterized by being coated are described.

特開2011−225949号公報Japanese Unexamined Patent Publication No. 2011-225949

しかしながら、上記の発明は、2枚のSiC被膜を有する板材を組み合わせて構成されているので組み合わせの精度が必要である。この組み合わせの精度が低いと隙間ができたり、全体の寸法精度が低下するという問題がある。 However, since the above invention is constructed by combining two plate materials having a SiC coating, the accuracy of the combination is required. If the accuracy of this combination is low, there is a problem that a gap is formed and the overall dimensional accuracy is lowered.

本発明では、上記課題に鑑み、寸法精度が高く、隙間の発生のない、複数の黒鉛基材をCVD−SiC層を介して組み合わせたSiC被覆黒鉛部材の接合体、及び、該SiC被覆黒鉛部材の接合体の製造方法を提供することを目的とする。 In view of the above problems, in the present invention, a conjugate of a SiC-coated graphite member in which a plurality of graphite substrates are combined via a CVD-SiC layer, which has high dimensional accuracy and no gaps are generated, and the SiC-coated graphite member. It is an object of the present invention to provide a method for producing a joined body of graphite.

上記課題を解決するための本発明のSiC被覆黒鉛部材の接合体は、板状の黒鉛基材が、主面同士が対向するように複数積層され、複数の上記黒鉛基材がそれぞれCVD−SiC層によって被覆されるとともに互いに接合された板状のSiC被覆黒鉛部材の接合体であって、
上記CVD−SiC層は、上記黒鉛基材の側面に位置する厚肉部と、上記黒鉛基材の2つの主面に位置する薄肉部とからなり、対向する上記黒鉛基材の表面の薄肉部は互いに接合することなく接触し、上記厚肉部が互いに上記黒鉛基材を接合していることを特徴とする。
In the bonded body of the SiC-coated graphite member of the present invention for solving the above-mentioned problems, a plurality of plate-shaped graphite base materials are laminated so that the main surfaces face each other, and the plurality of the above-mentioned graphite base materials are respectively CVD-SiC. A bonded body of plate-shaped SiC-coated graphite members coated by layers and bonded to each other.
The CVD-SiC layer is composed of a thick portion located on the side surface of the graphite substrate and a thin portion located on two main surfaces of the graphite substrate, and the thin portion on the surface of the graphite substrate facing the graphite substrate. Are in contact with each other without being bonded to each other, and the thick portions are bonded to each other with the graphite base materials.

本発明のSiC被覆黒鉛部材の接合体によれば、上記黒鉛基材の対向する2つの主面を覆うCVD−SiC層は、ともに薄肉部で構成され、互いに熱膨張差を打ち消しあうように内部応力が働く。このため、CVD−SiC層が形成されたSiC被覆黒鉛部材は反りが発生しにくく、高い形状精度を有し、対向する主面に隙間の発生のない接合体を得ることができる。また、厚さの厚い厚肉部により黒鉛基材同士を接合しているので、黒鉛基材同士がしっかりと接合された接合体となる。さらに、黒鉛基材の主面の間には、機械的強度の高いCVD−SiC層が存在するので、機械的強度に優れた接合体となる。 According to the bonded body of the SiC-coated graphite member of the present invention, the CVD-SiC layers covering the two opposing main surfaces of the graphite base material are both composed of thin-walled portions, and are internally formed so as to cancel each other's thermal expansion differences. Stress works. Therefore, the SiC-coated graphite member on which the CVD-SiC layer is formed is less likely to warp, has high shape accuracy, and can obtain a bonded body having no gaps on the opposing main surfaces. Further, since the graphite base materials are bonded to each other by a thick portion having a thick thickness, the graphite base materials are firmly bonded to each other to form a bonded body. Further, since a CVD-SiC layer having high mechanical strength exists between the main surfaces of the graphite base material, the bonded body has excellent mechanical strength.

本発明のSiC被覆黒鉛部材の接合体では、上記厚肉部の厚さは、上記薄肉部の厚さの1.50〜3.00倍であることが望ましい。 In the bonded body of the SiC-coated graphite member of the present invention, it is desirable that the thickness of the thick portion is 1.50 to 3.00 times the thickness of the thin portion.

本発明のSiC被覆黒鉛部材の接合体において、上記厚肉部の厚さが、上記薄肉部の厚さの1.50〜3.00倍であると、上記黒鉛基材を接合する部分である厚肉部のうち、接合に関与する部分の厚さを充分に厚くすることができ、しっかりと黒鉛基材同士が接合されたSiC被覆黒鉛部材の接合体とすることができる。 In the bonded body of the SiC-coated graphite member of the present invention, when the thickness of the thick portion is 1.50 to 3.00 times the thickness of the thin portion, it is a portion for joining the graphite base material. The thickness of the portion of the thick portion involved in joining can be made sufficiently thick, and a joined body of a SiC-coated graphite member in which graphite base materials are firmly bonded to each other can be obtained.

本発明のSiC被覆黒鉛部材の接合体では、上記CVD−SiC層は、上記厚肉部から上記薄肉部にかけて穏やかに厚さが変化していることが望ましい。 In the bonded body of the SiC-coated graphite member of the present invention, it is desirable that the thickness of the CVD-SiC layer gradually changes from the thick portion to the thin portion.

本発明のSiC被覆黒鉛部材の接合体において、上記CVD−SiC層が、厚肉部から薄肉部にかけて穏やかに厚さが変化していると、ヒートサイクルや熱衝撃によってクラックの起点となるノッチが形成されにくく、熱衝撃等に対して耐久性のあるCVD−SiC層を有するSiC被覆黒鉛部材の接合体となる。 In the bonded body of the SiC-coated graphite member of the present invention, when the thickness of the CVD-SiC layer changes gently from the thick portion to the thin portion, a notch that becomes a crack starting point due to a heat cycle or a thermal shock is formed. It is a bonded body of a SiC-coated graphite member having a CVD-SiC layer that is difficult to form and is durable against thermal shock and the like.

本発明のSiC被覆黒鉛部材の接合体では、上記接合体の側面と主面との境界部は、厚肉部で覆われていることが望ましい。 In the bonded body of the SiC-coated graphite member of the present invention, it is desirable that the boundary portion between the side surface and the main surface of the bonded body is covered with a thick portion.

本発明のSiC被覆黒鉛部材の接合体において、上記SiC被覆黒鉛部材の接合体の側面と主面との境界部が、厚肉部で覆われているとは、厚肉部が黒鉛基材の側面のみでなく、主面上の一部にまで及んで形成されていることを意味している。
このように上記接合体の側面と主面との境界部が厚肉部で覆われていると、熱衝撃や、打撃等によって損傷を受けやすいSiC被覆黒鉛部材の接合体の側面と主面との境界部であるエッジ部を保護することができ、熱衝撃によって損傷しにくく、また、上記エッジ部が傷つくのを防止することができる。
In the joined body of the SiC-coated graphite member of the present invention, the boundary portion between the side surface and the main surface of the joined body of the SiC-coated graphite member is covered with a thick-walled portion, which means that the thick-walled portion is a graphite base material. It means that it is formed not only on the side surface but also on a part of the main surface.
When the boundary between the side surface and the main surface of the bonded body is covered with a thick portion in this way, the side surface and the main surface of the bonded body of the SiC-coated graphite member which is easily damaged by thermal shock, impact, etc. It is possible to protect the edge portion which is the boundary portion of the surface, prevent the edge portion from being damaged by thermal shock, and prevent the edge portion from being damaged.

本発明のSiC被覆黒鉛部材の接合体の製造方法は、上記SiC被覆黒鉛部材の接合体の製造方法であって、
複数の上記黒鉛基材の表面に、一様にCVD−SiC層を形成することにより上記薄肉部を有する複数のSiC被覆黒鉛部材を得る第1のCVD工程と、上記SiC被覆黒鉛部材を複数積層することによりSiC被覆黒鉛部材の積層体を作製するとともに、作製されたSiC被覆黒鉛部材の積層体の露出した主面を、マスキング材によりマスキングする積層・マスキング工程と、上記SiC被覆黒鉛部材の積層体の側面を含む部分に、さらにCVD−SiC層を形成することにより上記厚肉部を有するSiC被覆黒鉛部材の接合体を得る第2のCVD工程とからなることを特徴とする。
The method for producing a bonded body of a SiC-coated graphite member of the present invention is the method for producing a bonded body of the SiC-coated graphite member.
A first CVD step of obtaining a plurality of SiC-coated graphite members having the thin-walled portion by uniformly forming a CVD-SiC layer on the surface of the plurality of the graphite substrates, and laminating a plurality of the SiC-coated graphite members. By doing so, a laminate of SiC-coated graphite members is produced, and a lamination / masking step of masking the exposed main surface of the produced laminate of SiC-coated graphite members with a masking material, and lamination of the above-mentioned SiC-coated graphite members. It is characterized by comprising a second CVD step of obtaining a bonded body of the SiC-coated graphite member having the thick-walled portion by further forming a CVD-SiC layer on a portion including a side surface of the body.

本発明のSiC被覆黒鉛部材の接合体の製造方法によれば、第1のCVD工程で、黒鉛基材に反りが発生しないように一様にCVD−SiC層を形成した後、積層・マスキング工程で、複数の黒鉛基材(SiC被覆黒鉛部材)を重ね、内部応力が生じないよう主面同士が接触していない露出した側の主面にマスキングし、第2のCVD工程で、側面を中心に第2のCVD−SiC層を形成しているので、上記製造方法により製造されたSiC被覆黒鉛部材の接合体は、加熱、冷却しても黒鉛基材には反りが生じにくく、上記接合体の変形、剥がれを防止することができる。
なお、「一様にCVD−SiC層を形成する」とは、ほぼ同じ厚さになるように、黒鉛基材の全体にCVD−SiC層を形成することをいう。
According to the method for producing a bonded body of a SiC-coated graphite member of the present invention, in the first CVD step, a CVD-SiC layer is uniformly formed so that the graphite substrate does not warp, and then a lamination / masking step is performed. Then, a plurality of graphite substrates (SiC-coated graphite members) are stacked, masked on the exposed main surface where the main surfaces are not in contact with each other so that internal stress does not occur, and in the second CVD step, the side surface is centered. Since the second CVD-SiC layer is formed on the graphite substrate, the bonded body of the SiC-coated graphite member manufactured by the above-mentioned manufacturing method is less likely to warp even when heated and cooled, and the above-mentioned bonded body is not easily warped. It is possible to prevent deformation and peeling of graphite.
In addition, "uniformly forming the CVD-SiC layer" means forming the CVD-SiC layer on the entire graphite base material so as to have substantially the same thickness.

本発明のSiC被覆黒鉛部材の接合体の製造方法では、製造されたSiC被覆黒鉛部材の接合体の上記厚肉部の厚さは、上記薄肉部の厚さの1.50〜3.00倍であることが望ましい。 In the method for producing a bonded body of a SiC-coated graphite member of the present invention, the thickness of the thick portion of the manufactured carbide of the SiC-coated graphite member is 1.50 to 3.00 times the thickness of the thin-walled portion. Is desirable.

本発明のSiC被覆黒鉛部材の接合体の製造方法では、上記CVD−SiC層はそれぞれ独立して黒鉛基材の表面にCVD−SiC層を形成する第1のCVD工程と、その後表面にCVD−SiC層が形成されたSiC被覆黒鉛部材を積層した後CVD−SiC層を形成する第2のCVD工程によって形成されている。すなわち、厚肉部は、第1のCVD工程と、第2のCVD工程で得られたCVD−SiC層が積層して構成されている。形成される厚肉部の厚さは、薄肉部の厚さの1.50〜3.00倍であるが、薄肉部の厚さと同じ厚さ(1.00倍)の部分は、第1のCVD工程で得られたCVD−SiC層に相当し、残りの薄肉部の厚さの0.50〜2.00倍の厚さの部分は、第2のCVD工程で形成されたCVD−SiC層に相当する。第1のCVD−SiC層はそれぞれの黒鉛基材に対し、独立して形成されているので黒鉛基材同士を接合する作用はなく、組み合わせた後に第2のCVD工程で形成されたCVD−SiC層が接合に寄与しており、上記のように、第2のCVD工程で形成されたCVD−SiC層は、充分な厚さを有しているので、充分な接合強度を有するSiC被覆黒鉛部材の接合体となる。 In the method for producing a bonded body of a SiC-coated graphite member of the present invention, the CVD-SiC layers are each independently formed into a CVD-SiC layer on the surface of a graphite base material, followed by a CVD-SiC layer on the surface. It is formed by a second CVD step of forming a CVD-SiC layer after laminating the SiC-coated graphite members on which the SiC layer is formed. That is, the thick portion is formed by laminating the CVD-SiC layer obtained in the first CVD step and the second CVD step. The thickness of the thick portion formed is 1.50 to 3.00 times the thickness of the thin portion, but the portion having the same thickness (1.00 times) as the thickness of the thin portion is the first. Corresponding to the CVD-SiC layer obtained in the CVD step, the portion having a thickness of 0.50 to 2.00 times the thickness of the remaining thin portion is the CVD-SiC layer formed in the second CVD step. Corresponds to. Since the first CVD-SiC layer is independently formed on each graphite base material, there is no action of bonding the graphite base materials to each other, and the CVD-SiC formed in the second CVD step after the combination is performed. The layer contributes to the bonding, and as described above, the CVD-SiC layer formed in the second CVD step has a sufficient thickness, so that the SiC-coated graphite member has a sufficient bonding strength. It becomes a joint of.

すなわち、厚肉部の厚さが薄肉部の厚さの1.50倍以上であると、薄肉部の厚さの0.50倍以上の部分が接合に関与し、複数の黒鉛基材(SiC被覆黒鉛部材)を強固に接合することができる。また、厚肉部の厚さが薄肉部の厚さの3.00倍以下であると、薄肉部の厚さの2.00倍以下の部分が接合に関与することとなり、全体の寸法に対し、コントロールしにくいCVDによる被膜の比率が下がるので全体の寸法精度を高く維持することができる。 That is, when the thickness of the thick portion is 1.50 times or more the thickness of the thin portion, the portion of 0.50 times or more the thickness of the thin portion is involved in the bonding, and a plurality of graphite substrates (SiC) are involved. The coated graphite member) can be firmly joined. Further, when the thickness of the thick portion is 3.00 times or less of the thickness of the thin portion, the portion of 2.00 times or less of the thickness of the thin portion is involved in the joining, and the overall dimensions are increased. Since the proportion of the coating film due to CVD, which is difficult to control, is reduced, the overall dimensional accuracy can be maintained high.

本発明のSiC被覆黒鉛部材の接合体によれば、上記黒鉛基材の2つの主面を覆うCVD−SiC層は、ともに薄肉部で構成され互いに熱膨張差を打ち消しあうように内部応力が働く。このため、CVD−SiC層が形成されたSiC被覆黒鉛部材は反りが発生しにくく高い形状精度のSiC被覆黒鉛部材の接合体となる。
また、本発明のSiC被覆黒鉛部材の接合体の製造方法によれば、第1のCVD工程で、黒鉛基材に反りが発生しないように一様にCVD−SiC層を形成した後、積層・マスキング工程で、複数の黒鉛基材(SiC被覆黒鉛部材)を重ね、内部応力が生じないよう主面同士が接触していない露出した側の主面にマスキングし、第2のCVD工程で、側面を中心に第2のCVD−SiC層を形成しているので、上記製造方法により製造されたSiC被覆黒鉛部材の接合体は、加熱、冷却しても黒鉛基材には反りが生じにくく、上記接合体の変形、剥がれを防止することができる。
According to the bonded body of the SiC-coated graphite member of the present invention, the CVD-SiC layers covering the two main surfaces of the graphite base material are both composed of thin-walled portions, and internal stress acts so as to cancel each other's thermal expansion difference. .. Therefore, the SiC-coated graphite member on which the CVD-SiC layer is formed is less likely to warp and becomes a bonded body of the SiC-coated graphite member having high shape accuracy.
Further, according to the method for producing a bonded body of a SiC-coated graphite member of the present invention, in the first CVD step, a CVD-SiC layer is uniformly formed so that the graphite base material does not warp, and then laminated. In the masking step, a plurality of graphite substrates (SiC-coated graphite members) are stacked, and masking is performed on the exposed main surface where the main surfaces are not in contact with each other so that internal stress does not occur. Since the second CVD-SiC layer is formed around the graphite base material, the bonded body of the SiC-coated graphite member manufactured by the above-mentioned manufacturing method is less likely to warp even when heated and cooled, and the above-mentioned It is possible to prevent deformation and peeling of the joined body.

図1は、本発明の第1の実施形態に係るSiC被覆黒鉛部材の接合体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a bonded body of a SiC-coated graphite member according to the first embodiment of the present invention. 図2(a)〜(e)は、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における各工程を示す断面図である。2 (a) to 2 (e) are cross-sectional views showing each step in the method for manufacturing a bonded body of a SiC-coated graphite member according to the first embodiment. 図3(a)〜(e)は、第2の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。3 (a) to 3 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the second embodiment. 図4(a)〜(e)は、第3の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。4 (a) to 4 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the third embodiment. 図5(a)〜(e)は、第4の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。5 (a) to 5 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the fourth embodiment. 図6(a)〜(e)は、従来の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における積層工程以降の工程を模式的に示す断面図である。6 (a) to 6 (e) are cross-sectional views schematically showing the steps after the laminating step in the method for manufacturing a bonded body of a SiC-coated graphite member according to a conventional embodiment. 図7(a)〜(e)は、従来の別の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における積層工程以降の工程を模式的に示す断面図である。7 (a) to 7 (e) are cross-sectional views schematically showing the steps after the laminating step in the method for manufacturing a bonded body of a SiC-coated graphite member according to another conventional embodiment.

以下、本発明のSiC被覆黒鉛部材の接合体及びその製造方法について、各実施形態に分けて詳細に説明するが、本発明は、下記実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, the bonded body of the SiC-coated graphite member of the present invention and the method for producing the same will be described in detail separately for each embodiment, but the present invention is not limited to the following embodiments, and the gist of the present invention is described. It can be changed and applied as appropriate within the range that does not change.

本発明のSiC被覆黒鉛部材の接合体は、板状の黒鉛基材が、主面同士が対向するように複数積層され、複数の上記黒鉛基材がそれぞれCVD−SiC層によって被覆されるとともに互いに接合された板状のSiC被覆黒鉛部材の接合体であって、
上記CVD−SiC層は、上記黒鉛基材の側面に位置する厚肉部と、上記黒鉛基材の2つの主面に位置する薄肉部とからなり、対向する上記黒鉛基材の表面の薄肉部は互いに接合することなく接触し、上記厚肉部が互いに上記黒鉛基材を接合していることを特徴とする。
In the bonded body of the SiC-coated graphite member of the present invention, a plurality of plate-shaped graphite substrates are laminated so that the main surfaces face each other, and the plurality of graphite substrates are each coated with a CVD-SiC layer and are coated with each other. It is a bonded body of bonded plate-shaped SiC-coated graphite members.
The CVD-SiC layer is composed of a thick portion located on the side surface of the graphite substrate and a thin portion located on two main surfaces of the graphite substrate, and the thin portion on the surface of the graphite substrate facing the graphite substrate. Are in contact with each other without being bonded to each other, and the thick portions are bonded to each other with the graphite base materials.

本発明のSiC被覆黒鉛部材の接合体によれば、SiC被覆黒鉛部材の接合体を構成する黒鉛基材の対向する2つの主面を覆うCVD−SiC層は、ともに薄肉部で構成され、互いに熱膨張差を打ち消しあうように内部応力が働く。このため、CVD−SiC層が形成されたSiC被覆黒鉛部材は反りが発生しにくく、高い形状精度を有し、対向する主面に隙間の発生のない接合体を得ることができる。また、厚さの厚い厚肉部により黒鉛基材同士を接合しているので、黒鉛基材同士がしっかりと接合された接合体となる。さらに、黒鉛基材の主面の間には、機械的強度の高いCVD−SiC層が存在するので、機械的強度に優れた接合体となる。 According to the bonded body of the SiC-coated graphite member of the present invention, the CVD-SiC layers covering the two opposing main surfaces of the graphite base material constituting the bonded body of the SiC-coated graphite member are both composed of thin-walled portions and are mutually formed. Internal stress acts to cancel out the difference in thermal expansion. Therefore, the SiC-coated graphite member on which the CVD-SiC layer is formed is less likely to warp, has high shape accuracy, and can obtain a bonded body having no gaps on the opposing main surfaces. Further, since the graphite base materials are bonded to each other by a thick portion having a thick thickness, the graphite base materials are firmly bonded to each other to form a bonded body. Further, since a CVD-SiC layer having high mechanical strength exists between the main surfaces of the graphite base material, the bonded body has excellent mechanical strength.

図1は、本発明の第1の実施形態に係るSiC被覆黒鉛部材の接合体を模式的に示す断面図である。
本発明の第1の実施形態に係るSiC被覆黒鉛部材の接合体10は、板状の黒鉛基材11がCVD−SiC層からなる薄肉部12により被覆されたSiC被覆黒鉛部材15が複数積層され、接合されたSiC被覆黒鉛部材の接合体であって、具体的には、黒鉛基材11の主面11a同士が薄肉部12を介して対向するように積層され、黒鉛基材11の側面の薄肉部12とその上に形成されたCVD−SiC層13aを含む厚肉部13が黒鉛基材11を接合している。また、このSiC被覆黒鉛部材の接合体10の主面11aをみると、CVD−SiC層は、上記厚肉部から上記薄肉部にかけて穏やかに厚さが変化している。
なお、黒鉛基材11の対向する主面11aに形成された薄肉部12は互いに接合してはおらず、かつ、隙間なく接触しており、薄肉部12の表面の接触している境界部は、認識可能であるが、厚肉部13においては、薄肉部12と後で形成されたCVD−SiC層13aとは、同じ材料から構成されているので強固に接合されており、明確な境界部は認識しにくい。従って、図1においては、薄肉部12と後で形成されたCVD−SiC層13aとの境界部は、破線で描いているが、後に描く図2〜7においては、簡単にするため、実線で描いている。また、他の実施形態に係るSiC被覆黒鉛部材の接合体については、下記するSiC被覆黒鉛部材の接合体の製造方法により製造されたSiC被覆黒鉛部材の接合体として説明することとする。
FIG. 1 is a cross-sectional view schematically showing a bonded body of a SiC-coated graphite member according to the first embodiment of the present invention.
In the bonded body 10 of the SiC-coated graphite members according to the first embodiment of the present invention, a plurality of SiC-coated graphite members 15 in which the plate-shaped graphite base material 11 is coated with the thin-walled portion 12 made of the CVD-SiC layer are laminated. , A bonded body of the joined SiC-coated graphite members. Specifically, the main surfaces 11a of the graphite base material 11 are laminated so as to face each other via the thin-walled portion 12, and the side surface of the graphite base material 11 is laminated. The thin-walled portion 12 and the thick-walled portion 13 including the CVD-SiC layer 13a formed on the thin-walled portion 12 join the graphite base material 11. Further, looking at the main surface 11a of the bonded body 10 of the SiC-coated graphite member, the thickness of the CVD-SiC layer gradually changes from the thick portion to the thin portion.
The thin-walled portions 12 formed on the opposing main surfaces 11a of the graphite base material 11 are not joined to each other and are in contact with each other without gaps, and the contacting boundary portion on the surface of the thin-walled portion 12 is a boundary portion. Although it is recognizable, in the thick portion 13, the thin portion 12 and the CVD-SiC layer 13a formed later are firmly joined because they are made of the same material, and a clear boundary portion is formed. Hard to recognize. Therefore, in FIG. 1, the boundary portion between the thin-walled portion 12 and the CVD-SiC layer 13a formed later is drawn by a broken line, but in FIGS. I'm drawing. Further, the bonded body of the SiC-coated graphite member according to another embodiment will be described as a bonded body of the SiC-coated graphite member manufactured by the following method for manufacturing the bonded body of the SiC-coated graphite member.

上記黒鉛基材を構成する黒鉛の種類は、特に限定されるものではないが、異方性の低い等方性黒鉛材が望ましい。このように異方性の低い等方性黒鉛材を黒鉛基材として使用すると、方向による機械的特性等の偏りが少ないので、破損等が発生しにくく、長期間安定して使用することができる。 The type of graphite constituting the graphite base material is not particularly limited, but an isotropic graphite material having low anisotropy is desirable. When an isotropic graphite material having low anisotropy is used as a graphite base material in this way, there is little bias in mechanical properties depending on the direction, so that damage is unlikely to occur and stable use can be performed for a long period of time. ..

上記等方性黒鉛材とは、等方的な構造、特性を有する黒鉛材であり、例えば、CIP(静水圧成形法)により製造することができる。具体的には、例えば、圧力容器内で等方性黒鉛材の原料粉をゴムバッグに詰め、水などで加圧することにより成形したのち、焼成、黒鉛化することにより製造することができる。
なお、上記等方性黒鉛材においては、原料粉の平均粒子径は、例えば10〜50μmであり、等方性黒鉛材が細かな組織を有していることが特徴である。
The isotropic graphite material is a graphite material having an isotropic structure and characteristics, and can be produced by, for example, CIP (hydrostatic pressure molding method). Specifically, for example, the raw material powder of an isotropic graphite material is packed in a rubber bag in a pressure vessel, molded by pressurizing with water or the like, and then calcined and graphitized.
In the isotropic graphite material, the average particle size of the raw material powder is, for example, 10 to 50 μm, and the isotropic graphite material is characterized by having a fine structure.

上記黒鉛基材が黒鉛からなる場合、気孔率が10〜20%であり、かさ密度が1.70〜1.90g/cmである材料が望ましい。
上記黒鉛基材の気孔率が10%以上であると、開気孔を含有しているため、開気孔の内部にCVD−SiC層が含侵し易く、アンカー効果により、CVD−SiC層が黒鉛基材としっかり密着する。一方、上記黒鉛基材の気孔率が20%以下であると、気孔の含有割合が高すぎないため、黒鉛基材自体の機械的強度が大きい。
When the graphite base material is made of graphite, a material having a porosity of 10 to 20% and a bulk density of 1.70 to 1.90 g / cm 3 is desirable.
When the porosity of the graphite base material is 10% or more, the CVD-SiC layer easily invades the inside of the open pores because it contains open pores, and the CVD-SiC layer becomes the graphite base material due to the anchor effect. Firmly adheres to. On the other hand, when the porosity of the graphite base material is 20% or less, the porosity content is not too high, so that the mechanical strength of the graphite base material itself is high.

また、上記黒鉛基材のかさ密度が1.70g/cm以上であると、気孔を有していても、黒鉛基材の機械的特性に優れる。また、上記黒鉛基材のかさ密度が1.90g/cm以下であると、開気孔を適切な範囲で含んでおり、CVD−SiC層が開気孔内部に充填され易く、CVD−SiC層からなる被覆層が密着性に優れたものとなる。 Further, when the bulk density of the graphite base material is 1.70 g / cm 3 or more, the mechanical properties of the graphite base material are excellent even if it has pores. Further, when the bulk density of the graphite base material is 1.90 g / cm 3 or less, the open pores are included in an appropriate range, and the CVD-SiC layer is easily filled inside the open pores, and the CVD-SiC layer is used. The coating layer has excellent adhesion.

上記黒鉛基材は、炭素繊維の骨材の隙間に炭素のマトリックスが充填され、強化されたC/C複合材であってもよい。骨材である炭素繊維の種類としては、特に限定されず、PAN系炭素繊維であっても、ピッチ系炭素繊維であってもよい。
なお、C/C複合材は、例えば、炭素繊維の黒鉛基材に熱分解炭素を沈積する方法、炭素繊維の黒鉛基材に樹脂を含浸したのち炭素化する方法等により得られる。C/C複合材は、高強度炭素繊維で補強されているので、高温でも破壊靭性があり、機械的強度を保つことができる。
The graphite base material may be a C / C composite material reinforced by filling the gaps between the aggregates of carbon fibers with a carbon matrix. The type of carbon fiber as the aggregate is not particularly limited, and may be PAN-based carbon fiber or pitch-based carbon fiber.
The C / C composite material can be obtained by, for example, a method of depositing pyrolytic carbon on a carbon fiber graphite base material, a method of impregnating a carbon fiber graphite base material with a resin, and then carbonizing the material. Since the C / C composite material is reinforced with high-strength carbon fibers, it has fracture toughness even at high temperatures and can maintain mechanical strength.

板状の黒鉛基材の形状は、特に限定されるものではなく、平面視した形状が円形であってもよく、三角形、矩形、五角形、六角形、楕円形、レーストラック形状等であってもよい。
上記黒鉛基材の寸法も、特に限定されるものではないが、その厚さは、1〜100mmが望ましく、平面視した形状が円形の場合、その直径は、10〜1000mmが望ましい。
接合の対象となる複数の黒鉛基材の厚さは、それぞれ異なっていてもよいが、平面視した形状が同じであることが望ましい。上記した黒鉛基材の特性は、以下の第2の実施形態〜第4の実施形態においても、同様である。
The shape of the plate-shaped graphite base material is not particularly limited, and the plan-viewed shape may be circular, triangular, rectangular, pentagonal, hexagonal, elliptical, racetrack, or the like. good.
The dimensions of the graphite base material are also not particularly limited, but the thickness thereof is preferably 1 to 100 mm, and when the shape in a plan view is circular, the diameter is preferably 10 to 1000 mm.
The thicknesses of the plurality of graphite substrates to be bonded may be different from each other, but it is desirable that the shapes in a plan view are the same. The characteristics of the graphite base material described above are the same in the following second to fourth embodiments.

本発明のSiC被覆黒鉛部材の接合体を構成する薄肉部及び厚肉部は、CVD−SiC層により構成されており、上記厚肉部の厚さは、上記薄肉部の厚さの1.50〜3.00倍であることが望ましい。 The thin-walled portion and the thick-walled portion constituting the bonded body of the SiC-coated graphite member of the present invention are composed of a CVD-SiC layer, and the thickness of the thick-walled portion is 1.50 of the thickness of the thin-walled portion. It is desirable that it is ~ 3.00 times.

本発明のSiC被覆黒鉛部材の接合体において、上記厚肉部の厚さが、上記薄肉部の厚さの1.50〜3.00倍であると、上記黒鉛基材を接合する部分である厚肉部のうち、接合に関与する部分の厚さを充分に厚くすることができ、しっかりと黒鉛基材同士が接合されたSiC被覆黒鉛部材の接合体とすることができる。なお、薄肉部の厚さは、30〜100μmが好ましい。
CVD−SiC層の形成方法については、SiC被覆黒鉛部材の接合体の製造方法の項で説明することとする。
In the bonded body of the SiC-coated graphite member of the present invention, when the thickness of the thick portion is 1.50 to 3.00 times the thickness of the thin portion, it is a portion for joining the graphite base material. The thickness of the portion of the thick portion involved in joining can be made sufficiently thick, and a joined body of a SiC-coated graphite member in which graphite base materials are firmly bonded to each other can be obtained. The thickness of the thin portion is preferably 30 to 100 μm.
The method for forming the CVD-SiC layer will be described in the section of the method for manufacturing a bonded body of the SiC-coated graphite member.

本発明のSiC被覆黒鉛部材の接合体では、上記CVD−SiC層は、上記厚肉部から上記薄肉部にかけて穏やかに厚さが変化していることが望ましい。
上記厚肉部から上記薄肉部にかけて穏やかに厚さが変化しているとは、厚肉部の終了部分から次第に厚さが薄くなり、所定の距離離れた部分で薄肉部の厚さとなることをいい、厚肉部の終了部分から薄肉部の厚さになるまでの距離は、1〜20mmが望ましい。また、SiC被覆黒鉛部材の黒鉛基材の主面に垂直な断面図において、その形態は、直線で表示される形態であってもよく、ロジスティック曲線のような曲線で表示される形態であってもよい。
In the bonded body of the SiC-coated graphite member of the present invention, it is desirable that the thickness of the CVD-SiC layer gradually changes from the thick portion to the thin portion.
The gentle change in thickness from the thick portion to the thin portion means that the thickness gradually decreases from the end portion of the thick portion and becomes the thickness of the thin portion at a portion separated by a predetermined distance. It is desirable that the distance from the end portion of the thick portion to the thickness of the thin portion is 1 to 20 mm. Further, in the cross-sectional view perpendicular to the main surface of the graphite base material of the SiC-coated graphite member, the form may be a form displayed by a straight line or a form displayed by a curve such as a logistic curve. May be good.

本発明のSiC被覆黒鉛部材の接合体において、上記CVD−SiC層が、図1に示すように、厚肉部から薄肉部にかけて穏やかに厚さが変化していると、ヒートサイクルや熱衝撃によってクラックの起点となるノッチが形成されにくく、熱衝撃等に対して耐久性のあるCVD−SiC層を有するSiC被覆黒鉛部材の接合体となる。 In the bonded body of the SiC-coated graphite member of the present invention, when the thickness of the CVD-SiC layer changes gently from the thick portion to the thin portion as shown in FIG. 1, it is caused by a heat cycle or a thermal shock. It is a bonded body of a SiC-coated graphite member having a CVD-SiC layer that is difficult to form a notch that is the starting point of cracks and is durable against thermal shock and the like.

本発明のSiC被覆黒鉛部材の接合体では、上記接合体の側面と主面との境界部は、厚肉部で覆われていることが望ましい。 In the bonded body of the SiC-coated graphite member of the present invention, it is desirable that the boundary portion between the side surface and the main surface of the bonded body is covered with a thick portion.

このように上記接合体の側面と主面との境界部が厚肉部で覆われていると、熱衝撃や、打撃等によって損傷を受けやすいSiC被覆黒鉛部材の接合体の側面と主面との境界部であるエッジ部を保護することができ、熱衝撃によって損傷しにくく、また、上記エッジ部が傷つくのを防止することができる。 When the boundary between the side surface and the main surface of the bonded body is covered with a thick portion in this way, the side surface and the main surface of the bonded body of the SiC-coated graphite member which is easily damaged by thermal shock, impact, etc. It is possible to protect the edge portion which is the boundary portion of the surface, prevent the edge portion from being damaged by thermal shock, and prevent the edge portion from being damaged.

次に、本発明のSiC被覆黒鉛部材の接合体の製造方法について説明する。
本発明のSiC被覆黒鉛部材の接合体の製造方法は、上記のSiC被覆黒鉛部材の接合体の製造方法であって、
複数の上記黒鉛基材の表面に、一様にCVD−SiC層を形成することにより上記薄肉部を有する複数のSiC被覆黒鉛部材を得る第1のCVD工程と、上記SiC被覆黒鉛部材を複数積層することによりSiC被覆黒鉛部材の積層体を作製するとともに、作製されたSiC被覆黒鉛部材の積層体の露出した主面を、マスキング材によりマスキングする積層・マスキング工程と、上記SiC被覆黒鉛部材の積層体の側面を含む部分に、さらにCVD−SiC層を形成することにより上記厚肉部を有するSiC被覆黒鉛部材の接合体を得る第2のCVD工程とからなることを特徴とする。
Next, a method for producing a bonded body of the SiC-coated graphite member of the present invention will be described.
The method for producing a bonded body of a SiC-coated graphite member of the present invention is the above-mentioned method for producing a bonded body of a SiC-coated graphite member.
A first CVD step of obtaining a plurality of SiC-coated graphite members having the thin-walled portion by uniformly forming a CVD-SiC layer on the surface of the plurality of the graphite substrates, and laminating a plurality of the SiC-coated graphite members. By doing so, a laminate of SiC-coated graphite members is produced, and a lamination / masking step of masking the exposed main surface of the produced laminate of SiC-coated graphite members with a masking material, and lamination of the above-mentioned SiC-coated graphite members. It is characterized by comprising a second CVD step of obtaining a bonded body of the SiC-coated graphite member having the thick-walled portion by further forming a CVD-SiC layer on a portion including a side surface of the body.

以下においては、図1に示したSiC被覆黒鉛部材の接合体の製造方法を例にとって本発明のSiC被覆黒鉛部材の接合体の製造方法を第1の実施形態として説明するが、後で他の実施形態に係るSiC被覆黒鉛部材、及び、その接合体の製造方法についても説明することとする。 In the following, the method for producing a bonded body of a SiC-coated graphite member of the present invention will be described as a first embodiment by taking the method for producing a bonded body of a SiC-coated graphite member shown in FIG. 1 as an example, but other methods will be described later. The SiC-coated graphite member according to the embodiment and the method for producing the bonded body thereof will also be described.

[第1の実施形態]
図2(a)〜(e)は、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における各工程を示す断面図である。
(第1のCVD工程)
本発明の第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法では、まず、板状の黒鉛基材11(図2(a)参照)の表面に、一様にCVD−SiC層を形成することにより薄肉部12を有するSiC被覆黒鉛部材15(図2(b)参照)を得る。図2(a)に示す黒鉛基材11は、円盤状である。
[First Embodiment]
2 (a) to 2 (e) are cross-sectional views showing each step in the method for manufacturing a bonded body of a SiC-coated graphite member according to the first embodiment.
(First CVD step)
In the method for producing a bonded body of a SiC-coated graphite member according to the first embodiment of the present invention, first, a CVD-SiC layer is uniformly formed on the surface of a plate-shaped graphite base material 11 (see FIG. 2A). A SiC-coated graphite member 15 having a thin-walled portion 12 (see FIG. 2B) is obtained by forming the above. The graphite base material 11 shown in FIG. 2A has a disk shape.

CVD法により第1のCVD−SiC層を形成する方法としては、特に限定されず、熱CVD法、プラズマ有機CVD法、光CVD法、減圧CVD法、有機金属CVD法、CVI法(化学気相含浸法)等が挙げられる。 The method for forming the first CVD-SiC layer by the CVD method is not particularly limited, and is a thermal CVD method, a plasma organic CVD method, an optical CVD method, a reduced pressure CVD method, an organic metal CVD method, and a CVI method (chemical vapor deposition). Impregnation method) and the like.

具体的には、黒鉛基材である黒鉛を800〜1600℃程度に加熱し、減圧又は常圧で、原料ガスを黒鉛基材の周囲に流通させるか、又は、黒鉛基材に吹き付け、黒鉛基材の表面や開気孔内にCVD−SiC層からなる薄肉部12を形成する。 Specifically, graphite, which is a graphite base material, is heated to about 800 to 1600 ° C., and the raw material gas is circulated around the graphite base material under reduced pressure or normal pressure, or is sprayed onto the graphite base material to form a graphite group. A thin portion 12 made of a CVD-SiC layer is formed on the surface of the material and in the open pores.

使用する原料ガスは、炭素と珪素が供給できれば特に限定されず、例えば、炭化水素とシラン系ガスの混合ガス、珪素と炭素を含有する原料ガスを用いることができる。炭化水素としては、メタン、エタン、プロパン、エチレン、プロピレン、アセチレン、ベンゼン、トルエン等、どのようなものでも使用することができる。また、シラン系ガスは、シランのほか一部をハロゲンで置き換えたクロロシラン、ジクロロシラン、トリクロロシラン等の有機塩素化合物のほか、一部をフッ素、臭素、ヨウ素などで置き換えた有機ハロゲン化合物などを使用することができる。珪素と炭素を含有する化合物としては、メチルシラン、クロロメチルシラン、ジクロロメチルシラン、トリクロロメチルシラン等が挙げられる。
これらの原料ガスは、アルゴン等の不活性ガスや水素で希釈されていてもよい。
形成する薄肉部(CVD−SiC層)の厚さは、30〜100μmが望ましい。
The raw material gas to be used is not particularly limited as long as carbon and silicon can be supplied, and for example, a mixed gas of hydrocarbon and silane-based gas and a raw material gas containing silicon and carbon can be used. As the hydrocarbon, any of methane, ethane, propane, ethylene, propylene, acetylene, benzene, toluene and the like can be used. In addition, as the silane-based gas, in addition to silane, organic chlorine compounds such as chlorosilane, dichlorosilane, and trichlorosilane in which a part is replaced with halogen, and organic halogen compounds in which a part is replaced with fluorine, bromine, iodine, etc. are used. can do. Examples of the compound containing silicon and carbon include methylsilane, chloromethylsilane, dichloromethylsilane, trichloromethylsilane and the like.
These raw material gases may be diluted with an inert gas such as argon or hydrogen.
The thickness of the thin-walled portion (CVD-SiC layer) to be formed is preferably 30 to 100 μm.

本発明では、接合しようとする複数の他の黒鉛基材に対しても、CVD−SiC層からなる薄肉部12を形成することにより薄肉部12を有する複数のSiC被覆黒鉛部材15を作製する。
このようにして作製されたSiC被覆黒鉛部材15は、黒鉛基材11の両側の主面に均等にCVD−SiC層(薄肉部)が形成されているので、加熱、冷却した際に生じる熱応力は表裏均等に生じ、SiC被覆黒鉛部材15に反りが発生しにくい。
In the present invention, a plurality of SiC-coated graphite members 15 having the thin-walled portion 12 are produced by forming the thin-walled portion 12 made of the CVD-SiC layer with respect to the plurality of other graphite substrates to be bonded.
In the SiC-coated graphite member 15 produced in this manner, since the CVD-SiC layers (thin-walled portions) are uniformly formed on the main surfaces on both sides of the graphite base material 11, the thermal stress generated when heating and cooling is performed. Is evenly generated on the front and back sides, and the SiC-coated graphite member 15 is less likely to warp.

(積層・マスキング工程)
積層・マスキング工程では、SiC被覆黒鉛部材15を複数積層することによりSiC被覆黒鉛部材15の積層体を作製するとともに、作製されたSiC被覆黒鉛部材15の積層体の露出した主面(互いに接していない主面)の大部分を、マスキング材18によりマスキングする(図2(c)参照)。
(Laminating / masking process)
In the laminating / masking step, a plurality of SiC-coated graphite members 15 are laminated to prepare a laminated body of the SiC-coated graphite members 15, and the exposed main surfaces (contacting each other) of the manufactured laminates of the SiC-coated graphite members 15 are produced. Most of the main surface) is masked with the masking material 18 (see FIG. 2C).

図2(c)に示すマスキング材18の材料は、特に限定されないが、800〜1600℃の温度に耐える耐久性の材料である必要があり、黒鉛、コージェライト、アルミナ、シリカ、ムライト等の酸化物系セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物系セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物系セラミック等が挙げられる。 The material of the masking material 18 shown in FIG. 2 (c) is not particularly limited, but needs to be a durable material that can withstand a temperature of 800 to 1600 ° C., and oxidation of graphite, corgerite, alumina, silica, mulite, etc. Examples thereof include material-based ceramics, carbide-based ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitride-based ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.

第1の実施形態では、2個のSiC被覆黒鉛部材15を積層しているが、積層するSiC被覆黒鉛部材15の数は、2個に限られず、3個以上であってもよい。第2の実施形態以降の実施形態においても、積層するSiC被覆黒鉛部材15の数は、2個に限られず、3個以上であってもよい。また、それぞれのSiC被覆黒鉛部材の厚さも異なっていてもよい。 In the first embodiment, two SiC-coated graphite members 15 are laminated, but the number of the SiC-coated graphite members 15 to be laminated is not limited to two, and may be three or more. Also in the second and subsequent embodiments, the number of the SiC-coated graphite members 15 to be laminated is not limited to two, and may be three or more. Further, the thickness of each SiC-coated graphite member may be different.

(第2のCVD工程)
第2のCVD工程では、SiC被覆黒鉛部材15の積層体の側面を含む部分に、さらにCVD−SiC層13aを形成し(図2(d)参照)、マスキング材18を取り除くことにより、側面に厚肉部13を有するSiC被覆黒鉛部材の接合体10を得る(図2(e)参照)。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 13a is further formed on the portion including the side surface of the laminated body of the SiC-coated graphite member 15 (see FIG. 2D), and the masking material 18 is removed to form the side surface. A bonded body 10 of a SiC-coated graphite member having a thick portion 13 is obtained (see FIG. 2E).

CVD−SiC層13aを形成する方法は、第1のCVD工程においてCVD−SiC層を形成する方法と同様である。形成するCVD−SiC層13aの厚さは、50〜300μmが望ましい。 The method of forming the CVD-SiC layer 13a is the same as the method of forming the CVD-SiC layer in the first CVD step. The thickness of the CVD-SiC layer 13a to be formed is preferably 50 to 300 μm.

なお、図2(c)に示すマスキング材18は、大きさの異なる板状体が2枚積層された形状をなしており、薄肉部12に接している部分が小さく外側の部分は大きく、内側部分と外側部分との間に段差が形成されており、段差の部分に小さな空間が形成されている。
このため、上記空間の内部まで原料ガスが到達しにくく、CVD−SiC層13aの厚さが空間の内部に行くに従って薄くなり、その結果、SiC被覆黒鉛部材の接合体10の主面においては、端部から内側に行くに従って、CVD−SiC層13aの厚さが穏やかに変化した形態となる。また、段差のある部分は、空洞19となるが、空洞19を形成するCVD−SiC層は、極めて薄いので、マスキング材は、容易に取り除くことができ、境界部にバリやクラックが生じにくくなっている。
The masking material 18 shown in FIG. 2C has a shape in which two plate-like bodies having different sizes are laminated, and the portion in contact with the thin-walled portion 12 is small and the outer portion is large, and the inner portion is large. A step is formed between the portion and the outer portion, and a small space is formed in the step portion.
Therefore, it is difficult for the raw material gas to reach the inside of the space, and the thickness of the CVD-SiC layer 13a becomes thinner toward the inside of the space. The thickness of the CVD-SiC layer 13a gradually changes from the end to the inside. Further, the stepped portion becomes a cavity 19, but since the CVD-SiC layer forming the cavity 19 is extremely thin, the masking material can be easily removed, and burrs and cracks are less likely to occur at the boundary portion. ing.

得られたSiC被覆黒鉛部材の接合体10の両主面の大部分には、第2のCVD工程でCVD−SiC層13aが形成されていないので、SiC被覆黒鉛部材の接合体10を構成するSiC被覆黒鉛部材15の2つの主面は、薄肉部12が形成されているのみで、略同等の厚さであり、加熱、冷却されても熱歪みが同じように生じるので、SiC被覆黒鉛部材15に反りが発生しにくい。 Since the CVD-SiC layer 13a is not formed on most of both main surfaces of the obtained bonded body 10 of the SiC-coated graphite member in the second CVD step, the bonded body 10 of the SiC-coated graphite member is formed. The two main surfaces of the SiC-coated graphite member 15 have substantially the same thickness except that the thin-walled portion 12 is formed, and the same thermal strain occurs even when heated and cooled. Therefore, the SiC-coated graphite member 15 has the same thermal strain. Warpage is unlikely to occur in 15.

一方、SiC被覆黒鉛部材の接合体10の側面には、第1のCVD工程で薄肉部12が形成され、第2のCVD工程で、さらにその上にCVD−SiC層13aが形成され、厚肉部13となっており、CVD−SiC層13aにより二つのSiC被覆黒鉛部材15が接合されている。
第1の実施形態では、第1のCVD工程と、第2のCVD工程は、特に限定されないが、例えば同じ条件で製膜し、それぞれ同じ厚みのCVD−SiC層を形成する。このため、本実施形態においては、厚肉部13の厚さは、薄肉部12の厚さの2倍となるが、その厚さの比は、特には限定されない。ただし、厚肉部13の厚さは、薄肉部12の厚さの1.50〜3.00倍であることが望ましい。
On the other hand, a thin-walled portion 12 is formed on the side surface of the bonded body 10 of the SiC-coated graphite member in the first CVD step, and a CVD-SiC layer 13a is further formed on the thin-walled portion 12 in the second CVD step to form a thick-walled portion 12. The portion 13 is formed, and two SiC-coated graphite members 15 are joined by a CVD-SiC layer 13a.
In the first embodiment, the first CVD step and the second CVD step are not particularly limited, but for example, a film is formed under the same conditions to form a CVD-SiC layer having the same thickness. Therefore, in the present embodiment, the thickness of the thick portion 13 is twice the thickness of the thin portion 12, but the ratio of the thickness is not particularly limited. However, it is desirable that the thickness of the thick portion 13 is 1.50 to 3.00 times the thickness of the thin portion 12.

[第2の実施形態]
図3(a)〜(e)は、第2の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。
このSiC被覆黒鉛部材の接合体の製造方法において、黒鉛基材の材料や形状及び第1のCVD工程は、図3(a)〜(b)に示すように、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法と同様であるので、ここではその説明を省略し、積層・マスキング工程から説明する。
[Second Embodiment]
3 (a) to 3 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the second embodiment.
In the method for manufacturing a bonded body of the SiC-coated graphite member, the material and shape of the graphite base material and the first CVD step are the SiC according to the first embodiment as shown in FIGS. 3 (a) to 3 (b). Since it is the same as the method for manufacturing a bonded body of a coated graphite member, the description thereof will be omitted here and will be described from the laminating / masking step.

(積層・マスキング工程)
第2の実施形態における積層・マスキング工程では、第1のCVD工程を経ることにより作製されたSiC被覆黒鉛部材15を複数積層することによりSiC被覆黒鉛部材15の積層体を作製するとともに、作製されたSiC被覆黒鉛部材15の積層体の露出した主面の大部分を、マスキング材28によりマスキングする。本実施形態では、マスキング材28が第1の実施形態と異なり、主面の面積がSiC被覆黒鉛部材15の主面より少し小さい板状体(円盤)となっている(図3(c)参照)。
(Laminating / masking process)
In the laminating / masking step of the second embodiment, a laminated body of the SiC-coated graphite member 15 is produced by laminating a plurality of SiC-coated graphite members 15 produced through the first CVD step, and is produced. Most of the exposed main surface of the laminated body of the SiC-coated graphite member 15 is masked by the masking material 28. In the present embodiment, unlike the first embodiment, the masking material 28 is a plate-like body (disk) having a main surface area slightly smaller than the main surface of the SiC-coated graphite member 15 (see FIG. 3C). ).

図3(c)に示すマスキング材28の材料は、特に限定されず、第1の実施形態で使用した材料と同じである。 The material of the masking material 28 shown in FIG. 3C is not particularly limited and is the same as the material used in the first embodiment.

(第2のCVD工程)
第2のCVD工程では、SiC被覆黒鉛部材15の積層体の側面を含む部分に、さらにCVD−SiC層23aを形成し(図3(d)参照)、マスキング材28を取り除くことにより、側面に厚肉部23を有するSiC被覆黒鉛部材の接合体20を得る(図3(e)参照)。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 23a is further formed on the portion including the side surface of the laminated body of the SiC-coated graphite member 15 (see FIG. 3D), and the masking material 28 is removed to form the side surface. A bonded body 20 of a SiC-coated graphite member having a thick portion 23 is obtained (see FIG. 3 (e)).

第2のCVD工程において、CVD−SiC層23aを形成する方法は、第1の実施形態において第1のCVD工程でCVD−SiC層を形成する方法と同様である。 The method of forming the CVD-SiC layer 23a in the second CVD step is the same as the method of forming the CVD-SiC layer in the first CVD step in the first embodiment.

なお、マスキング材28を取り除くと、マスキング材28があった部分に近い部分は厚く、取り除く際にバリが形成される。形成されたバリは、SiC被覆黒鉛部材の接合体20を使用する際に、特に影響がなければそのまま使用してもよく、研磨などによって除去してもよい。なお、SiC被覆黒鉛部材の接合体20の側面と主面との境界部は、厚肉部23で覆われている。 When the masking material 28 is removed, the portion close to the portion where the masking material 28 is located is thick, and burrs are formed when the masking material 28 is removed. When the bonded body 20 of the SiC-coated graphite member is used, the formed burrs may be used as they are if there is no particular influence, or may be removed by polishing or the like. The boundary between the side surface and the main surface of the joined body 20 of the SiC-coated graphite member is covered with a thick portion 23.

得られたSiC被覆黒鉛部材の接合体20の両主面には、第2のCVD工程でCVD−SiC層23aがほとんど形成されておらず、SiC被覆黒鉛部材の接合体20を構成するSiC被覆黒鉛部材15の2つの主面の大部分は、薄肉部12が形成されており、略同等の厚さであり、加熱、冷却されても熱歪みが同じように生じるので、SiC被覆黒鉛部材15に反りが発生しにくくなっている。 Almost no CVD-SiC layer 23a was formed on both main surfaces of the obtained bonded body 20 of the SiC-coated graphite member in the second CVD step, and the SiC coating constituting the bonded body 20 of the SiC-coated graphite member was formed. Most of the two main surfaces of the graphite member 15 are formed with a thin-walled portion 12 and have substantially the same thickness, and thermal strain occurs in the same manner even when heated and cooled. Therefore, the SiC-coated graphite member 15 Warp is less likely to occur.

[第3の実施形態]
図4(a)〜(e)は、第3の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。
このSiC被覆黒鉛部材の接合体の製造方法において、黒鉛基材の材料や形状及び第1のCVD工程は、図4(a)〜(b)に示すように、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法と同様であるので、ここではその説明を省略し、積層・マスキング工程から説明する。
[Third Embodiment]
4 (a) to 4 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the third embodiment.
In the method for manufacturing a bonded body of the SiC-coated graphite member, the material and shape of the graphite base material and the first CVD step are the SiC according to the first embodiment as shown in FIGS. 4A to 4B. Since it is the same as the method for manufacturing a bonded body of a coated graphite member, the description thereof will be omitted here and will be described from the laminating / masking step.

(積層・マスキング工程)
第3の実施形態における積層・マスキング工程では、第1のCVD工程を経ることにより作製されたSiC被覆黒鉛部材15を複数積層することによりSiC被覆黒鉛部材15の積層体を作製するとともに、作製されたSiC被覆黒鉛部材15の積層体の露出した主面全体を、マスキング材38によりマスキングする。マスキング材38は、第1の実施形態や第2の実施形態と異なり、主面の面積がSiC被覆黒鉛部材15の主面より少し大きい板状体(円盤)となっており、マスキング材38がSiC被覆黒鉛部材15の主面を覆うとともに、主面から少しはみ出している(図4(c)参照)。
(Laminating / masking process)
In the laminating / masking step of the third embodiment, a laminated body of the SiC-coated graphite member 15 is produced by laminating a plurality of SiC-coated graphite members 15 produced through the first CVD step, and is produced. The entire exposed main surface of the laminated body of the SiC-coated graphite member 15 is masked with the masking material 38. Unlike the first embodiment and the second embodiment, the masking material 38 is a plate-like body (disk) having a main surface area slightly larger than the main surface of the SiC-coated graphite member 15, and the masking material 38 is It covers the main surface of the SiC-coated graphite member 15 and slightly protrudes from the main surface (see FIG. 4C).

図4(c)に示すマスキング材38の材料は、特に限定されず、第1の実施形態で使用した材料と同じである。 The material of the masking material 38 shown in FIG. 4C is not particularly limited and is the same as the material used in the first embodiment.

(第2のCVD工程)
第2のCVD工程では、SiC被覆黒鉛部材15の積層体の側面を含む部分に、さらにCVD−SiC層33aを形成し(図4(d)参照)、マスキング材38を取り除くことにより、側面に厚肉部33を有するSiC被覆黒鉛部材の接合体30を得る(図4(e)参照)。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 33a is further formed on the portion including the side surface of the laminated body of the SiC-coated graphite member 15 (see FIG. 4D), and the masking material 38 is removed to form the side surface. A bonded body 30 of a SiC-coated graphite member having a thick portion 33 is obtained (see FIG. 4 (e)).

本実施の形態では、第2のCVD工程を行う際、SiC被覆部材の接合体30の露出する側の主面全体がマスキング材38で覆われており、厚肉部33と薄肉部12の境界部は、SiC被覆部材の接合体30の側面と主面との間のエッジ部にできる。また、第2のCVD工程では、SiC被覆黒鉛部材15とマスキング材38を接合するようにCVD−SiC層33aが形成されるので、マスキング材38を取り外す際にバリが形成される。形成されたバリは影響がなければそのまま使用してもよいし、研磨などによって除去してもよい。 In the present embodiment, when the second CVD step is performed, the entire main surface of the bonded body 30 of the SiC coating member on the exposed side is covered with the masking material 38, and the boundary between the thick portion 33 and the thin portion 12 is formed. The portion can be formed as an edge portion between the side surface and the main surface of the joining body 30 of the SiC coating member. Further, in the second CVD step, since the CVD-SiC layer 33a is formed so as to join the SiC-coated graphite member 15 and the masking material 38, burrs are formed when the masking material 38 is removed. The formed burrs may be used as they are if they are not affected, or may be removed by polishing or the like.

第2のCVD工程において、CVD−SiC層33aを形成する方法は、第1の実施形態において第1のCVD工程でCVD−SiC層を形成する方法と同様である。 The method of forming the CVD-SiC layer 33a in the second CVD step is the same as the method of forming the CVD-SiC layer in the first CVD step in the first embodiment.

得られたSiC被覆黒鉛部材の接合体30の両主面には、第2のCVD工程でCVD−SiC層33aが形成されていないので、SiC被覆黒鉛部材の接合体30を構成するSiC被覆黒鉛部材15の2つの主面は、薄肉部12が形成されているのみで、略同等の厚さであり、加熱、冷却されても熱歪みが同じように生じるので、SiC被覆黒鉛部材15に反りが発生しにくくなっている。 Since the CVD-SiC layer 33a is not formed on both main surfaces of the obtained bonded body 30 of the SiC-coated graphite member in the second CVD step, the SiC-coated graphite constituting the bonded body 30 of the SiC-coated graphite member is formed. The two main surfaces of the member 15 have substantially the same thickness except that the thin-walled portion 12 is formed, and the same thermal strain occurs even when heated and cooled, so that the SiC-coated graphite member 15 is warped. Is less likely to occur.

[第4の実施形態]
図5(a)〜(e)は、第4の実施形態に係る本発明のSiC被覆黒鉛部材の接合体の製造方法における積層・マスキング工程以降の工程を模式的に示す断面図である。
このSiC被覆黒鉛部材の接合体の製造方法において、黒鉛基材の材料や形状及び第1のCVD工程は、図5(a)〜(b)に示すように、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法と同様であるので、ここではその説明を省略し、積層・マスキング工程から説明する。
[Fourth Embodiment]
5 (a) to 5 (e) are cross-sectional views schematically showing the steps after the laminating / masking step in the method for manufacturing a bonded body of the SiC-coated graphite member of the present invention according to the fourth embodiment.
In the method for manufacturing a bonded body of the SiC-coated graphite member, the material and shape of the graphite base material and the first CVD step are the SiC according to the first embodiment as shown in FIGS. 5A to 5B. Since it is the same as the method for manufacturing a bonded body of a coated graphite member, the description thereof will be omitted here and will be described from the laminating / masking step.

(積層・マスキング工程)
第4の実施形態における積層・マスキング工程では、第1のCVD工程を経ることにより作製されたSiC被覆黒鉛部材15を複数積層することによりSiC被覆黒鉛部材15の積層体を作製するとともに、作製されたSiC被覆黒鉛部材15の積層体の露出した主面の全体を、マスキング材48によりマスキングする。マスキング材48は第1〜第3の実施形態と異なり、主面の面積がSiC被覆黒鉛部材15の主面より少し大きい板状体(円盤)で、主面から少しはみ出し、かつ、下に折れ曲がり、側面の一部を覆っており、側面とマスキング材48との間に小さな空間が形成されている(図5(c)参照)。
(Laminating / masking process)
In the laminating / masking step of the fourth embodiment, a laminate of SiC-coated graphite members 15 is produced by laminating a plurality of SiC-coated graphite members 15 produced through the first CVD step, and is produced. The entire exposed main surface of the laminated body of the SiC-coated graphite member 15 is masked with the masking material 48. Unlike the first to third embodiments, the masking material 48 is a plate-like body (disk) having a main surface area slightly larger than the main surface of the SiC-coated graphite member 15, slightly protruding from the main surface and bent downward. , A part of the side surface is covered, and a small space is formed between the side surface and the masking material 48 (see FIG. 5 (c)).

図5(c)に示すマスキング材48の材料は、特に限定されず、第1の実施形態で使用した材料と同じである。 The material of the masking material 48 shown in FIG. 5C is not particularly limited and is the same as the material used in the first embodiment.

(第2のCVD工程)
第2のCVD工程では、SiC被覆黒鉛部材15の積層体の側面を含む部分に、さらにCVD−SiC層43aを形成し(図5(d)参照)、マスキング材48を取り除くことにより、側面に厚肉部43を有するSiC被覆黒鉛部材の接合体40を得る(図5(e)参照)。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 43a is further formed on the portion including the side surface of the laminated body of the SiC-coated graphite member 15 (see FIG. 5D), and the masking material 48 is removed to form the side surface. A bonded body 40 of a SiC-coated graphite member having a thick portion 43 is obtained (see FIG. 5 (e)).

第2のCVD工程において、CVD−SiC層43aを形成する方法は、第1の実施形態において第1のCVD工程でCVD−SiC層を形成する方法と同様である。 The method of forming the CVD-SiC layer 43a in the second CVD step is the same as the method of forming the CVD-SiC layer in the first CVD step in the first embodiment.

上記したように、側面とマスキング材48との間に小さな空間が形成されているため、上記空間の内部まで原料ガスが到達しにくく、その結果、SiC被覆黒鉛部材の接合体40の側面においては、端部は薄肉部12と同じ厚さで、端部から内側に行くに従って、CVD−SiC層43aの厚さが徐々に厚くなり、一定の厚さの厚肉部43となる。また、空間が形成されている部分は、空洞49となるが、空洞49を形成するCVD−SiC層43aは、境界部は極めて薄いので、マスキング材48は、容易に取り除くことができ、境界部にバリやクラックが生じにくくなっている。 As described above, since a small space is formed between the side surface and the masking material 48, it is difficult for the raw material gas to reach the inside of the space, and as a result, the side surface of the bonded body 40 of the SiC-coated graphite member The end portion has the same thickness as the thin portion 12, and the thickness of the CVD-SiC layer 43a gradually increases from the end portion to the inside, resulting in a thick portion 43 having a constant thickness. Further, the portion where the space is formed becomes a cavity 49, but the CVD-SiC layer 43a forming the cavity 49 has an extremely thin boundary portion, so that the masking material 48 can be easily removed and the boundary portion can be removed. Burr and cracks are less likely to occur.

得られたSiC被覆黒鉛部材の接合体40の両主面には、第2のCVD工程でCVD−SiC層43aが形成されていないので、SiC被覆黒鉛部材の接合体40を構成するSiC被覆黒鉛部材15の2つの主面は、薄肉部12が形成されているのみで、略同等の厚さであり、加熱、冷却されても熱歪みが同じように生じるので、SiC被覆黒鉛部材15に反りが発生しにくくなっている。 Since the CVD-SiC layer 43a was not formed on both main surfaces of the obtained bonded body 40 of the SiC-coated graphite member in the second CVD step, the SiC-coated graphite constituting the bonded body 40 of the SiC-coated graphite member was formed. The two main surfaces of the member 15 have substantially the same thickness except that the thin-walled portion 12 is formed, and the same thermal strain occurs even when heated and cooled, so that the SiC-coated graphite member 15 is warped. Is less likely to occur.

[従来の実施形態]
図6(a)〜(e)は、従来の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における積層工程以降の工程を模式的に示す断面図である。
本実施形態では、熱膨張係数がCVD−SiC層よりも大きい黒鉛基材を用い、マスキング材を使用せずにSiC被覆黒鉛部材の接合体を製造した場合を示しており、製造されたSiC被覆黒鉛部材の接合体は、本発明の範囲外である。
[Conventional Embodiment]
6 (a) to 6 (e) are cross-sectional views schematically showing the steps after the laminating step in the method for manufacturing a bonded body of a SiC-coated graphite member according to a conventional embodiment.
In the present embodiment, a case is shown in which a graphite base material having a coefficient of thermal expansion larger than that of the CVD-SiC layer is used to manufacture a bonded body of a SiC-coated graphite member without using a masking material, and the manufactured SiC coating is shown. Joined graphite members are outside the scope of the present invention.

このSiC被覆黒鉛部材の接合体の製造方法において、黒鉛基材の材料や形状及び第1のCVD工程は、図6(a)〜(b)に示すように、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法と同様であるので、ここではその説明を省略し、積層工程から説明する。なお、従来の実施形態では、マスキングは行わないので、積層工程ということとする。 In the method for manufacturing a bonded body of the SiC-coated graphite member, the material and shape of the graphite base material and the first CVD step are the SiC according to the first embodiment as shown in FIGS. 6 (a) to 6 (b). Since it is the same as the method for manufacturing a bonded body of a coated graphite member, the description thereof will be omitted here and will be described from the laminating step. Since masking is not performed in the conventional embodiment, it is referred to as a laminating step.

(積層工程)
従来の実施形態における積層工程では、第1のCVD工程を経ることにより作製された黒鉛基材111の表面に薄肉部112を有するSiC被覆黒鉛部材115を複数積層することによりSiC被覆黒鉛部材115の積層体を作製する(図6(c)参照)が、マスキング材は用いずに、下記する第2のCVD工程を行う。
(Laminating process)
In the laminating step in the conventional embodiment, the SiC-coated graphite member 115 is formed by laminating a plurality of SiC-coated graphite members 115 having a thin-walled portion 112 on the surface of the graphite base material 111 produced through the first CVD step. A laminate is produced (see FIG. 6C), but the second CVD step described below is performed without using a masking material.

(第2のCVD工程)
第2のCVD工程では、マスキング材を用いず、SiC被覆黒鉛部材115の積層体の全体に、さらにCVD−SiC層113aを形成し、全面に厚肉部113を有するSiC被覆黒鉛部材の接合体110を製造する。図6(d)は、SiC被覆黒鉛部材の接合体110が製造された直後を示しており、図6(e)は、SiC被覆黒鉛部材の接合体110が製造された後、室温まで冷却された状態を示している。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 113a is further formed on the entire laminate of the SiC-coated graphite member 115 without using a masking material, and a bonded body of the SiC-coated graphite member having a thick portion 113 on the entire surface. 110 is manufactured. FIG. 6 (d) shows immediately after the bonded body 110 of the SiC-coated graphite member is manufactured, and FIG. 6 (e) shows the bonded body 110 of the SiC-coated graphite member cooled to room temperature after being manufactured. Shows the state.

なお、第2のCVD工程において、CVD−SiC層113aを形成する方法は、第1の実施形態において第1のCVD工程でCVD−SiC層を形成する方法と同様である。 The method of forming the CVD-SiC layer 113a in the second CVD step is the same as the method of forming the CVD-SiC layer in the first CVD step in the first embodiment.

上記のように、第2のCVD工程で、SiC被覆黒鉛部材の接合体110の全面に厚肉部113が形成されるが、SiC被覆黒鉛部材の接合体110を構成する個々のSiC被覆黒鉛部材115に注目すると、露出した主面には厚肉部113が形成されているが、主面同士が接している部分には、薄肉部112のみが形成されており、SiC被覆黒鉛部材115の2つ主面のCVD−SiC層の厚さが異なる。このため、図6(d)に示すSiC被覆黒鉛部材の接合体110が製造された直後では、個々のSiC被覆黒鉛部材115に熱歪みは生じず、変形しないが、室温まで冷却されると、黒鉛基材111とCVD−SiC層の熱膨張係数の差に起因して図6(e)に示すように、外側に凸になるように反りが発生し、個々のSiC被覆黒鉛部材115の主面が隣り合う部分に空隙が発生する。 As described above, in the second CVD step, the thick portion 113 is formed on the entire surface of the bonded body 110 of the SiC-coated graphite member, but the individual SiC-coated graphite members constituting the bonded body 110 of the SiC-coated graphite member. Focusing on 115, the thick portion 113 is formed on the exposed main surface, but only the thin portion 112 is formed on the portion where the main surfaces are in contact with each other. The thickness of the CVD-SiC layer on the main surface is different. Therefore, immediately after the bonded body 110 of the SiC-coated graphite member shown in FIG. 6D is manufactured, the individual SiC-coated graphite members 115 do not undergo thermal strain and are not deformed, but when cooled to room temperature, they are not deformed. As shown in FIG. 6E, warpage occurs so as to be convex outward due to the difference in the coefficient of thermal expansion between the graphite base material 111 and the CVD-SiC layer, and the main components of the individual SiC-coated graphite members 115 are warped. A gap is generated in the portion where the surfaces are adjacent to each other.

[従来の別の実施形態]
図7(a)〜(e)は、従来の別の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法における積層工程以降の工程を模式的に示す断面図である。
本実施形態では、熱膨張係数がCVD−SiC層よりも小さい黒鉛基材を用い、マスキング材を使用せずにSiC被覆黒鉛部材の接合体を製造した場合を示しており、製造されたSiC被覆黒鉛部材の接合体は、本発明の範囲外である。
[Another conventional embodiment]
7 (a) to 7 (e) are cross-sectional views schematically showing the steps after the laminating step in the method for manufacturing a bonded body of a SiC-coated graphite member according to another conventional embodiment.
In the present embodiment, a case is shown in which a graphite base material having a coefficient of thermal expansion smaller than that of the CVD-SiC layer is used and a bonded body of a SiC-coated graphite member is manufactured without using a masking material. Joined graphite members are outside the scope of the present invention.

このSiC被覆黒鉛部材の接合体の製造方法において、黒鉛基材の材料や形状及び第1のCVD工程は、図7(a)〜(b)に示すように、第1の実施形態に係るSiC被覆黒鉛部材の接合体の製造方法と同様であるので、ここではその説明を省略し、積層工程から説明する。 In the method for manufacturing a bonded body of the SiC-coated graphite member, the material and shape of the graphite base material and the first CVD step are the SiC according to the first embodiment as shown in FIGS. 7A to 7B. Since it is the same as the method for manufacturing a bonded body of a coated graphite member, the description thereof will be omitted here and will be described from the laminating step.

(積層工程)
従来の別の実施形態における積層工程では、第1のCVD工程を経ることにより作製された黒鉛基材121の表面に薄肉部122を有するSiC被覆黒鉛部材125を複数積層することによりSiC被覆黒鉛部材125の積層体を作製する(図7(c)参照)が、マスキング材は用いずに、下記する第2のCVD工程を行う。
(Laminating process)
In the laminating step in another conventional embodiment, a plurality of SiC-coated graphite members 125 having a thin-walled portion 122 are laminated on the surface of the graphite base material 121 produced by passing through the first CVD step, thereby laminating a plurality of SiC-coated graphite members 125. A laminate of 125 is produced (see FIG. 7C), but the second CVD step described below is performed without using a masking material.

(第2のCVD工程)
第2のCVD工程では、マスキング材を用いず、SiC被覆黒鉛部材125の積層体の全体に、さらにCVD−SiC層123aを形成し、全面に厚肉部123を有するSiC被覆黒鉛部材の接合体120を製造する。図7(d)は、SiC被覆黒鉛部材の接合体120が製造された直後を示しており、図7(e)は、SiC被覆黒鉛部材の接合体120が製造された後、室温まで冷却された状態を示している。
(Second CVD step)
In the second CVD step, a CVD-SiC layer 123a is further formed on the entire laminate of the SiC-coated graphite member 125 without using a masking material, and a bonded body of the SiC-coated graphite member having a thick portion 123 on the entire surface. 120 is manufactured. FIG. 7 (d) shows immediately after the bonded body 120 of the SiC-coated graphite member is manufactured, and FIG. 7 (e) shows the bonded body 120 of the SiC-coated graphite member cooled to room temperature after being manufactured. Shows the state.

なお、第2のCVD工程において、CVD−SiC層123aを形成する方法は、第1の実施形態において第1のCVD工程でCVD−SiC層を形成する方法と同様である。 The method of forming the CVD-SiC layer 123a in the second CVD step is the same as the method of forming the CVD-SiC layer in the first CVD step in the first embodiment.

第2のCVD工程で、SiC被覆黒鉛部材の接合体120の全面に厚肉部123が形成されるが、SiC被覆黒鉛部材の接合体120を構成する個々のSiC被覆黒鉛部材125に注目すると、露出した主面には厚肉部123が形成されているが、主面同士が接している部分には、薄肉部122のみが形成されており、SiC被覆黒鉛部材125の2つ主面の厚さが異なる。このため、図7(d)に示すSiC被覆黒鉛部材の接合体120が製造された直後では、個々のSiC被覆黒鉛部材125に熱歪みは生じず、変形しないが、室温まで冷却されると、黒鉛基材とCVD−SiC層の熱膨張係数の差に起因して周辺部分にいくに従って離れるように強い張力がかかり、SiC被覆黒鉛部材125に反りが発生し、破壊強度を超えると、両者の間に図7(e)に示すように剥離が生じる。 In the second CVD step, the thick portion 123 is formed on the entire surface of the carbide member 120 of the SiC-coated graphite member. Focusing on the individual SiC-coated graphite member 125 constituting the carbide member 120 of the SiC-coated graphite member, A thick portion 123 is formed on the exposed main surface, but only a thin portion 122 is formed on the portion where the main surfaces are in contact with each other, and the thickness of the two main surfaces of the SiC-coated graphite member 125 is formed. Is different. Therefore, immediately after the bonded body 120 of the SiC-coated graphite members shown in FIG. 7D is manufactured, the individual SiC-coated graphite members 125 do not undergo thermal strain and are not deformed, but when cooled to room temperature, they are not deformed. Due to the difference in the coefficient of thermal expansion between the graphite base material and the CVD-SiC layer, a strong tension is applied so that it separates toward the peripheral portion, and the SiC-coated graphite member 125 warps. In the meantime, peeling occurs as shown in FIG. 7 (e).

以上説明したように従来の2つの実施形態においては黒鉛基材とCVD−SiC層との熱膨張係数の差によって反りが発生するが、本発明のSiC被覆黒鉛部材の接合体においては内部応力を互いに打ち消しあうことができるので、このような反りの発生を防止することができ、寸法精度が高く隙間の発生のないSiC被覆黒鉛部材の接合体を提供することができる。 As described above, in the two conventional embodiments, warpage occurs due to the difference in the coefficient of thermal expansion between the graphite base material and the CVD-SiC layer, but in the bonded body of the SiC-coated graphite member of the present invention, internal stress is applied. Since they can cancel each other out, it is possible to prevent the occurrence of such warpage, and it is possible to provide a bonded body of SiC-coated graphite members having high dimensional accuracy and no gaps.

10、20、30、40、110、120 SiC被覆黒鉛部材の接合体
11、111、121 黒鉛基材
11a 主面
12、112、122 薄肉部
13a、23a、33a、43a、113a、123a CVD−SiC層
13、23、33、43、113、123 厚肉部
15、115、125 SiC被覆黒鉛部材
18、28、38、48 マスキング材
19、49 空洞
10, 20, 30, 40, 110, 120 Joined body of SiC-coated graphite member 11, 111, 121 Graphite base material 11a Main surface 12, 112, 122 Thin-walled portions 13a, 23a, 33a, 43a, 113a, 123a CVD-SiC Layers 13, 23, 33, 43, 113, 123 Thick parts 15, 115, 125 SiC coated graphite members 18, 28, 38, 48 Masking material 19, 49 cavities

Claims (6)

板状の黒鉛基材が、主面同士が対向するように複数積層され、複数の前記黒鉛基材がそれぞれCVD−SiC層によって被覆されるとともに互いに接合された板状のSiC被覆黒鉛部材の接合体であって、
前記CVD−SiC層は、前記黒鉛基材の側面に位置する厚肉部と、前記黒鉛基材の2つの主面に位置する薄肉部とからなり、対向する前記黒鉛基材の表面の薄肉部は互いに接合することなく接触し、前記厚肉部が互いに前記黒鉛基材を接合していることを特徴とするSiC被覆黒鉛部材の接合体。
A plurality of plate-shaped graphite base materials are laminated so that their main surfaces face each other, and the plurality of graphite base materials are each coated with a CVD-SiC layer and joined to each other by joining plate-shaped SiC-coated graphite members. The body
The CVD-SiC layer is composed of a thick-walled portion located on the side surface of the graphite base material and a thin-walled portion located on two main surfaces of the graphite base material, and the thin-walled portion on the surface of the graphite base material facing the graphite base material. Is a bonded body of a SiC-coated graphite member, wherein the thick portions are in contact with each other without joining each other, and the graphite base materials are bonded to each other.
前記厚肉部の厚さは、前記薄肉部の厚さの1.50〜3.00倍であることを特徴とする請求項1に記載のSiC被覆黒鉛部材の接合体。 The bonded body of a SiC-coated graphite member according to claim 1, wherein the thickness of the thick portion is 1.50 to 3.00 times the thickness of the thin portion. 前記CVD−SiC層は、前記厚肉部から前記薄肉部にかけて穏やかに厚さが変化していることを特徴とする請求項1又は2に記載のSiC被覆黒鉛部材の接合体。 The bonded body of the SiC-coated graphite member according to claim 1 or 2, wherein the CVD-SiC layer gradually changes in thickness from the thick portion to the thin portion. 前記SiC被覆黒鉛部材の接合体の側面と主面との境界部は、厚肉部で覆われていることを特徴とする請求項1〜3のいずれか1項に記載のSiC被覆黒鉛部材の接合体。 The SiC-coated graphite member according to any one of claims 1 to 3, wherein the boundary portion between the side surface and the main surface of the joined body of the SiC-coated graphite member is covered with a thick-walled portion. Joined body. 請求項1〜4のいずれか1項に記載のSiC被覆黒鉛部材の接合体の製造方法であって、
複数の前記黒鉛基材の表面に、一様にCVD−SiC層を形成することにより前記薄肉部を有する複数のSiC被覆黒鉛部材を得る第1のCVD工程と、
前記SiC被覆黒鉛部材を複数積層することによりSiC被覆黒鉛部材の積層体を作製するとともに、作製されたSiC被覆黒鉛部材の積層体の露出した主面を、マスキング材によりマスキングする積層・マスキング工程と、
前記SiC被覆黒鉛部材の積層体の側面を含む部分に、さらにCVD−SiC層を形成することにより前記厚肉部を有するSiC被覆黒鉛部材の接合体を得る第2のCVD工程と
からなることを特徴とするSiC被覆黒鉛部材の接合体の製造方法。
The method for producing a bonded body of a SiC-coated graphite member according to any one of claims 1 to 4.
A first CVD step of obtaining a plurality of SiC-coated graphite members having the thin-walled portion by uniformly forming a CVD-SiC layer on the surfaces of the plurality of graphite substrates.
A laminating / masking step of producing a laminate of SiC-coated graphite members by laminating a plurality of the SiC-coated graphite members and masking the exposed main surface of the produced laminate of SiC-coated graphite members with a masking material. ,
The second CVD step is to obtain a bonded body of the SiC-coated graphite member having the thick portion by further forming a CVD-SiC layer on the portion including the side surface of the laminate of the SiC-coated graphite member. A method for producing a bonded body of a SiC-coated graphite member.
製造されたSiC被覆黒鉛部材の接合体の前記厚肉部の厚さは、前記薄肉部の厚さの1.50〜3.00倍であることを特徴とする請求項5に記載のSiC被覆黒鉛部材の接合体の製造方法。


The SiC coating according to claim 5, wherein the thickness of the thick portion of the joined body of the manufactured SiC-coated graphite member is 1.50 to 3.00 times the thickness of the thin portion. A method for manufacturing a bonded body of a graphite member.


JP2020076209A 2020-04-22 2020-04-22 SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF Pending JP2021172542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076209A JP2021172542A (en) 2020-04-22 2020-04-22 SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076209A JP2021172542A (en) 2020-04-22 2020-04-22 SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2021172542A true JP2021172542A (en) 2021-11-01

Family

ID=78279473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076209A Pending JP2021172542A (en) 2020-04-22 2020-04-22 SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2021172542A (en)

Similar Documents

Publication Publication Date Title
US9764992B2 (en) Silicon carbide-tantalum carbide composite and susceptor
JP6170160B2 (en) CMC parts manufacturing method
JP7104620B2 (en) Aluminum-diamond complex and heat dissipation parts
JP2011051866A (en) Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
JP2006517174A (en) Method for treating the surface of a part made of thermostructural composite material and its use in brazing parts made of thermostructural composite material
JP2010132464A (en) Method for producing silicon carbide single crystal
US7055236B2 (en) Joining method for high-purity ceramic parts
JP2006143553A (en) ENVIRONMENTAL BARRIER COATING OF SiC-BASED FIBER-REINFORCED CERAMIC MATRIX COMPOSITE AND ITS PRODUCTION METHOD
JP2021172542A (en) SiC-COATED GRAPHITE MEMBER BONDED BODY AND MANUFACTURING METHOD THEREOF
EP2933353B1 (en) Method for producing fiber-reinforced composites
JP7261542B2 (en) Method for producing SiC-coated silicon material
KR101101368B1 (en) Method for fabricating graphite coated with silicon carbide
KR20210011884A (en) Carbon composite material
JP7385459B2 (en) A mold for forming a non-oxide vapor grown ceramic material, a non-oxide vapor grown ceramic material, and a method for manufacturing a mold for forming a non-oxide vapor grown ceramic material
JP2008007343A (en) Alumina coated material and method of manufacturing the same
JP2021091565A (en) Composite and method for producing the same
WO2002072502A1 (en) Method for producing sic fiber/sic composite material having high strength
EP1357098B1 (en) Joining methode for high-purity ceramic parts
JP2002211980A (en) SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR
JP3120884B2 (en) SiC coated C / C composite
TWI827917B (en) Electrostatic chuck
JP2021147257A (en) Manufacturing method of joined body of silicon carbide clad graphite member
KR20110010230A (en) Silicon carbide assembly and method of fabricating the same
JP2024053646A (en) Retaining device
KR20130072012A (en) Sintered body and method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402