JP2002211980A - SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR - Google Patents

SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR

Info

Publication number
JP2002211980A
JP2002211980A JP2001007142A JP2001007142A JP2002211980A JP 2002211980 A JP2002211980 A JP 2002211980A JP 2001007142 A JP2001007142 A JP 2001007142A JP 2001007142 A JP2001007142 A JP 2001007142A JP 2002211980 A JP2002211980 A JP 2002211980A
Authority
JP
Japan
Prior art keywords
sic
fiber
composite material
matrix
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007142A
Other languages
Japanese (ja)
Inventor
Akira Kayama
晃 香山
Takehiro Kato
雄大 加藤
Hiroshi Araki
弘 荒木
Tetsuji Noda
哲二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Japan Science and Technology Corp filed Critical National Institute for Materials Science
Priority to JP2001007142A priority Critical patent/JP2002211980A/en
Publication of JP2002211980A publication Critical patent/JP2002211980A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating

Abstract

PROBLEM TO BE SOLVED: To provide an SiC or C fiber/SiC composite material which has increased bond strength between SiC or C fiber and an SiC matrix by forming a thin C coating layer on the surface of the SiC or C fiber, and has excellent heat resistance and wear resistance. SOLUTION: In the SiC or C fiber/SiC composite material, an SiC matrix is bonded to SiC or C fiber via a C layer with a film thickness of 50 to 300 nm formed on the boundary of the SiC or C fiber/matrix, and the gaps of the SiC or C fiber are filled with the SiC matrix. The composite material is produced by forming a C layer with a film thickness of 50 to 300 nm on the surface of the SiC or C fiber by a vapor growth method, and thereafter filling the gaps of the SiC or C fiber with an SiC phase produced by the thermal decomposition of alkylchlorosilane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力,宇宙航空,エ
ネルギー関連等の特殊環境又は極限環境の構造材として
好適なSiC又はC繊維/SiC複合材料及び製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC or C-fiber / SiC composite material suitable as a structural material for a special environment or an extreme environment such as nuclear power, aerospace, and energy, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】原子力,宇宙航空分野等の特殊環境や極
限環境で使用される材料として、耐熱性,耐摩耗性に優
れたセラミックス系材料が注目されている。セラミック
ス系材料は、過酷な条件に曝される熱交換器,メカニカ
ルシール等の部材としても使用されている。なかでも、
SiC,Si34等の非酸化物系セラミックスは、高温
雰囲気においても優れた強度を維持する材料である。特
に、SiCやCは、強度,耐熱性,高熱伝導性,耐摩耗
性に優れていることに加え、中性子照射によっても長寿
命の放射性核種を生じないことを活用し、宇宙航空用か
ら核融合炉の第1隔壁に至るまでの広範な分野において
有望視されている材料である。
2. Description of the Related Art Ceramic materials having excellent heat resistance and wear resistance have attracted attention as materials used in special or extreme environments such as the nuclear and aerospace fields. Ceramic materials are also used as members for heat exchangers, mechanical seals, and the like exposed to severe conditions. Above all,
Non-oxide ceramics such as SiC and Si 3 N 4 are materials that maintain excellent strength even in a high-temperature atmosphere. In particular, SiC and C are superior in strength, heat resistance, high thermal conductivity, and wear resistance, and they do not generate long-lived radionuclides even by neutron irradiation. It is a promising material in a wide range of fields up to the first partition of the furnace.

【0003】SiCは、融点が高く高温特性に優れてい
るが、それ自体では脆い材料である。そこで、C繊維や
SiC繊維で強化した複合材料の開発が進められてい
る。SiC又はC繊維/SiC複合材料は反応焼結法,
ホットプレス法等、種々の方法で製造されているが、気
相反応浸透法(CVI)によるとき、最終製品に近い任
意形状で且つ高強度に成形できる利点がある。気相反応
浸透法(CVI)では、アルキルクロロシランの熱分解
で生成したSiC相によってSiC又はC繊維の内部空
隙を充填している。
[0003] SiC has a high melting point and excellent high-temperature properties, but is itself a brittle material. Therefore, development of a composite material reinforced with C fibers or SiC fibers has been promoted. SiC or C-fiber / SiC composite material is reactive sintering,
Although it is manufactured by various methods such as a hot press method, there is an advantage that a gas-phase reaction permeation method (CVI) can be formed into an arbitrary shape close to the final product and high strength. In the gas phase reactive infiltration method (CVI), the internal voids of SiC or C fibers are filled with a SiC phase generated by thermal decomposition of alkylchlorosilane.

【0004】[0004]

【発明が解決しようとする課題】SiC又はC繊維/S
iC複合材料の特性は、繊維/マトリックス界面の組織
によって大きく影響される。そのため、C,SiC、B
N等でSiC又はC繊維を予めコーティングした後、気
相反応浸透法を実施している。SiC又はC繊維に施し
たコーティング層は、熱分解反応で生成するSiCとの
親和性が高く、繊維/マトリックス界面の接合強度を改
善する。しかし、繊維/マトリックス界面に形成される
コーティング層の組織制御が困難なことから、最適条件
が明らかでなく、高位に安定した特性をSiC又はC繊
維/SiC複合材料に付与できなかった。
SUMMARY OF THE INVENTION SiC or C fiber / S
The properties of iC composites are greatly influenced by the texture of the fiber / matrix interface. Therefore, C, SiC, B
After pre-coating SiC or C fibers with N or the like, a gas phase reactive infiltration method is performed. The coating layer applied to the SiC or C fiber has a high affinity for SiC generated by a thermal decomposition reaction, and improves the bonding strength at the fiber / matrix interface. However, since it is difficult to control the structure of the coating layer formed at the fiber / matrix interface, the optimum conditions are not clear, and high-stability characteristics cannot be imparted to SiC or C-fiber / SiC composite materials.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、所定厚みのC層
をコーティング層として繊維/マトリックス界面に形成
することにより、機械的特性及び熱的特性に優れたSi
C又はC繊維/SiC複合材料を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem, and provides a mechanical layer by forming a C layer having a predetermined thickness as a coating layer at a fiber / matrix interface. Si with excellent properties and thermal properties
It is intended to provide a C or C fiber / SiC composite material.

【0006】本発明のSiC又はC繊維/SiC複合材
料は、その目的を達成するため、SiC又はC繊維/マ
トリックス界面に形成された膜厚50〜300nmのC
層を介しSiC又はC繊維にSiCマトリックスが結合
され、SiC又はC繊維の空隙がSiCマトリックスで
充填されていることを特徴とする。
In order to achieve the object, the SiC or C fiber / SiC composite material of the present invention has a thickness of 50 to 300 nm formed at the SiC or C fiber / matrix interface.
The SiC matrix is bonded to the SiC or C fibers via the layer, and the voids of the SiC or C fibers are filled with the SiC matrix.

【0007】このSiC又はC繊維/SiC複合材料
は、SiC又はC繊維の表面に気相成長法で膜厚50〜
300nmのC層を形成した後、アルキルクロロシラン
の熱分解によって生成するSiC相でSiC又はC繊維
の空隙を充填することにより製造される。繊維表面に形
成されるコーティング層としては、第1層として膜厚5
0〜300nmのCコーティング層がある限り,更にS
iC及び/又はC層を積層した多層構造でもよい。
This SiC or C fiber / SiC composite material has a thickness of 50 to 50% on the surface of the SiC or C fiber by a vapor phase growth method.
After forming a C layer of 300 nm, it is manufactured by filling voids of SiC or C fibers with a SiC phase generated by thermal decomposition of alkylchlorosilane. The coating layer formed on the fiber surface has a thickness of 5 as the first layer.
As long as there is a 0-300 nm C coating layer,
A multilayer structure in which iC and / or C layers are stacked may be used.

【0008】[0008]

【作用】SiC又はC繊維にCコーティング層を形成す
ること自体は従来から知られているが、個々の繊維表面
にCコーティング層を形成した後で繊維を編成している
ため,編成時にコーティング層が剥離・脱落しやすい。
また、厚いコーティング層を形成した繊維では編成自体
が困難になることから、コーティング層の層厚も50n
m以下に抑えられていた。そのため、最終的に作製され
たSiC又はC繊維/SiC複合材料の物性改善にコー
ティング層が十分な効果を及ぼしているとはいいがた
い。そこで、本発明者等は、所定形状に成形した繊維プ
リフォームにメタン,エタン,プロパン等の炭化水素ガ
スを送り込み、炭化水素ガスの熱分解で生成した炭素を
繊維表面に析出させるとき、均一で緻密なCコーティン
グ層が形成されることを見出し、別途出願した(同時提
出の特許出願:整理番号12P382)。
The formation of a C coating layer on SiC or C fibers has been known per se. However, since the fibers are knitted after forming the C coating layer on the surface of each fiber, the coating layer is formed during knitting. Easily peels off.
Further, since knitting itself becomes difficult with a fiber having a thick coating layer formed thereon, the layer thickness of the coating layer is also 50 n.
m or less. Therefore, it cannot be said that the coating layer has a sufficient effect on improving the physical properties of the finally produced SiC or C fiber / SiC composite material. Therefore, the present inventors send a hydrocarbon gas such as methane, ethane, or propane into a fiber preform molded into a predetermined shape, and when depositing carbon generated by thermal decomposition of the hydrocarbon gas on the fiber surface, the carbon gas is uniform. They found that a dense C coating layer was formed, and filed a separate application (patent application filed simultaneously: serial number 12P382).

【0009】本発明者等は、このように形成されるCコ
ーティング層の膜厚がSiC又はC繊維/SiC複合材
料の機械的特性に及ぼす影響を調査検討する過程で解明
されたものであり、繊維表面に形成されるCコーティン
グ層の膜厚を50〜300nmの範囲に制御するとき、
SiC又はC繊維/SiC複合材料の機械的特性が大幅
に向上するとの知見をベースにする。なお、所定膜厚の
Cコーティング層を形成した後、Cコーティング層上に
SiC及び/又はC層を更に積層することもできる。多
層のコーティング層は、破断応力を分散させる作用を呈
し、SiC又はC繊維/SiC複合材料の機械的強度を
更に向上させる。
The present inventors have clarified in the course of investigating the effect of the thickness of the C coating layer formed as described above on the mechanical properties of SiC or C fiber / SiC composite material. When controlling the thickness of the C coating layer formed on the fiber surface in the range of 50 to 300 nm,
It is based on the finding that the mechanical properties of SiC or C-fiber / SiC composites are significantly improved. After a C coating layer having a predetermined thickness is formed, an SiC and / or C layer may be further laminated on the C coating layer. The multi-layer coating layer has the effect of dispersing the breaking stress and further improves the mechanical strength of the SiC or C fiber / SiC composite.

【0010】Cコーティング層は、SiC又はC繊維/
SiC複合材料が変形するとき繊維/マトリックス界面
における亀裂伝播のバッファとなり、繊維の拘束を緩和
する。その結果、マトリックスに対する繊維の辷りを伴
った見掛けの変形が生じ、複合材料の強度低下をもたら
すことなく繊維自体の強度が発現され、繊維が破壊され
るまで複合材料の実効強度が上昇する。
The C coating layer is made of SiC or C fiber /
As the SiC composite deforms, it buffers the crack propagation at the fiber / matrix interface and relaxes the fiber constraints. As a result, apparent deformation accompanied by slippage of the fiber with respect to the matrix occurs, the strength of the fiber itself is developed without reducing the strength of the composite material, and the effective strength of the composite material increases until the fiber is broken.

【0011】このような作用・効果は、50〜300n
mの層厚で顕著になる。Cコーティング層の層厚が50
nm未満では、繊維/マトリックス界面の結合が強すぎ
るため繊維が拘束され、マトリックスからの亀裂のノッ
チ効果によって繊維が切断され、低い応力で複合材料が
破断する。逆に300nmをこる層厚では、Cコーティ
ング層が破壊すると共に繊維が脱落しまうため、繊維の
辷り効果による強度維持が発現されず、低い応力で複合
材料が座屈しやすくなる。
[0011] Such actions and effects are 50 to 300 n.
It becomes significant with a layer thickness of m. C coating layer thickness is 50
If it is less than nm, the fiber / matrix interface is too strong to bind the fiber, and the fiber is cut by the notch effect of cracks from the matrix, and the composite material breaks at low stress. Conversely, if the layer thickness exceeds 300 nm, the C coating layer is broken and the fibers fall off, so that the strength maintenance due to the fiber sliding effect is not exhibited, and the composite material is easily buckled with low stress.

【0012】[0012]

【実施例】平織りのSiC繊維織物を7層重ね合わせる
ことにより、厚さ2mmのSiC繊維プリフォームを用
意した。SiC繊維プリフォーム繊維積層体を直径40
mmの円盤状に成形し、反応器に収容した。反応器を
0.1Paまで真空吸引した後、1200℃に1時間加
熱することにより繊維に付着している樹脂を分解除去し
た。次いで、反応ガスとして流量200cc/分でメタ
ンを反応器に送り込み、反応器の内圧を14.7kPa
まで上げ、メタンの熱分解生成物であるCをプリフォー
ム繊維の周りに析出させた。多層被覆の場合、更にメチ
ルトリクロロシラン(反応ガス)と水素(還元性キャリ
アガス)との混合気体を反応器に送り込み、SiC相を
析出させた。これらの操作を複数回繰り返すことにより
SiC繊維の表面に多層膜を形成した。
EXAMPLE A SiC fiber preform having a thickness of 2 mm was prepared by laminating seven layers of plain-woven SiC fiber fabrics. SiC fiber preform fiber laminate with diameter 40
It was shaped into a disk of mm and stored in a reactor. After vacuum suction of the reactor to 0.1 Pa, the resin adhering to the fibers was decomposed and removed by heating to 1200 ° C. for 1 hour. Then, methane was fed into the reactor at a flow rate of 200 cc / min as a reaction gas, and the internal pressure of the reactor was increased to 14.7 kPa.
, And C, which is a thermal decomposition product of methane, was precipitated around the preform fiber. In the case of multi-layer coating, a mixed gas of methyltrichlorosilane (reaction gas) and hydrogen (reducing carrier gas) was further fed into the reactor to precipitate an SiC phase. By repeating these operations a plurality of times, a multilayer film was formed on the surface of the SiC fiber.

【0013】SiC繊維を被覆処理した後、気相反応浸
透法(CVI)で繊維プリフォームの内部空隙をSiC
で充填し、SiC繊維/SiC複合材料を作製した。気
相反応浸透法(CVI)では、同じ反応器に収容した繊
維プリフォームの内部にメチルトリクロロシラン:水素
=1:4(体積比)の混合ガスを送り込み、反応温度1
000℃,圧力13.3kPaの条件下でメチルトリク
ロロシランを熱分解反応させ、生成したSiCを繊維プ
リフォームの内部空隙に析出させた。
After coating the SiC fibers, the internal voids of the fiber preform are removed by a gas-phase reactive infiltration method (CVI).
To prepare a SiC fiber / SiC composite material. In the gas-phase reaction permeation method (CVI), a mixed gas of methyltrichlorosilane: hydrogen = 1: 4 (volume ratio) is fed into a fiber preform accommodated in the same reactor, and a reaction temperature of 1: 1.
Methyltrichlorosilane was subjected to a thermal decomposition reaction under the conditions of 000 ° C. and a pressure of 13.3 kPa, and the generated SiC was deposited in the internal voids of the fiber preform.

【0014】得られたSiC繊維/SiC複合材料を曲
げ試験し、弾性限強度及び曲げ強度を測定した。測定結
果をSiC繊維表面に形成されたCコーティング層で整
理したところ、約150nmの膜厚で最大強度が得ら
れ、膜厚が300nmを超えて厚くなると強度が低下す
る傾向にあった(図1)。C及びSiCを多層被覆した
SiC繊維/SiC複合材料であっても、SiC繊維表
面に形成したCコーティング層(第1層)の膜厚で強度
が支配され、C一層の場合とほぼ同じ傾向にあった。
The obtained SiC fiber / SiC composite material was subjected to a bending test, and the elastic limit strength and the bending strength were measured. When the measurement results were arranged by the C coating layer formed on the surface of the SiC fiber, the maximum strength was obtained at a film thickness of about 150 nm, and the strength tended to decrease when the film thickness exceeded 300 nm (FIG. 1). ). Even in the case of a SiC fiber / SiC composite material in which C and SiC are multi-layer coated, the strength is governed by the thickness of the C coating layer (first layer) formed on the surface of the SiC fiber, and the tendency is almost the same as in the case of a single C layer. there were.

【0015】膜厚を種々変化させたC層及びSiC層を
もつSiC繊維/SiC複合材料を曲げ試験し、破断面
を観察した。図2の観察結果にみられるように、何れも
主としてCコーティング層の界面でSiC繊維の引抜き
が生じているが、Cコーティング層の膜厚が50nm未
満ではSiCマトリックスから剥離しない部分が多くな
っていた。また、多層のコーティング層を形成した場
合、コーティング層の各層間に亀裂が伝播していた。
A SiC fiber / SiC composite material having a C layer and a SiC layer of various thicknesses was subjected to a bending test, and the fracture surface was observed. As can be seen from the observation results in FIG. 2, in all cases, pulling out of the SiC fiber occurs mainly at the interface of the C coating layer. However, when the thickness of the C coating layer is less than 50 nm, many portions do not peel off from the SiC matrix. Was. When a multilayer coating layer was formed, cracks were propagated between the coating layers.

【0016】図2の結果は、膜厚が50〜300nmと
薄いCコーティング層をSiC繊維の表面に形成すると
き、繊維/マトリックスの界面接合を大きく低下させる
ことがなく、繊維界面におけるクラック進展の緩和作用
によりSiC繊維/SiC複合材料の強度が向上(図
1)した原因と推察される。以上の実施例では、SiC
繊維を使用したが、SiC繊維に代えてC繊維を用いた
場合でも、同様に膜厚50〜300nmのCコーティン
グ層を形成することにより、優れた機械的強度をもつC
繊維/SiC複合材料の機械的強度が作製された。
FIG. 2 shows that when a C coating layer having a thin film thickness of 50 to 300 nm is formed on the surface of the SiC fiber, the fiber / matrix interfacial bonding is not greatly reduced, and the crack propagation at the fiber interface is suppressed. It is inferred that the relaxation effect increased the strength of the SiC fiber / SiC composite material (FIG. 1). In the above embodiment, SiC
Although a fiber is used, even when a C fiber is used in place of a SiC fiber, a C coating layer having a film thickness of 50 to 300 nm is similarly formed to provide a C layer having excellent mechanical strength.
The mechanical strength of the fiber / SiC composite was made.

【0017】[0017]

【発明の効果】以上に説明したように、本発明のSiC
又はC繊維/SiC複合材料は、薄い膜厚のCコーティ
ング層を介してSiC又はC繊維をSiCマトリックス
に結合させている。そのため、繊維/マトリックスの界
面剥離が抑えられ、SiC本来の優れた耐熱性,強度等
が活用され、宇宙航空用,原子炉隔壁,熱交換器部品等
の高機能材料として使用される。
As described above, the SiC of the present invention can be used.
Alternatively, the C-fiber / SiC composite binds the SiC or C-fiber to the SiC matrix through a thin-film C coating layer. Therefore, fiber / matrix interfacial separation is suppressed, and the excellent heat resistance and strength inherent in SiC are utilized, and it is used as a high-performance material for aerospace, reactor bulkheads, heat exchanger parts, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 SiC繊維表面に形成したCコーティング層
の膜厚が弾性限強度及び曲げ強度に及ぼす影響を表した
グラフ
FIG. 1 is a graph showing the effect of the thickness of a C coating layer formed on the surface of a SiC fiber on elastic limit strength and bending strength.

【図2】 単相又は複層のコーティング層を介してSi
C繊維とSiCマトリックスを結合したSiC繊維/S
iC複合材料を曲げ試験したときの亀裂進展及び破断面
組織を示す図表
FIG. 2: Si through single or multiple coating layers
SiC fiber / S combining C fiber and SiC matrix
Diagram showing crack growth and fracture surface structure when bending test of iC composite material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 雄大 京都府宇治市五ヶ庄 京都大学エネルギー 理工学研究所内 (72)発明者 荒木 弘 茨城県つくば市千現一丁目2番1号 文部 科学省金属材料技術研究所内 (72)発明者 野田 哲二 茨城県つくば市千現一丁目2番1号 文部 科学省金属材料技術研究所内 Fターム(参考) 4G001 BA22 BA60 BA76 BA77 BA86 BB22 BB60 BB86 BC72 BD01 BD12 BE31  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yudai Kato Gokasho, Uji City, Kyoto Prefecture Inside the Institute of Energy Science and Engineering, Kyoto University (72) Inventor Hiroshi Araki 1-1-2 Sengen, Tsukuba City, Ibaraki Prefecture Inside the Materials Technology Research Institute (72) Inventor Tetsuji Noda 1-2-1, Sengen, Tsukuba, Ibaraki Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiC又はC繊維/マトリックス界面に
形成された膜厚50〜300nmのC層を介しSiC又
はC繊維にSiCマトリックスが結合され、SiC又は
C繊維の空隙がSiCマトリックスで充填されているこ
とを特徴とするSiC又はC繊維/SiC複合材料。
An SiC matrix is bonded to a SiC or C fiber through a C layer having a thickness of 50 to 300 nm formed at an interface between the SiC or the C fiber and the matrix, and a void of the SiC or the C fiber is filled with the SiC matrix. SiC or C fiber / SiC composite material.
【請求項2】 SiC又はC繊維の表面に気相成長法で
膜厚50〜300nmのC層を形成した後、アルキルク
ロロシランの熱分解によって生成するSiC相でSiC
又はC繊維の空隙を充填することを特徴とするSiC又
はC繊維/SiC複合材料の製造方法。
2. After forming a C layer having a thickness of 50 to 300 nm on the surface of SiC or C fiber by a vapor phase growth method, a SiC phase generated by thermal decomposition of alkyl chlorosilane is used as the SiC.
Alternatively, a method for producing a SiC or C fiber / SiC composite material, characterized by filling voids of the C fiber.
JP2001007142A 2001-01-16 2001-01-16 SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR Pending JP2002211980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007142A JP2002211980A (en) 2001-01-16 2001-01-16 SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007142A JP2002211980A (en) 2001-01-16 2001-01-16 SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR

Publications (1)

Publication Number Publication Date
JP2002211980A true JP2002211980A (en) 2002-07-31

Family

ID=18874930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007142A Pending JP2002211980A (en) 2001-01-16 2001-01-16 SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR

Country Status (1)

Country Link
JP (1) JP2002211980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509152A (en) * 2012-01-20 2015-03-26 フリー フォーム ファイバーズ リミテッド ライアビリティ カンパニー High strength ceramic fiber and production method
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
US11362256B2 (en) 2017-06-27 2022-06-14 Free Form Fibers, Llc Functional high-performance fiber structure
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328177A (en) * 1989-03-02 1991-02-06 Soc Europ Propulsion (Sep) Manufacture of composite material for ceramic matrix with improved tenacity
JPH08505355A (en) * 1993-01-11 1996-06-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Thermostructural composite products and methods for their manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328177A (en) * 1989-03-02 1991-02-06 Soc Europ Propulsion (Sep) Manufacture of composite material for ceramic matrix with improved tenacity
JPH08505355A (en) * 1993-01-11 1996-06-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Thermostructural composite products and methods for their manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509152A (en) * 2012-01-20 2015-03-26 フリー フォーム ファイバーズ リミテッド ライアビリティ カンパニー High strength ceramic fiber and production method
US10047015B2 (en) 2012-01-20 2018-08-14 Free Form Fibers, Llc High strength ceramic fibers and methods of fabrication
US10882749B2 (en) 2012-01-20 2021-01-05 Free Form Fibers, Llc High strength ceramic fibers and methods of fabrication
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
US11362256B2 (en) 2017-06-27 2022-06-14 Free Form Fibers, Llc Functional high-performance fiber structure
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)

Similar Documents

Publication Publication Date Title
CN101503305B (en) Process for preparing self-sealing silicon carbide ceramic based composite material
CN105152671B (en) SiCfThe interface modification method of/SiC ceramic matrix composite material
JP5117862B2 (en) Manufacturing method of ceramic matrix composite member
US5545435A (en) Method of making a toughened ceramic composite comprising chemical vapor deposited carbon and ceramic layers on a fibrous preform
KR101565164B1 (en) A method of fabricating a thermostructural composite material part and a part obtained thereby
US6284357B1 (en) Laminated matrix composites
US6979490B2 (en) Fiber-reinforced ceramic composite material comprising a matrix with a nanolayered microstructure
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
JP5722330B2 (en) COMPOSITE MATERIAL COMPRISING CERAMIC MATRIX AND METHOD FOR MANUFACTURING THE SAME
CN108046819A (en) A kind of structure-function integration C/C-SiC friction materials and preparation method
CN113024281B (en) Silicon carbide/graphene bionic laminated coating and preparation method thereof
JP2007022075A5 (en)
JPWO2018212139A1 (en) Silicon carbide ceramics
CN113979752B (en) Mullite fiber reinforced ceramic matrix composite and preparation method thereof
US20030162647A1 (en) Fibre composite ceramic with a high thermal conductivity
JPH04285068A (en) Carbon-containing composite material protected against oxidation and method of its manufacture
US20100081350A1 (en) Smooth surface ceramic composites
KR20140132705A (en) Part made of cmc
Qiang et al. Oxidation resistance of SiC nanowires reinforced SiC coating prepared by a CVD process on SiC‐coated C/C composites
Lackey et al. Laminated C‐SiC matrix composites produced by CVI
JP2002211980A (en) SiC OR C FIBER/SiC COMPOSITE MATERIAL AND PRODUCTION METHOD TEHREFOR
CN116410013A (en) Silicon carbide ceramic and preparation method thereof
CN114163263B (en) Novel environmental barrier coating and structure for SiC ceramic matrix composite
EP2933353B1 (en) Method for producing fiber-reinforced composites
JP4707854B2 (en) Method for producing high-strength SiC fiber / SiC composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817