JP2010070421A - METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL - Google Patents

METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL Download PDF

Info

Publication number
JP2010070421A
JP2010070421A JP2008240093A JP2008240093A JP2010070421A JP 2010070421 A JP2010070421 A JP 2010070421A JP 2008240093 A JP2008240093 A JP 2008240093A JP 2008240093 A JP2008240093 A JP 2008240093A JP 2010070421 A JP2010070421 A JP 2010070421A
Authority
JP
Japan
Prior art keywords
sic
fiber
composite material
sic fiber
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008240093A
Other languages
Japanese (ja)
Inventor
Akira Kayama
晃 香山
Kazuya Shimoda
一哉 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENETECH SOKEN KK
Original Assignee
ENETECH SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENETECH SOKEN KK filed Critical ENETECH SOKEN KK
Priority to JP2008240093A priority Critical patent/JP2010070421A/en
Publication of JP2010070421A publication Critical patent/JP2010070421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SiC fiber-reinforced SiC composite material capable of exhibiting excellent heat characteristics and strength characteristics than the SiC fiber-reinforced SiC composite material of a conventional technology. <P>SOLUTION: The method for manufacturing the SiC fiber-reinforced SiC composite material includes (1) a first process for obtaining a preliminarily molded body by impregnating a slurry containing an SiC fine powder and a sintering aid and also containing no organic silicon polymer to a coated SiC fiber obtained by forming a coated layer containing at least one of carbon, boron nitride and silicon carbide on the SiC fiber surface and (2) a second process for pressure-sintering the preliminarily molded body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、SiC繊維強化型SiC複合材料の製造方法に関する。   The present invention relates to a method for producing a SiC fiber-reinforced SiC composite material.

航空・宇宙、原子力、核融合、化石燃料を使用した発電等の設備機器に使用される材料は、高い熱負荷を受ける過酷な環境に曝される。このような環境下で使用される材料として、耐熱性、化学的安定性、機械的特性に優れたSiC、Si34等、種々のセラミックス材料が開発されてきた。セラミックス材料は、熱交換器、メカニカルシール等の過酷な条件に曝される部材としても使用されている。なかでも、SiCは耐熱性のみならず、高強度で耐摩耗性に優れ、しかも化学的安定性等に優れている。このような長所を活用し、航空・宇宙用途から原子力、核融合、発電等にわたる広範囲な分野で有望視されている構造材料である。更に、熱特性のみならず、耐摩耗性、耐食性等にも優れた特性を呈する。 Materials used in equipment such as aerospace, nuclear power, nuclear fusion, and power generation using fossil fuels are exposed to harsh environments subject to high heat loads. As materials used in such an environment, various ceramic materials such as SiC and Si 3 N 4 having excellent heat resistance, chemical stability, and mechanical properties have been developed. Ceramic materials are also used as members exposed to severe conditions such as heat exchangers and mechanical seals. Among these, SiC is not only heat resistant, but also has high strength, excellent wear resistance, and excellent chemical stability. Utilizing these advantages, it is a promising structural material in a wide range of fields ranging from aerospace applications to nuclear power, nuclear fusion, and power generation. Furthermore, it exhibits excellent properties not only in thermal properties but also in wear resistance, corrosion resistance, and the like.

SiCは、融点が2600℃と高温特性に優れているが、それ自体では脆い材料である。そこで、SiC繊維で強化したSiC繊維/SiC複合材料が提案され、その製造方法として、ホットプレス法や液相焼結法等、多様な製造プロセスが検討されている。しかし、何れの製法によっても、高い熱伝導特性や高い密度、更には高い強度特性、優れた破壊挙動特性を有するSiC繊維/SiC複合材料を得ることは容易ではなく、同一プロセスを繰り返すこと等によって特性の向上を図っている。プロセスの繰返しは、製造プロセスの煩雑さを意味し、製造コストを上昇させる原因となる。また、製造上の問題から製品形状に制約が加わり、複雑形状の部品等の製造が困難となる。煩雑な製造プロセスや製品形状に加わる制約は、SiC繊維強化型SiC複合材料を実用材料として普及させる上でのネックとなる。   SiC has a melting point of 2600 ° C. and excellent high-temperature characteristics, but is a brittle material by itself. Accordingly, SiC fiber / SiC composite materials reinforced with SiC fibers have been proposed, and various manufacturing processes such as a hot press method and a liquid phase sintering method have been studied as manufacturing methods thereof. However, it is not easy to obtain a SiC fiber / SiC composite material having high heat conduction characteristics, high density, high strength characteristics, and excellent fracture behavior characteristics by any manufacturing method. By repeating the same process, etc. The characteristics are improved. The repetition of the process means the complexity of the manufacturing process and increases the manufacturing cost. In addition, restrictions on the product shape are added due to manufacturing problems, making it difficult to manufacture parts having complicated shapes. The restrictions imposed on complicated manufacturing processes and product shapes become a bottleneck in popularizing SiC fiber reinforced SiC composite materials as practical materials.

他方、化学量論に近い組成をもち、耐熱性に優れた高結晶性のSiC繊維を強化材に使用し、液相焼結法でマトリックスを成形するSiC繊維強化型SiC複合材料の製造方法も知られている。この方法で製造されるSiC繊維強化型SiC複合材料は、高密度で優れた熱特性を発現するが、破壊強度及び靭性を高レベルで両立させることに関しては依然として未解決である。   On the other hand, there is also a method for producing a SiC fiber reinforced SiC composite material having a composition close to stoichiometry and using a highly crystalline SiC fiber excellent in heat resistance as a reinforcing material and forming a matrix by a liquid phase sintering method Are known. The SiC fiber reinforced SiC composite material produced by this method exhibits excellent thermal properties at high density, but is still unresolved with respect to achieving both high fracture strength and toughness.

これに対し、SiC微粉末及び焼結助剤を分散させたスラリーを用意し、炭素、窒化ホウ素、炭化ケイ素の1種又は2種以上で被覆したSiC繊維に前記スラリーを含浸させて予備成形体とし、該予備成形体をホットプレスすることを特徴とするSiC繊維強化型SiC複合材料の製造方法が提案されている(特許文献1)。   On the other hand, a slurry in which SiC fine powder and a sintering aid are dispersed is prepared, and the slurry is impregnated with SiC fiber coated with one or more of carbon, boron nitride, and silicon carbide, and a preform is obtained. And a method for producing a SiC fiber reinforced SiC composite material, characterized in that the preform is hot-pressed (Patent Document 1).

また、有機ケイ素高分子であるポリカルボシランを強化繊維である炭化ケイ素繊維織布または炭化ケイ素短繊維に含浸させた後、成形体とし、これに電離放射線を照射して不融化し、この放射線照射不融化成形体を不活性ガス中で焼成してセラミック化して、セラミック強化繊維/セラミックマトリックス複合体(以下セラミック複合材)を作製する方法が提案されている(特許文献2)。
特開2002−356381号公報 特開平11−130552号公報
Further, after impregnating the silicon carbide fiber woven fabric or silicon carbide short fiber, which is a reinforcing fiber, with polycarbosilane, which is an organosilicon polymer, a molded body is formed, which is irradiated with ionizing radiation to become infusible. There has been proposed a method for producing a ceramic reinforced fiber / ceramic matrix composite (hereinafter referred to as a ceramic composite) by firing an infusibilized molded article in an inert gas and converting it into a ceramic (Patent Document 2).
JP 2002-356181 A JP 11-130552 A

しかしながら、これら従来技術の製造方法によって得られる複合材料は、熱特性、強度特性等の点においてさらなる改善の余地がある。   However, the composite materials obtained by these conventional manufacturing methods have room for further improvement in terms of thermal characteristics, strength characteristics, and the like.

従って、本発明の主な目的は、従来技術のSiC繊維強化型SiC複合材料よりも優れた熱特性、強度特性等を発揮できるSiC繊維強化型SiC複合材料を提供することにある。   Accordingly, a main object of the present invention is to provide a SiC fiber reinforced SiC composite material that can exhibit thermal characteristics, strength characteristics, and the like superior to those of prior art SiC fiber reinforced SiC composite materials.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、従来技術において材料の高密度化に必要とされている有機ケイ素高分子(ポリカルボシラン等)をあえて配合せずに調製したスラリーを用いて作製した予備成形体を加圧焼結したところ、予想外にもより高い強度を有し、なおかつ、高い熱伝導性をもつ複合材料が得られ、これにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has not intentionally formulated an organosilicon polymer (such as polycarbosilane) that is required for increasing the density of materials in the prior art. When pressure-sintering a preform made using the prepared slurry, a composite material with unexpectedly higher strength and high thermal conductivity was obtained, thereby achieving the above objective. The present inventors have found that this can be done and have completed the present invention.

すなわち、本発明は、下記のSiC繊維強化型SiC複合材料の製造方法に係る。
1. SiC繊維強化型SiC複合材料を製造する方法であって、
(1)SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る第1工程及び
(2)前記予備成形体を加圧焼結させる第2工程
を含むことを特徴とするSiC繊維強化型SiC複合材料の製造方法。
2. SiC微粉末の平均粒子径が200nm以下である、前記項1に記載の製造方法。
3. 焼結助剤が、Al、Y、SiO及びCaOの少なくとも1種である、前記項1に記載の製造方法。
4. 加圧焼結が、5MPa以上の圧力下1600〜1900℃で行う、前記項1に記載の製造方法。
5. 被覆層が気相法によって形成されてなる、前記項1に記載の製造方法。
6. SiC繊維の繊維長が20mm以上である、前記項1に記載の製造方法。
7. SiC繊維の繊維径が20μm以下である、前記項1に記載の製造方法。
8. 前記項1〜7のいずれかの製造方法により得られるSiC繊維強化型SiC複合材料。
9. 室温(20℃)での3点曲げ試験による最大強度は800MPa以上である、前記項8に記載のSiC繊維強化型SiC複合材料。
10. 熱伝導度が、800℃で22W/m・k以上、1000℃で20W/m・k以上、1200℃で18W/m・k以上である、前記項8に記載のSiC繊維強化型SiC複合材料。
That is, this invention relates to the manufacturing method of the following SiC fiber reinforcement type | mold SiC composite material.
1. A method for producing a SiC fiber reinforced SiC composite material, comprising:
(1) A coated SiC fiber formed by forming a coating layer containing at least one of carbon, boron nitride, and silicon carbide on the surface of the SiC fiber, including SiC fine powder and a sintering aid, and an organosilicon polymer A SiC fiber reinforced SiC composite material, comprising: a first step of obtaining a preform by impregnating a slurry containing no pre-treatment and (2) a second step of pressure-sintering the preform. Method.
2. Item 2. The method according to Item 1, wherein the SiC fine powder has an average particle size of 200 nm or less.
3. Item 2. The manufacturing method according to Item 1, wherein the sintering aid is at least one of Al 2 O 3 , Y 2 O 3 , SiO 2 and CaO.
4). Item 2. The production method according to Item 1, wherein the pressure sintering is performed at 1600 to 1900 ° C under a pressure of 5 MPa or more.
5). Item 2. The method according to Item 1, wherein the coating layer is formed by a vapor phase method.
6). The manufacturing method of said claim | item 1 whose fiber length of SiC fiber is 20 mm or more.
7). The manufacturing method of said claim | item 1 whose fiber diameter of a SiC fiber is 20 micrometers or less.
8). The SiC fiber reinforced SiC composite material obtained by the manufacturing method according to any one of Items 1 to 7.
9. Item 9. The SiC fiber-reinforced SiC composite material according to Item 8, wherein the maximum strength by a three-point bending test at room temperature (20 ° C.) is 800 MPa or more.
10. Item 9. The SiC fiber-reinforced SiC composite material according to Item 8, wherein the thermal conductivity is 22 W / m · k or more at 800 ° C., 20 W / m · k or more at 1000 ° C., and 18 W / m · k or more at 1200 ° C. .

本発明の製造方法によれば、従来より必要とされていた有機ケイ素高分子を用いてSiC繊維強化型SiC複合材料を製造することにより、強度、熱伝導性等により優れたSiC繊維強化型SiC複合材料を得ることができる。特に、原料として平均粒子径200nm以下というSiC微粉末を用いる場合には、その効果をより確実に得ることができる。このような手段を採用する場合には、得られる焼結体の緻密性がより促進される結果、結晶性もより高くなる等の現象が起こるためと考えられる。   According to the manufacturing method of the present invention, a SiC fiber reinforced SiC composite material, which has been conventionally required, is used to manufacture a SiC fiber reinforced SiC composite material. A composite material can be obtained. In particular, when SiC fine powder having an average particle diameter of 200 nm or less is used as a raw material, the effect can be obtained more reliably. In the case of adopting such means, it is considered that a phenomenon such as higher crystallinity occurs as a result of further promoting the denseness of the obtained sintered body.

本発明の製造方法により得られるSiC繊維強化型SiC複合材料は、特に強度、熱伝導性に優れることから、例えば各種構造材料、航空・宇宙材料、原子炉材料等に効果的に用いることができる。   The SiC fiber reinforced SiC composite material obtained by the production method of the present invention is particularly excellent in strength and thermal conductivity, and can be effectively used for various structural materials, aerospace materials, nuclear reactor materials, and the like. .

本発明の製造方法は、SiC繊維強化型SiC複合材料を製造する方法であって、
(1)SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る第1工程及び
(2)前記予備成形体を加圧焼結させる第2工程
を含むことを特徴とする。
The production method of the present invention is a method of producing a SiC fiber-reinforced SiC composite material,
(1) A coated SiC fiber formed by forming a coating layer containing at least one of carbon, boron nitride, and silicon carbide on the surface of the SiC fiber, including SiC fine powder and a sintering aid, and an organosilicon polymer It includes a first step of obtaining a preform by impregnating a slurry that does not contain, and (2) a second step of pressure-sintering the preform.

第1工程
第1工程では、SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る。
First step In the first step, the coated SiC fiber in which a coating layer containing at least one of carbon, boron nitride and silicon carbide is formed on the surface of the SiC fiber contains SiC fine powder and a sintering aid, and Then, a preform is obtained by impregnating a slurry containing no organosilicon polymer.

SiC繊維は、結晶質SiCからなる繊維であれば良く、公知又は市販のものを使用することができる。SiC繊維の繊維長は、特に長繊維(フィラメント糸)を用いることが好ましいので、例えば20mm以上の範囲内で好適に選択することができる。   SiC fiber should just be a fiber which consists of crystalline SiC, and a well-known or commercially available thing can be used for it. Since the fiber length of the SiC fiber is particularly preferably long fibers (filament yarn), it can be suitably selected within a range of, for example, 20 mm or more.

また、SiC繊維の繊維径は、本発明複合材料の用途等に応じて適宜設定でき、特に5〜20μmの範囲内とすることが好ましい。   Moreover, the fiber diameter of SiC fiber can be suitably set according to the use etc. of this invention composite material, and it is preferable to set it especially in the range of 5-20 micrometers.

SiC繊維は、その表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されている。本発明において、被覆層は、a)荷重伝達(負荷された荷重を繊維とマトリックスに分配)、b)亀裂進展抑制機能、c)繊維とマトリックスの間の物質拡散の抑制等の効果を発揮することができる。   A coating layer containing at least one of carbon, boron nitride, and silicon carbide is formed on the surface of the SiC fiber. In the present invention, the coating layer exhibits effects such as a) load transmission (distributed load is distributed to the fiber and the matrix), b) a crack growth suppressing function, and c) suppression of material diffusion between the fiber and the matrix. be able to.

被覆層の成分は、炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含むものであれば良く、必要に応じて他の成分が含まれていても良い。本発明では、炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種からなる被覆層を好適に採用することができる。例えば、炭素(熱分解炭素)からなる被覆層、窒化ホウ素からなる被覆層、炭化ケイ素からなる被覆層等を挙げることができる。   The component of a coating layer should just contain at least 1 sort (s) of carbon, boron nitride, and silicon carbide, and the other component may be contained as needed. In this invention, the coating layer which consists of at least 1 sort (s) of carbon, boron nitride, and silicon carbide can be employ | adopted suitably. Examples thereof include a coating layer made of carbon (pyrolytic carbon), a coating layer made of boron nitride, and a coating layer made of silicon carbide.

被覆層の厚みは限定的ではないが、通常は0.1〜1μm程度、特に0.3〜0.6μmとすることが望ましい。上記厚みの被覆層を形成することによって、マトリックスと界面との剥離後に剥離面に大きな摩擦力を生じることで破断直前においても十分な強度とセラミックス材料では得られない高い見かけ上の延性(擬延性)を得ることができる。   The thickness of the coating layer is not limited, but is usually about 0.1 to 1 μm, and particularly preferably 0.3 to 0.6 μm. By forming a coating layer with the above thickness, a large frictional force is generated on the peeled surface after peeling between the matrix and the interface. ) Can be obtained.

SiC繊維に被覆層を形成する方法は特に制限されず、公知の薄膜形成技術を採用することができ、例えば液相法、気相法又は固相法のいずれであっても良い。特に、本発明では、SiC繊維との密着性等の見地より気相法により被覆層を形成することが好ましい。具体的には、CVD法、熱蒸着法(真空蒸着法)、スパッタリング法、イオンプレーティング法等が挙げられる。本発明では、例えばCVD法により熱分解炭素層又は窒化ホウ素層を被覆層として好適に形成することができる。CVD法による場合の薄膜形成条件は、例えば基材温度900〜1100℃、キャリアガスとしてH等を用いれば良い。 The method for forming the coating layer on the SiC fiber is not particularly limited, and a known thin film forming technique can be employed. For example, any of a liquid phase method, a gas phase method, and a solid phase method may be used. In particular, in the present invention, it is preferable to form the coating layer by a vapor phase method from the standpoint of adhesion to SiC fibers. Specifically, a CVD method, a thermal evaporation method (vacuum evaporation method), a sputtering method, an ion plating method, and the like can be given. In the present invention, for example, a pyrolytic carbon layer or a boron nitride layer can be suitably formed as a coating layer by a CVD method. The thin film formation conditions for the CVD method may be, for example, a substrate temperature of 900 to 1100 ° C. and H 2 or the like as a carrier gas.

前記の被覆SiC繊維をスラリーに含浸させる。このスラリーとしては、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを用いる。   The coated SiC fiber is impregnated in the slurry. As this slurry, a slurry containing SiC fine powder and a sintering aid and containing no organosilicon polymer is used.

SiC微粉末は、特に平均粒子径200nm以下のものを用いることが好ましい。このような微細な粉末を用いることによって、有機ケイ素高分子を用いなくても、優れた焼結性等が得られるだけでなく、強度、熱伝導性等に優れた複合材料をより確実に得ることができる。本発明では、より好ましくは平均粒子径100nm以下、最も好ましくは平均粒子径50nm以下のSiC微粉末を用いる。このようなSiC繊維微粉末は、公知又は市販のものを使用することができる。なお、平均粒子径の下限値は制限されないが、通常は5nm程度とすれば良い。   It is preferable to use a SiC fine powder having an average particle diameter of 200 nm or less. By using such fine powder, it is possible not only to obtain an excellent sinterability without using an organosilicon polymer, but also to more reliably obtain a composite material having excellent strength, thermal conductivity, etc. be able to. In the present invention, SiC fine powder having an average particle diameter of 100 nm or less, and most preferably an average particle diameter of 50 nm or less is used. A known or commercially available SiC fiber fine powder can be used. The lower limit value of the average particle diameter is not limited, but is usually about 5 nm.

スラリー中におけるSiC微粉末の含有量は、特に制限されないが、一般的には40〜80重量%程度(固形分量)とすることが望ましい。 The content of the SiC fine powder in the slurry is not particularly limited, but generally it is preferably about 40 to 80% by weight (solid content).

焼結助剤としては、炭化ケイ素焼結体の製造に使用される一般的なものをいずれも使用することができる。特に、本発明では、Al、Y、SiO及びCaOの少なくとも1種を用いることが望ましい。 As the sintering aid, any common one used for the production of a silicon carbide sintered body can be used. In particular, in the present invention, it is desirable to use at least one of Al 2 O 3 , Y 2 O 3 , SiO 2 and CaO.

スラリー中における焼結助剤の含有量は限定的ではなく、通常5〜20重量%(固形分量)の範囲内で所望の焼結体の特性、用途等に応じて適宜設定することができる。例えば、高温特性(強度、熱伝導性)に優れた焼結体を得ようとする場合は、5〜10重量%とすることが好ましい。また例えば、比較的マイルドな製造条件(温度、圧力等)が要求される場合は10〜20重量%とすることが好ましい。焼結助剤は、通常は粉末状のものを使用するが、その場合の平均粒子径は通常0.5〜3μm程度とすれば良い。   The content of the sintering aid in the slurry is not limited, and can be appropriately set according to the desired characteristics and application of the sintered body, usually within a range of 5 to 20% by weight (solid content). For example, when trying to obtain a sintered body excellent in high-temperature characteristics (strength and thermal conductivity), the content is preferably 5 to 10% by weight. For example, when relatively mild production conditions (temperature, pressure, etc.) are required, the content is preferably 10 to 20% by weight. As the sintering aid, a powdery one is usually used. In that case, the average particle size is usually about 0.5 to 3 μm.

本発明では、出発原料として有機ケイ素高分子を実質的に含まないスラリーを用いる。このようなスラリーを用いることによって、有機ケイ素高分子を含む場合に比べて優れた熱伝導性、強度等を達成することができる。有機ケイ素高分子は、特許文献1等に記載のポリカルボシラン、ポリビニルシラン、ポリメチルシラン等のケイ素系ポリマーが挙げられる。本発明では、好ましくは有機ケイ素高分子を含む有機高分子バインダーを含まないスラリーを用い、より好ましくは固形分としてSiC微粉末及び焼結助剤の2成分系からなるスラリーを用いる。   In the present invention, a slurry containing substantially no organosilicon polymer is used as a starting material. By using such a slurry, excellent thermal conductivity, strength, and the like can be achieved as compared with the case containing an organosilicon polymer. Examples of the organosilicon polymer include silicon-based polymers such as polycarbosilane, polyvinylsilane, and polymethylsilane described in Patent Document 1 and the like. In the present invention, a slurry containing an organic silicon polymer and not containing an organic polymer binder is preferably used, and more preferably a slurry composed of a two-component system of SiC fine powder and a sintering aid is used as a solid content.

溶媒としては、水又は有機溶剤を使用することができる。有機溶剤としては、例えばヘキサン、トルエン、キシレン等の炭化水素系有機溶剤のほか、エタノール、イソプロパノール等のアルコール系有機溶剤等を用いることができる。   As the solvent, water or an organic solvent can be used. Examples of the organic solvent that can be used include hydrocarbon organic solvents such as hexane, toluene, and xylene, and alcohol organic solvents such as ethanol and isopropanol.

上記スラリーの調製に際しては、これらの各成分を均一に混合できる限りはその方法は限定的でなく、例えばミキサー、ニーダー等の公知の混合攪拌装置を用いてスラリーを調製すれば良い。   In preparing the slurry, the method is not limited as long as these components can be mixed uniformly. For example, the slurry may be prepared using a known mixing and stirring device such as a mixer or a kneader.

被覆SiC繊維をスラリーに含浸させることにより予備成形体を作製する方法は、特に限定されることはなく、例えば1)被覆SiC短繊維からなる不織布にスラリーを含浸させて乾燥する方法、2)金型に被覆SiC長繊維の束状体を配置し、その上からスラリーを充填した後、乾燥させる方法、3)被覆SiC長繊維の織布をスラリーに浸漬した後、乾燥させる方法等が挙げられる。   The method for preparing the preform by impregnating the coated SiC fiber into the slurry is not particularly limited. For example, 1) a method of impregnating the slurry into a nonwoven fabric composed of coated SiC short fibers and drying, 2) gold Examples include a method in which a bundle of coated SiC long fibers is placed in a mold, and a slurry is filled thereon, followed by drying. 3) A method in which a woven fabric of coated SiC long fibers is immersed in the slurry and then dried. .

第2工程
第2工程では、前記予備成形体を加圧焼結させる。これによって、本発明複合材料を得ることができる。
Second Step In the second step, the preform is pressure sintered. Thereby, the composite material of the present invention can be obtained.

焼結温度は、通常は1600〜1900℃程度、特に1800〜1900℃とすることが望ましい。上記温度範囲で加圧焼結することにより、より優れた強度、熱伝導特性等を得ることができる。   The sintering temperature is usually about 1600 to 1900 ° C, particularly 1800 to 1900 ° C. By performing pressure sintering in the above temperature range, more excellent strength, heat conduction characteristics, and the like can be obtained.

圧力は、通常5MPa以上、特に10MPa以上、さらに15〜30MPaとすることが望ましい。かかる範囲内で加圧することによって、SiC繊維の特性を活かしつつ、より高密度で高い強度、熱伝導性等をもつ複合材料を得ることが可能となる。   The pressure is usually 5 MPa or more, particularly 10 MPa or more, and preferably 15 to 30 MPa. By applying pressure within such a range, it is possible to obtain a composite material having higher density, higher strength, thermal conductivity, etc. while utilizing the characteristics of SiC fibers.

また、焼結雰囲気は、非酸化性雰囲気とすれば良く、例えば不活性ガス雰囲気、還元性雰囲気、真空雰囲気等のいずれであっても良い。特に、本発明では、不活性ガス雰囲気とすることが望ましい。不活性ガスとしては、例えば水素、窒素、ヘリウム、アルゴン等を用いることができる。   The sintering atmosphere may be a non-oxidizing atmosphere, and may be any of an inert gas atmosphere, a reducing atmosphere, a vacuum atmosphere, and the like. In particular, in the present invention, an inert gas atmosphere is desirable. As the inert gas, for example, hydrogen, nitrogen, helium, argon or the like can be used.

加圧焼結の方法は公知の方法・装置を用いて実施すれば良い。例えば、ホットプレス(HP)法、熱間等方圧プレス(HIP)法等のいずれも採用することができる。   What is necessary is just to implement the method of pressure sintering using a well-known method and an apparatus. For example, any of a hot press (HP) method, a hot isostatic press (HIP) method, and the like can be employed.

本発明は、以上のようにして得られるSiC繊維強化型SiC複合材料(本発明複合材料)を包含する。   The present invention includes the SiC fiber-reinforced SiC composite material (the composite material of the present invention) obtained as described above.

本発明複合材料は、SiCマトリックス中に被覆SiC繊維が存在する構成を有する。複合材料中における被覆SiC繊維の割合は限定的ではなく、通常20〜80重量%(好ましくは40〜60重量%)の範囲内でその用途等に応じて適宜設定すれば良い。本発明複合材料は、相対密度98%以上と緻密である。このため、より高い強度、熱伝導率等を達成することができる。例えば、室温(20℃)での3点曲げ試験による最大強度は800MPa以上という特性を発揮することができる。また、室温(20℃)での3点曲げ試験による曲げ弾性率は250GPa以上という特性を発揮することができる。さらに、熱伝導度にあっては、室温(20℃)では30W/m・k以上、800℃では22W/m・k以上、1000℃では20W/m・k以上、1200℃では18W/m・k以上という特性を示す。   The composite material of the present invention has a configuration in which coated SiC fibers are present in a SiC matrix. The ratio of the coated SiC fiber in the composite material is not limited, and may be appropriately set in accordance with the application and the like within a range of usually 20 to 80% by weight (preferably 40 to 60% by weight). The composite material of the present invention is dense with a relative density of 98% or more. For this reason, higher strength, thermal conductivity, etc. can be achieved. For example, the maximum strength by a three-point bending test at room temperature (20 ° C.) can exhibit a characteristic of 800 MPa or more. Moreover, the bending elastic modulus by the 3 point | piece bending test at room temperature (20 degreeC) can exhibit the characteristic of 250 GPa or more. Furthermore, the thermal conductivity is 30 W / m · k or more at room temperature (20 ° C.), 22 W / m · k or more at 800 ° C., 20 W / m · k or more at 1000 ° C., 18 W / m · k at 1200 ° C. The characteristic of k or more is shown.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。   The features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples.

<参考例1>
化学量論に近い組成をもつ高結晶性のSiC繊維としてTyrannoTM−SA繊維(宇部興産株式会社製、繊維径7.5μm、耐熱温度〜2000℃)を使用し、CVD法によって熱分解炭素をSiC繊維表面に析出させることにより、膜厚約0.5μmのC(炭素)被覆層をSiC繊維の表面に形成することにより、表面被覆SiC繊維を作製した。
<Reference Example 1>
Tyranno TM- SA fiber (manufactured by Ube Industries, fiber diameter 7.5 μm, heat resistant temperature to 2000 ° C.) is used as a highly crystalline SiC fiber having a composition close to stoichiometry, and pyrolytic carbon is formed by a CVD method. By depositing on the surface of the SiC fiber, a C (carbon) coating layer having a film thickness of about 0.5 μm was formed on the surface of the SiC fiber to produce a surface-coated SiC fiber.

次いで、表面被覆SiC繊維に含浸させるスラリーを調製した。極微細β−SiC粒子(平均粒子径30nm):焼結助剤Al(平均粒子径0.3μm):ポリカルボシラン=4.5:0.5:5(質量比)でヘキサン(溶剤)に分散させることによりスラリーを得た。 Next, a slurry for impregnating the surface-coated SiC fiber was prepared. Ultrafine β-SiC particles (average particle size 30 nm): sintering aid Al 2 O 3 (average particle size 0.3 μm): polycarbosilane = 4.5: 0.5: 5 (mass ratio) hexane ( A slurry was obtained by dispersing in a solvent.

次に、表面被覆SiC繊維の十数本を一列に平行に隙間なく配列した繊維束を耐圧性密閉容器に入れた。その後、前記容器開口部からスラリーを真空吸引によって導入し、表面被覆SiC繊維束にスラリーを含浸させることにより、表面被覆SiC繊維:スラリー=4:6(固形分の質量比)の予備成形体を作製した。   Next, a fiber bundle in which dozens of surface-coated SiC fibers were arranged in a row in parallel without gaps was placed in a pressure-resistant sealed container. Thereafter, the slurry is introduced by vacuum suction from the container opening, and the surface-coated SiC fiber bundle is impregnated with the slurry, whereby a surface-coated SiC fiber: slurry = 4: 6 (solid content mass ratio) preform is obtained. Produced.

得られた予備成形体をホットプレス機にセットし、圧力20MPa、温度1780℃で焼結することにより、SiC繊維強化型SiC複合材料焼結体を得た。この場合の加圧方向は、表面被覆SiC繊維の長手方向に対して垂直方向とした。得られた焼結体の密度及び相対密度を表1(有機ケイ素ポリマーあり)に示す。   The obtained preform was set in a hot press machine and sintered at a pressure of 20 MPa and a temperature of 1780 ° C. to obtain a SiC fiber reinforced SiC composite material sintered body. The pressing direction in this case was a direction perpendicular to the longitudinal direction of the surface-coated SiC fiber. The density and relative density of the obtained sintered body are shown in Table 1 (with organosilicon polymer).

<実施例1>
参考例1において、有機ケイ素高分子であるポリカルボシランを使用しなかったほかは、参考例1と同様にしてSiC繊維強化型SiC複合材料焼結体を得た。得られた焼結体の特性を表1(有機ケイ素ポリマーなし)に示す。
<Example 1>
A SiC fiber reinforced SiC composite material sintered body was obtained in the same manner as in Reference Example 1 except that polycarbosilane, which is an organosilicon polymer, was not used in Reference Example 1. The characteristics of the obtained sintered body are shown in Table 1 (no organosilicon polymer).

<試験例1>
参考例1及び実施例1で得られた焼結体について、室温における機械的特性を調べた。具体的には、3点曲げ試験による最大強度及び曲げ弾性率、引張試験による比例限度応力、最大強度及び弾性率を測定した。その結果を表1に示す。
<Test Example 1>
The sintered bodies obtained in Reference Example 1 and Example 1 were examined for mechanical properties at room temperature. Specifically, the maximum strength and bending elastic modulus by a three-point bending test, the proportional limit stress, the maximum strength and elastic modulus by a tensile test were measured. The results are shown in Table 1.

<試験例2>
実施例1で得られた焼結体について、応力ひずみ曲線を求めた(室温、1300℃及び1500℃)。その結果を図1に示す。従来の有機ケイ素ポリマーを使用した同様の複合材料では1400℃の高温域で著しい強度劣化が認められる(参考文献:Key Engineering Materials Vol.247(2003)pp191-194))のに対し、実施例1の焼結体ではそのような劣化が認められず、優れた高温特性を発現していることがわかる。
<Test Example 2>
About the sintered compact obtained in Example 1, the stress strain curve was calculated | required (room temperature, 1300 degreeC, and 1500 degreeC). The result is shown in FIG. In a similar composite material using a conventional organosilicon polymer, significant strength deterioration is observed at a high temperature range of 1400 ° C. (reference: Key Engineering Materials Vol.247 (2003) pp191-194)). It can be seen that such a sintered body does not show such deterioration and exhibits excellent high temperature characteristics.

<試験例3>
参考例1及び実施例1で得られた焼結体について、室温〜高温(800℃、1000℃及び1200℃)における熱伝導度を調べた。その結果を表2に示す。
<Test Example 3>
About the sintered compact obtained by the reference example 1 and Example 1, the thermal conductivity in room temperature-high temperature (800 degreeC, 1000 degreeC, and 1200 degreeC) was investigated. The results are shown in Table 2.

<試験例4>
参考例1及び実施例1で得られた焼結体の微細構造を走査型電子顕微鏡(SEM)で調べた。その結果を図2に示す。図2から明らかなように、実施例1の焼結体は繊維束間及び繊維束内部までより密にマトリックスが形成されているのに対し、参考例1においては結晶性に劣るSiCマトリックスの形成が認められるほか、焼結助剤のマクロ偏析がより大きく出ており、これらが特に高温における強度特性の劣化と結びついていることが窺える。
<Test Example 4>
The microstructure of the sintered bodies obtained in Reference Example 1 and Example 1 was examined with a scanning electron microscope (SEM). The result is shown in FIG. As is clear from FIG. 2, the sintered body of Example 1 has a matrix formed more densely between the fiber bundles and inside the fiber bundle, whereas in Reference Example 1, formation of a SiC matrix having poor crystallinity. In addition, macro segregation of the sintering aid is more pronounced, and it can be seen that these are associated with deterioration of strength characteristics particularly at high temperatures.

<試験例5>
参考例1及び実施例1で得られた焼結体の微細構造を透過型電子顕微鏡(TEM)で調べた。その結果を図3に示す。図3から明らかなように、参考例1の焼結体は、高結晶質のSiC結晶が〜200nm程度までしか成長していないことに加え、結晶化の初期にあるさらに細かい結晶粒が観察され、粒界の整合度の悪さが(粒界での欠陥の少ないと整合度は良い)認められる。これに比べ、実施例1の焼結体は、高結晶質のSiC結晶が〜500nm程度まで比較的均一に成長しており、粒界の整合度も良い。このような微細組織を持つ実施例1の焼結体では、室温から高温域まで高い熱伝導性と強度の維持が達成できる。
<Test Example 5>
The microstructure of the sintered bodies obtained in Reference Example 1 and Example 1 was examined with a transmission electron microscope (TEM). The result is shown in FIG. As is clear from FIG. 3, in the sintered body of Reference Example 1, in addition to the high crystalline SiC crystal growing only up to about 200 nm, finer crystal grains at the initial stage of crystallization were observed. In addition, a poor degree of alignment at the grain boundary is recognized (the degree of matching is good when there are few defects at the grain boundary). Compared to this, in the sintered body of Example 1, highly crystalline SiC crystals grow relatively uniformly up to about ~ 500 nm, and the degree of alignment of grain boundaries is good. In the sintered body of Example 1 having such a fine structure, high thermal conductivity and strength can be maintained from room temperature to a high temperature range.

実施例1で得られた複合材料の応力−ひずみ曲線を示す。The stress-strain curve of the composite material obtained in Example 1 is shown. 参考例1及び実施例1で得られた複合材料を走査型電子顕微鏡(SEM)で観察した結果を示す。The result of having observed the composite material obtained by the reference example 1 and Example 1 with the scanning electron microscope (SEM) is shown. 参考例1及び実施例1で得られた複合材料を透過型電子顕微鏡(TEM)で観察した結果を示す。The result of having observed the composite material obtained by the reference example 1 and Example 1 with the transmission electron microscope (TEM) is shown.

Claims (10)

SiC繊維強化型SiC複合材料を製造する方法であって、
(1)SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る第1工程及び
(2)前記予備成形体を加圧焼結させる第2工程
を含むことを特徴とするSiC繊維強化型SiC複合材料の製造方法。
A method for producing a SiC fiber reinforced SiC composite material, comprising:
(1) A coated SiC fiber formed by forming a coating layer containing at least one of carbon, boron nitride, and silicon carbide on the surface of the SiC fiber, including SiC fine powder and a sintering aid, and an organosilicon polymer A SiC fiber reinforced SiC composite material, comprising: a first step of obtaining a preform by impregnating a slurry containing no pre-treatment and (2) a second step of pressure-sintering the preform. Method.
SiC微粉末の平均粒子径が200nm以下である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose average particle diameter of SiC fine powder is 200 nm or less. 焼結助剤が、Al、Y、SiO及びCaOの少なくとも1種である、請求項1に記載の製造方法。 Sintering aid, an Al 2 O 3, Y 2 O 3, at least one of SiO 2 and CaO, the manufacturing method according to claim 1. 加圧焼結が、5MPa以上の圧力下1600〜1900℃で行う、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the pressure sintering is performed at 1600 to 1900 ° C. under a pressure of 5 MPa or more. 被覆層が気相法によって形成されてなる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the coating layer is formed by a vapor phase method. SiC繊維の繊維長が20mm以上である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose fiber length of a SiC fiber is 20 mm or more. SiC繊維の繊維径が20μm以下である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose fiber diameter of a SiC fiber is 20 micrometers or less. 請求項1〜7のいずれかの製造方法により得られるSiC繊維強化型SiC複合材料。 A SiC fiber-reinforced SiC composite material obtained by the production method according to claim 1. 室温(20℃)での3点曲げ試験による最大強度は800MPa以上である、請求項8に記載のSiC繊維強化型SiC複合材料。 The SiC fiber reinforced SiC composite material according to claim 8, wherein the maximum strength by a three-point bending test at room temperature (20 ° C) is 800 MPa or more. 熱伝導度が、800℃で22W/m・k以上、1000℃で20W/m・k以上、1200℃で18W/m・k以上である、請求項8に記載のSiC繊維強化型SiC複合材料。 The SiC fiber-reinforced SiC composite material according to claim 8, wherein the thermal conductivity is 22 W / m · k or more at 800 ° C, 20 W / m · k or more at 1000 ° C, and 18 W / m · k or more at 1200 ° C. .
JP2008240093A 2008-09-18 2008-09-18 METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL Pending JP2010070421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240093A JP2010070421A (en) 2008-09-18 2008-09-18 METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240093A JP2010070421A (en) 2008-09-18 2008-09-18 METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL

Publications (1)

Publication Number Publication Date
JP2010070421A true JP2010070421A (en) 2010-04-02

Family

ID=42202567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240093A Pending JP2010070421A (en) 2008-09-18 2008-09-18 METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL

Country Status (1)

Country Link
JP (1) JP2010070421A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030633A (en) * 2013-07-31 2015-02-16 イビデン株式会社 SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL AND METHOD FOR PRODUCING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
WO2016093360A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material
JP2017528408A (en) * 2014-08-25 2017-09-28 ゼネラル・エレクトリック・カンパニイ High temperature service articles
JP2017222520A (en) * 2016-06-13 2017-12-21 株式会社東芝 Method for producing SiC sintered body
JP2019510720A (en) * 2016-02-18 2019-04-18 サフラン セラミクス Method of manufacturing parts from ceramic matrix composites
CN115124360A (en) * 2022-06-27 2022-09-30 河北工业大学 Carbon fiber toughened ceramic material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356381A (en) * 2001-05-31 2002-12-13 Japan Science & Technology Corp METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356381A (en) * 2001-05-31 2002-12-13 Japan Science & Technology Corp METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6012015733; SHIMODA,Kazuya et al.: 'DENSIFICATION MECHANISM AND MICROSTRUCTURAL EVOLUTION OF SiC MATRIX IN NITE PROCESS' Ceramics in Nuclear and Alternative Energy Applications , 2007, 19-27, American Ceramics Society *
JPN6012039222; SHIMODA, Kazuya et al.: 'Influence of pyrolytic carbon interface thickness on microstrucutre and mechanical properties of SiC' Composites Science and Technology Vol.68, pp.98-105, 20070602, Elsevier;Kidlington *
JPN6012039223; SHIMODA, Kazuya et al.: 'HIgh-Temperature Mechanical Property Improvements of SiC Ceramics by NITE Process' Materials Transactions Vol.47, No.4, pp.1204-1208, 20060415, 日本金属学会 *
JPN6012039225; 加藤雄大 他: 'ナノ粒子液相燒結SiC/SiC複合材料の熱特性とミクロ組織' 日本金属学会春期大会講演概要 , 2002, 日本金属学会 *
JPN6012039226; 香山晃: '先端に、人 画期的な新製法でSiC/SiC複合材を開発、高耐性を生かし21世紀型材料として応用' 工業材料 Vol.56, No.2, pp.1-6, 20080201, 日刊工業新聞社 *
JPN6012039227; 下田一哉 他: 'NITE法を用いたSiC/SiC複合材料作製における炭素界面相の影響' 日本金属学会講演概要 Vol.136th, pp.299, 20050329, 日本金属学会 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030633A (en) * 2013-07-31 2015-02-16 イビデン株式会社 SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL AND METHOD FOR PRODUCING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
JP2017528408A (en) * 2014-08-25 2017-09-28 ゼネラル・エレクトリック・カンパニイ High temperature service articles
US11542824B2 (en) 2014-08-25 2023-01-03 General Electric Company Article for high temperature service
WO2016093360A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material
JPWO2016093360A1 (en) * 2014-12-12 2017-10-05 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material
JP2020100559A (en) * 2014-12-12 2020-07-02 国立大学法人京都大学 Silicon carbide fiber-reinforced silicon carbide composite
US11142483B2 (en) 2014-12-12 2021-10-12 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
JP2019510720A (en) * 2016-02-18 2019-04-18 サフラン セラミクス Method of manufacturing parts from ceramic matrix composites
JP2017222520A (en) * 2016-06-13 2017-12-21 株式会社東芝 Method for producing SiC sintered body
CN115124360A (en) * 2022-06-27 2022-09-30 河北工业大学 Carbon fiber toughened ceramic material and preparation method thereof
CN115124360B (en) * 2022-06-27 2023-07-14 河北工业大学 Carbon fiber toughened ceramic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6954685B2 (en) Silicon Carbide Fiber Reinforced Silicon Carbide Composite
JP3971903B2 (en) Method for producing SiC fiber reinforced SiC composite material
Takeda et al. Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM
Li et al. Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C
Zhao et al. Rapid densification of C/SiC composite by incorporating SiC nanowires
JP2010070421A (en) METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
Yoshida et al. Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation
Zhao et al. Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor
Honglei et al. Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration
Sun et al. Characterization of BN interface and its effect on the mechanical behavior of SiCf/SiC composites
Wang et al. Effect of pyrolysis temperature on the mechanical evolution of SiCf/SiC composites fabricated by PIP
Xiang et al. Microstructures and mechanical properties of CVD-SiC coated PIP-C/SiC composites under high temperature
Toutois et al. Structural and mechanical behavior of boron nitride fibers derived from poly [(methylamino) borazine] precursors: optimization of the curing and pyrolysis procedures
JP4538607B2 (en) High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers
He et al. Study on microstructures and mechanical properties of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing
Zhen et al. The improvement of mechanical properties of SiC/SiC composites by in situ introducing vertically aligned carbon nanotubes on the PyC interface
JP6862280B2 (en) Method for manufacturing SiC / SiC composite material
Li et al. Approaching Carbon Nanotube Reinforcing Limit in B4 C Matrix Composites Produced by Chemical Vapor Infiltration
Zhu et al. The fabrication of 2D Cf/SiC composite by a modified PIP process using active Al powders as active filler
Kim et al. Mechanical properties of C f/SiC composite using a combined process of chemical vapor infiltration and precursor infiltration pyrolysis
JP3605133B2 (en) Carbide material coated with diamond-like carbon film functionally graded to substrate and method for producing the same
He et al. Microstructures of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing
Ruan et al. Interfacial optimization of SiC nanocomposites reinforced by SiC nanowires with high volume fraction
Zhu et al. Fabricating 2.5 D SiCf/SiC composite using polycarbosilane/SiC/Al mixture for matrix derivation
JP4707854B2 (en) Method for producing high-strength SiC fiber / SiC composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120531

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211