JP4707854B2 - Method for producing high-strength SiC fiber / SiC composite material - Google Patents

Method for producing high-strength SiC fiber / SiC composite material Download PDF

Info

Publication number
JP4707854B2
JP4707854B2 JP2001064852A JP2001064852A JP4707854B2 JP 4707854 B2 JP4707854 B2 JP 4707854B2 JP 2001064852 A JP2001064852 A JP 2001064852A JP 2001064852 A JP2001064852 A JP 2001064852A JP 4707854 B2 JP4707854 B2 JP 4707854B2
Authority
JP
Japan
Prior art keywords
sic
fiber
interface
strength
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001064852A
Other languages
Japanese (ja)
Other versions
JP2002265285A (en
Inventor
晃 香山
達也 檜木
雄大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001064852A priority Critical patent/JP4707854B2/en
Priority to PCT/JP2001/009364 priority patent/WO2002072502A1/en
Publication of JP2002265285A publication Critical patent/JP2002265285A/en
Application granted granted Critical
Publication of JP4707854B2 publication Critical patent/JP4707854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、発電分野、航空宇宙分野、原子力/核融合分野等の高い熱負荷やその他の過酷な環境下で使用される、優れた熱特性と強度特性を有する構造材料に関する。
【0002】
【従来の技術】
航空・宇宙分野、原子力分野、発電分野等の過酷な環境下で使用される材料として、耐熱性、化学的安定性、機械的特性に優れたSiC,Si34等、種々のセラミックス材料が開発されてきた。セラミックス材料は、熱交換器,メカニカルシール等の過酷な条件に曝される部材としても使用されている。
なかでも、SiCは耐熱性のみならず、高強度で耐摩耗性に優れ、しかも化学的安定性等に優れているので、航空・宇宙用途から原子力分野、化石燃料等の燃焼による発電分野等までの広範囲な分野において有望視されている構造材料である。
【0003】
SiCは、融点が2600℃と高温特性に優れているが、それ自体では脆い材料である。そこで、SiC繊維で強化したSiC繊維/SiC複合材料が提案され、その製造方法として、ホットプレス法や液相焼結法等、多様な製造プロセスの検討が進められている。
しかしながら、いずれの製法によっても、高い熱伝導特性や高い密度、更には高い強度特性、優れた破壊挙動特性を有するSiC繊維/SiC複合材料を得ることは容易ではない。
【0004】
化学蒸気浸透法(CVD法)による従来のSiC/SiC複合材料の作成方法は、市販のSiC繊維に対して、繊維/マトリックス界面となるCやBN等の層を化学蒸気浸透法により形成し、マトリックスSiCを同様に化学蒸気浸透法により形成するものであった。CやBNの界面層は、界面において亀裂を分散させることにより破壊靭性を向上させる働きは有しているものの、剥離した界面において応力を伝達する能力はほとんど得られなかった。
【0005】
十分な機械的特性が得られない一つの理由として、繊維と繊維/マトリックス界面層との接着力が弱いことが挙げられている。この問題を改善するために、繊維表面を化学的に処理することにより、SiC繊維とCやC/SiC多層界面等との接合強度を向上させることによって、強度特性を向上させることも提案されている。
しかしこの方法では、化学蒸気法とは全く異なった化学的なプロセスが加わることによって全体としてコスト高になってしまい、また繊維表面を直接改質するために繊維強度の劣化が懸念される。
【0006】
本発明は、このような問題を解消すべく、SiC繊維表面にC等の界面層を施し、SiCマトリックスを形成したSiC繊維/SiC複合体を製造する際、簡易な方法で繊維と界面層との接合強度の高いものを得て、結果的に機械的特性に優れた複合体を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の高強度SiC繊維/SiC複合材料の製造方法は、その目的を達成するため、化学蒸気浸透法によりSiC被覆を施したSiC繊維を用いた成形体のSiC繊維表面に、CまたはBNからなる界面層を形成した後、化学蒸気浸透法によりSiCマトリックスを形成することを特徴とする。
【0008】
【作用】
従来の化学蒸気浸透法により製造されたSiC繊維/SiC複合材料では、繊維/マトリックス界面での破壊は、用いられる界面構造に依らず、繊維と界面層間で亀裂が進展し易いことが、剥離した界面の透過電子顕微鏡による観察等で明らかになっていた。
この複合材料では、界面強度特性の中で重要な要素である界面での摩擦力は、界面構造に依存せず比較的低い。このため、界面に一旦亀裂が入ると図1(a)で示されるように滑らかに亀裂が進展し、界面における応力伝達能力が著しく低下し、一旦亀裂が入ると強度特性が著しく劣化することになる。これは、繊維と界面層との接合強度が界面層内部や界面層とマトリックスSiCとの接合強度より低いことに起因すると考えられる。
【0009】
そこで、本発明者等は、繊維と界面の接合強度を界面とマトリックスの接合強度と同等にするために、マトリックスSiCと同じ原料ガスであるアルキルクロロシランを用いて繊維にSiC被覆を行った。
SiC被覆を施したSiC繊維に対して従来のC等の界面層とSiCマトリックスを形成してSiC繊維/SiC複合材料を作製した場合、図1(b)に示されるように界面における亀裂は界面内部をより複雑に進展した。この結果、繊維を被覆した試料の剥離した界面は、繊維を被覆しなかったものに比べると、粗くなり、強度は大きく向上していた。
【0010】
繊維のSiC被覆の具体的な方法は、繊維成形体内での蒸着速度を一定にし、均一なSiC被覆を形成するために、繊維成形体の反応ガス供給側および排気側を一定の同じ圧力とし、水素に対するアルキルクロロシランの混合割合を60%以下にした混合ガス中において、圧力10kPa以上、温度1000℃以下で行う。
【0011】
SiC被覆後、繊維成形体の反応ガス供給側および排気側を一定の同じ圧力とし、メタン等炭化水素ガス流量を最大300cc/min、圧力15kPa以下、反応温度最大1000℃の条件で炭素被覆を行い、マトリックスSiCの形成は繊維のSiC被覆と同様な条件で行う。
【0012】
本発明では、従来から実施されている化学蒸気浸透法によるSiC繊維/SiC複合材料の製造プロセスに、一つの化学蒸気浸透工程を付加するだけであるから、化学的表面処理のような全く別のプロセスを必要としない。
したがって、他の表面処理に比べて、短時間で処理することができ、製造コストを抑えることができる。また、他の表面処理法に比べて繊維強度の劣化を招くことも懸念されない。
【0013】
【実施例】
<本発明例>
平織りのSiC繊維織物(直径14μm、繊維密度2.74g/cm3)7層を厚さが2mmになるように重ね、40mmφの円盤状に成形した後、0.13Paの真空中、1200℃で約1時間加熱し、繊維に付着している樹脂を除去した。その後、繊維成形体の反応ガス供給側および排気側を一定の同じ圧力とし、反応ガスのメチルトリクロロシランと還元性キャリアガスの水素の混合ガス(水素に対するメチルトリクロロシランの混合割合を50%)を圧力14.7kPa,温度約1000℃で12分保持し、繊維にSiC被覆を行った。次いで、反応ガスのメタン(100cc/min、圧力14.7kPa、反応温度950℃)を導入し1時間保持し、SiC被覆した繊維成形体の周りに炭素層を析出させ、再度SiC被覆と同様な条件で反応ガスのメチルトリクロロシランと還元性キャリアガスの水素の混合ガスにより19時間保持してマトリックスSiCを形成した。得られた複合体の密度は2.5g/mm3であった。
【0014】
<従来例>
SiC繊維にSiC被覆を行わない以外は実施例と同じ条件でSiC/SiC複合材料を作成した。
平織りのSiC繊維織物(直径14μm、繊維密度2.74g/cm3)7層を厚さが2mmになるように重ね、40mmφの円盤状に成形した後、0.13Paの真空中、1200℃で約1時間加熱し、繊維に付着している樹脂を除去した。その後、繊維成形体の反応ガス供給側および排気側を一定の同じ圧力とし、反応ガスのメタン(100cc/min、圧力14.7kPa、反応温度950℃)を導入し1時間保持し、繊維成形体の周りに炭素層を析出させ、その後、反応ガスのメチルトリクロロシランと還元性キャリアガスの水素の混合ガス(水素に対するメチルトリクロロシランの混合割合を50%)を圧力14.7kPa,温度約1000℃で15時間保持してマトリックスSiCを形成した。得られた複合体の密度は2.5g/mm3であった。
【0015】
<評価>
SiC被覆を施したSiC繊維を用い、繊維/マトリックス界面にC層を形成したSiC繊維/SiC複合材料の、繊維とマトリックスとの界面の透過電子顕微鏡像を図2に示す。
また、図3は、繊維にSiC被覆を施した試料と、施していない試料の引張り特性を示したものである。上記本発明例と従来例により作成したSiC/SiC複合材料の表面を平面研削により余剰SiCを取り除き、図3に示されているような引っ張り試験片形状に加工した。SiC繊維にSiC被覆を予め施しておくことにより、弾性率比例限界強度、引っ張り強度、伸びともに著しく向上した。
【0016】
引張り試験により引き抜かれた繊維の表面をEDSにより元素分析した結果を表1に示す。SiC被覆を施していない繊維では繊維の成分に相当するSiとCが検出されたのに対し、SiC被覆を施した繊維では検出された成分はほとんどCであった。
これは、SiC被覆がない複合材料では、繊維/C界面間で破壊したために繊維表面が剥き出しになっているのに対し、SiC被覆を施した複合材料ではC界面内で破壊が進行したために、検出された成分がほとんどCであったことを示している。
【0017】

Figure 0004707854
【0018】
図4は、繊維にSiC被覆を施した試料(b)と、施していない試料(a)の引き抜かれた繊維表面の粗さを評価したものである(なお、図中縦軸の倍率を変えている)。SiC被覆を施すことによって剥離した界面は粗くなることが明らかになる。繊維表面粗さの二乗平均平方根(root mean square)が、SiC被覆を施していないものでは2.51nmであったのに対し、SiC被覆を施したものでは9.0nmであった。
剥離界面が粗くなっていることは、とりもなおさず、応力伝達能力が十分に維持され破壊強度を向上させていることを示している。
【0019】
【発明の効果】
以上に説明したように、本発明では、化学蒸気浸透法によりSiC繊維表面にC等の界面層を施し、SiCマトリックスを形成したSiC繊維/SiC複合体を製造する際に、予めSiC繊維の表面に化学蒸気浸透法によりSiC被覆を施しておくことにより、繊維/マトリックス界面に起こる亀裂の進展が、繊維/界面層の境界から界面層内部に移行し、破壊界面での破壊挙動を複雑にし、剥離界面での摩擦力を大きく向上させることが可能になった。このため、剥離した界面において高い応力伝達能力を維持することができるため、強度特性は大きく向上した。
さらに、他の繊維の表面処理に比べて簡易な方法で化学蒸気浸透法による複合体製造のプロセスの範囲内で実施することが可能であるため、他の方法に比べて時間的にもコスト的にも優位な方法である。
【図面の簡単な説明】
【図1】 界面の破壊挙動に及ぼす繊維のSiC被覆効果を示す図。
【図2】 SiC被覆を施した繊維を用いて作製したSiC繊維/SiC複合材料の繊維/マトリックス界面を透過電子顕微鏡で観察した観察画面概略図。
【図3】 引張り強度特性に及ぼす繊維のSiC被覆効果を示す図。
【図4】 引張り試験により引き抜かれた繊維の表面粗さを示す図。[0001]
[Industrial application fields]
The present invention relates to a structural material having excellent thermal characteristics and strength characteristics, which is used under a high heat load such as in the power generation field, aerospace field, nuclear power / fusion field and other severe environments.
[0002]
[Prior art]
Various ceramic materials such as SiC and Si 3 N 4 with excellent heat resistance, chemical stability, and mechanical properties are used as materials used in harsh environments such as aerospace, nuclear power, and power generation. Has been developed. Ceramic materials are also used as members exposed to harsh conditions such as heat exchangers and mechanical seals.
Above all, SiC is not only heat resistant, but also has high strength, excellent wear resistance, and excellent chemical stability, so it can be used in aerospace applications, nuclear power, power generation by burning fossil fuels, etc. It is a structural material that is considered promising in a wide range of fields.
[0003]
SiC has a melting point of 2600 ° C. and excellent high-temperature characteristics, but is a brittle material by itself. Accordingly, SiC fiber / SiC composite materials reinforced with SiC fibers have been proposed, and various manufacturing processes such as a hot press method and a liquid phase sintering method have been studied as manufacturing methods thereof.
However, it is not easy to obtain a SiC fiber / SiC composite material having high heat conduction characteristics, high density, high strength characteristics, and excellent fracture behavior characteristics by any manufacturing method.
[0004]
A conventional method for producing a SiC / SiC composite material by chemical vapor infiltration (CVD) is to form a layer of C or BN, which becomes a fiber / matrix interface, by chemical vapor infiltration on a commercially available SiC fiber. Similarly, matrix SiC was formed by the chemical vapor infiltration method. Although the interface layer of C or BN has a function of improving fracture toughness by dispersing cracks at the interface, the ability to transmit stress at the peeled interface was hardly obtained.
[0005]
One reason why sufficient mechanical properties cannot be obtained is that the adhesive strength between the fiber and the fiber / matrix interface layer is weak. In order to improve this problem, it has also been proposed to improve the strength characteristics by chemically treating the fiber surface and improving the bonding strength between the SiC fiber and the C or C / SiC multilayer interface. Yes.
However, in this method, a chemical process completely different from the chemical vapor method is added to increase the cost as a whole, and there is a concern about deterioration of fiber strength because the fiber surface is directly modified.
[0006]
In the present invention, in order to solve such problems, when an SiC fiber / SiC composite having an SiC matrix formed by applying an interface layer such as C to the surface of the SiC fiber, the fiber and the interface layer are formed by a simple method. It is an object of the present invention to provide a method for producing a composite having a high bonding strength and consequently producing a composite having excellent mechanical properties.
[0007]
[Means for Solving the Problems]
In order to achieve the object of the manufacturing method of the high strength SiC fiber / SiC composite material of the present invention, the surface of the molded product using SiC fiber coated with SiC by the chemical vapor infiltration method is made from C or BN. After the formation of the interface layer, a SiC matrix is formed by chemical vapor infiltration.
[0008]
[Action]
In the SiC fiber / SiC composite material manufactured by the conventional chemical vapor infiltration method, the breakage at the fiber / matrix interface peels off, regardless of the interface structure used, and the cracks easily develop between the fiber and the interface layer. It was revealed by observation of the interface with a transmission electron microscope.
In this composite material, the frictional force at the interface, which is an important factor in the interface strength characteristics, is relatively low regardless of the interface structure. For this reason, once a crack enters the interface, the crack progresses smoothly as shown in FIG. 1 (a), and the stress transmission ability at the interface decreases significantly. Once the crack enters, the strength characteristics deteriorate significantly. Become. This is considered due to the fact that the bonding strength between the fiber and the interface layer is lower than the bonding strength inside the interface layer or between the interface layer and the matrix SiC.
[0009]
Therefore, the present inventors performed SiC coating on the fiber using alkylchlorosilane, which is the same raw material gas as the matrix SiC, in order to make the bonding strength between the fiber and the interface equal to the bonding strength between the interface and the matrix.
When a SiC fiber / SiC composite material is produced by forming a SiC matrix and a conventional SiC interface layer on a SiC coated SiC fiber, as shown in FIG. The inside evolved more complex. As a result, the peeled interface of the sample coated with the fiber was rougher and the strength was greatly improved as compared with the sample not coated with the fiber.
[0010]
The specific method of coating the fiber with SiC is to make the deposition rate constant in the fiber molded body, and to form a uniform SiC coating, the reaction gas supply side and the exhaust side of the fiber molded body have the same constant pressure, It is carried out at a pressure of 10 kPa or more and a temperature of 1000 ° C. or less in a mixed gas in which the mixing ratio of alkylchlorosilane to hydrogen is 60% or less.
[0011]
After SiC coating, carbon coating is performed under the conditions that the reaction gas supply side and the exhaust side of the fiber molded body are at the same constant pressure, the flow rate of hydrocarbon gas such as methane is 300 cc / min at the maximum, the pressure is 15 kPa or less, and the reaction temperature is 1000 ° C. The matrix SiC is formed under the same conditions as the SiC coating of the fiber.
[0012]
In the present invention, since only one chemical vapor infiltration step is added to the conventional manufacturing process of SiC fiber / SiC composite material by the chemical vapor infiltration method, it is completely different from the chemical surface treatment. Does not require a process.
Therefore, it can process in a short time compared with other surface treatment, and can suppress manufacturing cost. Further, there is no concern that the fiber strength is deteriorated as compared with other surface treatment methods.
[0013]
【Example】
<Invention Example>
Seven layers of plain weave SiC fiber fabric (diameter 14 μm, fiber density 2.74 g / cm 3 ) are stacked to a thickness of 2 mm, formed into a disk shape of 40 mmφ, and then at 1200 ° C. in a vacuum of 0.13 Pa. Heating for about 1 hour removed the resin adhering to the fiber. Thereafter, the reaction gas supply side and the exhaust side of the fiber molded body are set to the same constant pressure, and a mixed gas of the reaction gas methyltrichlorosilane and the reducing carrier gas hydrogen (mixing ratio of methyltrichlorosilane to hydrogen is 50%) The pressure was 14.7 kPa and the temperature was kept at about 1000 ° C. for 12 minutes, and the fiber was coated with SiC. Next, the reaction gas methane (100 cc / min, pressure 14.7 kPa, reaction temperature 950 ° C.) was introduced and held for 1 hour, a carbon layer was deposited around the SiC-coated fiber molded body, and again the same as the SiC coating. Under the conditions, matrix SiC was formed by maintaining for 19 hours with a mixed gas of methyltrichlorosilane as a reaction gas and hydrogen as a reducing carrier gas. The density of the obtained composite was 2.5 g / mm 3 .
[0014]
<Conventional example>
A SiC / SiC composite material was prepared under the same conditions as in the Examples except that the SiC fiber was not coated with SiC.
Seven layers of plain weave SiC fiber fabric (diameter 14 μm, fiber density 2.74 g / cm 3 ) are stacked to a thickness of 2 mm, formed into a disk shape of 40 mmφ, and then at 1200 ° C. in a vacuum of 0.13 Pa. Heating for about 1 hour removed the resin adhering to the fiber. Thereafter, the reaction gas supply side and the exhaust side of the fiber molded body are set to the same constant pressure, the reaction gas methane (100 cc / min, pressure 14.7 kPa, reaction temperature 950 ° C.) is introduced and held for 1 hour, and the fiber molded body is maintained. A carbon layer is deposited around the substrate, and then a mixed gas of methyltrichlorosilane as a reaction gas and hydrogen as a reducing carrier gas (a mixing ratio of methyltrichlorosilane to hydrogen is 50%) is set at a pressure of 14.7 kPa and a temperature of about 1000 ° C. For 15 hours to form matrix SiC. The density of the obtained composite was 2.5 g / mm 3 .
[0015]
<Evaluation>
FIG. 2 shows a transmission electron microscope image of the interface between the fiber and the matrix of the SiC fiber / SiC composite material in which the SiC fiber coated with SiC is used and the C layer is formed at the fiber / matrix interface.
FIG. 3 shows tensile properties of a sample in which the fiber is coated with SiC and a sample in which the fiber is not coated. Excess SiC was removed from the surface of the SiC / SiC composite material prepared according to the above-described invention example and the conventional example by surface grinding, and processed into a tensile test piece shape as shown in FIG. By applying SiC coating to the SiC fiber in advance, the elastic modulus proportional limit strength, tensile strength, and elongation were remarkably improved.
[0016]
Table 1 shows the results of elemental analysis of the surface of the fiber drawn by the tensile test using EDS. Si and C corresponding to the components of the fiber were detected in the fiber not coated with SiC, whereas the component detected in the fiber coated with SiC was almost C.
This is because, in the composite material without the SiC coating, the fiber surface is exposed because of the fracture between the fiber / C interface, whereas in the composite material with the SiC coating, the fracture proceeds in the C interface. It shows that the detected component was almost C.
[0017]
Figure 0004707854
[0018]
FIG. 4 shows an evaluation of the roughness of the surface of the drawn fiber of the sample (b) where the fiber is coated with SiC (b) and the sample (a) where the fiber is not applied (the magnification on the vertical axis in the figure is changed). ing). It becomes clear that the peeled interface becomes rough by applying the SiC coating. The root mean square of the fiber surface roughness was 2.51 nm when the SiC coating was not applied, and 9.0 nm when the SiC coating was applied.
The fact that the peeling interface is rough indicates that the stress transmission ability is sufficiently maintained and the fracture strength is improved.
[0019]
【The invention's effect】
As described above, in the present invention, when the SiC fiber / SiC composite having the SiC matrix formed by applying an interface layer such as C to the SiC fiber surface by the chemical vapor infiltration method, the surface of the SiC fiber is previously prepared. By applying SiC coating by chemical vapor permeation method, the progress of cracks occurring at the fiber / matrix interface moves from the fiber / interface layer interface to the inside of the interface layer, complicating the fracture behavior at the fracture interface, It has become possible to greatly improve the frictional force at the peeling interface. For this reason, since the high stress transmission capability can be maintained at the peeled interface, the strength characteristics are greatly improved.
Furthermore, since it can be carried out within the scope of the composite production process by chemical vapor infiltration by a simple method compared to the surface treatment of other fibers, it is more time-consuming and cost-effective than other methods. It is also a superior method.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of fiber SiC coating on the fracture behavior of an interface.
FIG. 2 is a schematic view of an observation screen obtained by observing a fiber / matrix interface of an SiC fiber / SiC composite material produced using an SiC-coated fiber with a transmission electron microscope.
FIG. 3 is a diagram showing the effect of fiber SiC coating on tensile strength characteristics.
FIG. 4 is a diagram showing the surface roughness of fibers drawn by a tensile test.

Claims (1)

化学蒸気浸透法によSiC被覆を、繊維成形体の反応ガス供給側および排気側を一定の同じ圧力とし、10kPa以上の反応ガスの圧力下で施したSiC繊維を用いた成形体のSiC繊維表面に、CまたはBNからなる界面層を形成した後、化学蒸気浸透法によりSiCマトリックスを形成することを特徴とする高強度SiC繊維/SiC複合材料の製造方法。The I that SiC coating chemical vapor infiltration, the reaction gas supply and exhaust sides of the fiber compact as a constant same pressure, SiC fibers of the molded body using SiC fibers subjected under a pressure of 10kPa or more reactive gases A method for producing a high-strength SiC fiber / SiC composite material, comprising forming an SiC matrix by chemical vapor infiltration after forming an interface layer made of C or BN on the surface.
JP2001064852A 2001-03-08 2001-03-08 Method for producing high-strength SiC fiber / SiC composite material Expired - Fee Related JP4707854B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001064852A JP4707854B2 (en) 2001-03-08 2001-03-08 Method for producing high-strength SiC fiber / SiC composite material
PCT/JP2001/009364 WO2002072502A1 (en) 2001-03-08 2001-10-25 Method for producing sic fiber/sic composite material having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064852A JP4707854B2 (en) 2001-03-08 2001-03-08 Method for producing high-strength SiC fiber / SiC composite material

Publications (2)

Publication Number Publication Date
JP2002265285A JP2002265285A (en) 2002-09-18
JP4707854B2 true JP4707854B2 (en) 2011-06-22

Family

ID=18923620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064852A Expired - Fee Related JP4707854B2 (en) 2001-03-08 2001-03-08 Method for producing high-strength SiC fiber / SiC composite material

Country Status (2)

Country Link
JP (1) JP4707854B2 (en)
WO (1) WO2002072502A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (en) * 2003-10-10 2005-04-28 National Institute For Materials Science SiC COMPOSITE MATERIAL REINFORCED WITH SiC NANOWIRE
US20130089705A1 (en) * 2010-03-31 2013-04-11 Ube Industries, Ltd. SiC FIBER-BONDED CERAMIC COATED WITH SiC
WO2015129772A1 (en) * 2014-02-25 2015-09-03 株式会社Ihi Heat-resistant composite material production method and production device
CN106083116B (en) * 2016-06-16 2018-11-09 西北工业大学 The method that one-step method prepares SiC ceramic matrix composite material cladding tubes
JP6959747B2 (en) * 2017-03-14 2021-11-05 株式会社Ihiエアロスペース Silicon Carbide Complex and Its Manufacturing Method
JP6833662B2 (en) * 2017-10-27 2021-02-24 日本ファインセラミックス株式会社 Method for manufacturing silicon carbide matrix composite material
CN112521156B (en) * 2021-02-18 2021-04-27 中国人民解放军国防科技大学 Hybrid matrix SiCf/SiC composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219576A (en) * 1999-01-28 2000-08-08 Ishikawajima Harima Heavy Ind Co Ltd Ceramic-base composite member and its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521795B2 (en) * 1988-10-21 1996-08-07 日本石油株式会社 Method for producing carbon fiber reinforced composite material having oxidation resistance
FR2643898B1 (en) * 1989-03-02 1993-05-07 Europ Propulsion PROCESS FOR THE MANUFACTURE OF A COMPOSITE MATERIAL WITH A CERAMIC MATRIX WITH IMPROVED TENACITY
JPH0489377A (en) * 1990-07-27 1992-03-23 Natl Res Inst For Metals High-strength sic/carbon fiber composite material and production thereof
JP3143086B2 (en) * 1997-10-14 2001-03-07 核燃料サイクル開発機構 SiC composite sleeve and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219576A (en) * 1999-01-28 2000-08-08 Ishikawajima Harima Heavy Ind Co Ltd Ceramic-base composite member and its production

Also Published As

Publication number Publication date
WO2002072502A1 (en) 2002-09-19
JP2002265285A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
JP3971903B2 (en) Method for producing SiC fiber reinforced SiC composite material
US9611180B2 (en) Method for manufacturing a part made of CMC
JP5737547B2 (en) Method for producing silicon carbide-coated graphite particles and silicon carbide-coated graphite particles
CN102256914B (en) The method processing ceramic fibre
EP1867619B1 (en) Method of coating a ceramic based felt
EP3024801B1 (en) Process for fabricating composite parts by low melting point impregnation
KR101810238B1 (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
CN100497804C (en) Method for preparing coat of silicon carbide on surface of carbon fiber
Stalin et al. Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis
JP4707854B2 (en) Method for producing high-strength SiC fiber / SiC composite material
JP2010070421A (en) METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
Zhen et al. The improvement of mechanical properties of SiC/SiC composites by in situ introducing vertically aligned carbon nanotubes on the PyC interface
JP2018002493A (en) Sic/sic composite material and method for producing same
US11852416B2 (en) Carbon fiber, carbon composite and furnace purification by hydrogen reduction followed by thermal heat treatment
EP3957620A1 (en) Method of making a ceramic matrix composite that exhibits moisture and environmental resistance
Zhu et al. Correlation of PyC/SiC interphase to the mechanical properties of 3D HTA C/SiC composites fabricated by polymer infiltration and pyrolysis
JP7085388B2 (en) Method for manufacturing SiC fiber reinforced SiC composite material
Naslain Processing of non-oxide ceramic matrix composites: an overview
JPH08504738A (en) Boron carbide coating
JP2000344582A (en) Fiber/reinforced composite material
CN112266258B (en) Carbon-ceramic material and preparation method and application thereof
Qiu et al. The Effect of PyC/SiC Compound Interphase on the Properties of PIP SiC/SiC Composite
Lee et al. Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration
Harrison et al. NEXT GENERATION CMC STRUCTURES.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

LAPS Cancellation because of no payment of annual fees