JP2006143553A - ENVIRONMENTAL BARRIER COATING OF SiC-BASED FIBER-REINFORCED CERAMIC MATRIX COMPOSITE AND ITS PRODUCTION METHOD - Google Patents

ENVIRONMENTAL BARRIER COATING OF SiC-BASED FIBER-REINFORCED CERAMIC MATRIX COMPOSITE AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2006143553A
JP2006143553A JP2004338857A JP2004338857A JP2006143553A JP 2006143553 A JP2006143553 A JP 2006143553A JP 2004338857 A JP2004338857 A JP 2004338857A JP 2004338857 A JP2004338857 A JP 2004338857A JP 2006143553 A JP2006143553 A JP 2006143553A
Authority
JP
Japan
Prior art keywords
rare earth
sic
layer
bmas
cmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338857A
Other languages
Japanese (ja)
Other versions
JP4753568B2 (en
Inventor
Kenichiro Igashira
賢一郎 井頭
Yuji Matsuzaki
裕司 松崎
Koji Nishio
光司 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004338857A priority Critical patent/JP4753568B2/en
Publication of JP2006143553A publication Critical patent/JP2006143553A/en
Application granted granted Critical
Publication of JP4753568B2 publication Critical patent/JP4753568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the ununiformity in the wettability of the surface in a silicon carbide fiber-reinforced ceramic matrix composite (CMC), at the time when a steam corrosion resistance coating (EBC) is applied to the surface of the CMC via crystallized glass (BMAS), and to realize the coating with a uniform thickness. <P>SOLUTION: In the coating, on the surface layer of an SiC-based fiber-reinforced ceramic (CMC) base material 1, an intermediate layer composed of a layer 4 impregnated with a mixture of the crystallized glass (BMAS) composed of BaO-MgO-Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>and a rare earth silicate, and a CVD-SiC layer 2 obtained by impregnating an SiC layer with a mixture of BMAS and a rare earth silicate, deposited so as to be the porous one on the surface of the base material by a CVD process is formed, and a rare earth silicate layer 5 is further formed on the CVD-SiC layer 2 as a top coat. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガスタービンの高温構造部材などとして使用するSiC系繊維強化セラミックス複合材料の表面に施す耐環境コーティングとコーティングを形成するための施工方法に関する。   The present invention relates to an environment-resistant coating applied to the surface of a SiC fiber reinforced ceramic composite material used as a high-temperature structural member of a gas turbine, and a construction method for forming the coating.

航空機、船舶、発電装置などに用いられるガスタービンは、高効率化、高出力化のためガスタービン燃焼ガスの高温化が趨勢となっている。
炭化ケイ素(SiC)を主成分とするSiC系繊維強化セラミックス複合材料(CMC:ceramic matrix composite)は、高い耐熱性と損傷許容性を持つことから、高温化したガスタービンの高温部品用材料として期待されている。
しかし、米国において、SiC系繊維強化セラミックス複合材料で製作した部品を用いたガスタービンについて長時間実証試験をした結果、高温高圧かつ水蒸気を含むガスタービン燃焼ガスの雰囲気下で、SiC系CMCが水蒸気との化学反応により損耗することが確認された。
したがって、CMCをガスタービンに適用するためには、耐水蒸気腐食コーティング(EBC:environmental barrier coating)の開発が必須である。EBCは、水蒸気腐食に対する耐性が強いトップコートを備えると共に、CMCとトップコートを強度に密着させるものでなければならない。
Gas turbines used in aircraft, ships, power generation devices, and the like are becoming increasingly hot for gas turbine combustion gases for higher efficiency and higher output.
SiC-based fiber reinforced ceramic composite (CMC: ceramic matrix composite) based on silicon carbide (SiC) has high heat resistance and damage tolerance. Has been.
However, in the United States, as a result of a long-term verification test on a gas turbine using a part made of SiC fiber reinforced ceramic composite material, SiC CMC was found to be water vapor in an atmosphere of gas turbine combustion gas containing high temperature and pressure and steam. It was confirmed that it was worn out by the chemical reaction.
Therefore, in order to apply CMC to a gas turbine, it is essential to develop an environmental barrier coating (EBC). The EBC must be provided with a top coat that is highly resistant to water vapor corrosion, and the CMC and the top coat must be in close contact with each other.

特許文献1には、トップコートにムライト(3Al23−2SiO2)、中間層にCMCとムライトとの熱膨張率差を緩衝するムライト・アルミナ混合層、CMC直上に耐酸化層として金属シリコンおよびCVD−SiCの層を形成する構成が開示されている。
しかし、この構成では、耐酸化層として導入した金属Siが酸化して酸化ケイ素になるときに体積膨張するためコーティングが剥離することが問題となる。この対策として、トップコートを緻密化し、金属シリコンの酸化を防止することが要求されるが、緻密なトップコートを得るためにはより高温のプロセスが必要となるため、基材CMCの損傷を考慮するとトップコートの緻密化には限界がある。
なお、我が国においては、トップコート材料として、ムライトと同等以上の耐水蒸気性を有し、かつCMCとの熱膨張率差が小さいイッテルビウム(Yb)シリケートやルテチウム(Lu)シリケートなどの希土類ケイ酸塩が検討されている。
In Patent Document 1, mullite (3Al 2 O 3 -2SiO 2 ) is used as a top coat, a mullite / alumina mixed layer that buffers a difference in thermal expansion coefficient between CMC and mullite as an intermediate layer, and metal silicon as an oxidation resistant layer directly above the CMC. And the structure which forms the layer of CVD-SiC is disclosed.
However, in this configuration, there is a problem that the coating is peeled off because the volume of the metal Si introduced as the oxidation resistant layer is oxidized to become silicon oxide to expand. As a countermeasure, it is required to densify the top coat and prevent oxidation of the metal silicon. However, since a higher temperature process is required to obtain a dense top coat, the damage to the substrate CMC is considered. Then, there is a limit to densification of the top coat.
In Japan, rare earth silicates such as ytterbium (Yb) silicate and lutetium (Lu) silicate having a water vapor resistance equivalent to or higher than that of mullite and having a small difference in thermal expansion from CMC are used as top coat materials. Is being considered.

一方、酸化物系セラミック材料をCMC上に溶射法を用いてコーティングしたものでは、CMCとコーティングの密着強度が高いほど基材であるCMCの強度が低下する現象が見られる。試験によると、CMC自体の強度はサンドブラストした場合が約300MPa、サンドブラストしない場合で約310MPaと殆ど差がないにもかかわらず、室温における強度が約215MPaのCMCについて、サンドブラストした上にEBCを施して強い密着性を有するものの室温における強度が約140MPaと明らかに低下した一方、サンドブラストしないままEBCを付けた密着性が弱いものでは約240MPaと強度が低下しないことが観測された。なお、1200℃における強度は、いずれの場合でも余り変化しないことが観察されている。   On the other hand, in the case where an oxide ceramic material is coated on the CMC using a thermal spraying method, a phenomenon is observed in which the strength of the CMC as a base material decreases as the adhesion strength between the CMC and the coating increases. According to the test, the strength of CMC itself was about 300 MPa when sandblasted, and about 310 MPa when it was not sandblasted. Although it had strong adhesion, the strength at room temperature was clearly reduced to about 140 MPa, while it was observed that the strength was not reduced to about 240 MPa in the case of weak adhesion with EBC without sandblasting. It has been observed that the strength at 1200 ° C. does not change much in any case.

EBCとの密着性が良い方がCMCの強度が低下するのは、EMCのトップコートに内在した亀裂、あるいはトップコートに発生した亀裂が基材であるCMCに伝播し易く、伝播した亀裂がCMCの表面に応力集中を生じさせるためと考えられる。
したがって、EBCは、トップコートが十分緻密であると共に、トップコート及びCMCと良く密着し、しかもトップコートの亀裂がCMCに伝播することを効果的に抑制する中間層を備えることが望まれる。一般に密着強度の向上と亀裂の伝搬抑制は相反する特性であるから、適当な材料あるいは構成を得ることは簡単でない。
The better the adhesion to the EBC, the lower the strength of the CMC is because cracks inherent in the EMC top coat or cracks generated in the top coat easily propagate to the CMC as the base material. This is considered to cause stress concentration on the surface of the steel.
Therefore, it is desired that the EBC has an intermediate layer in which the top coat is sufficiently dense and is in close contact with the top coat and the CMC, and further effectively suppresses the propagation of cracks in the top coat to the CMC. In general, improvement in adhesion strength and suppression of crack propagation are contradictory properties, and it is not easy to obtain an appropriate material or configuration.

希土類ケイ酸塩をトップコートとした場合は、中間層として、希土類ケイ酸塩と結晶化ガラス(BaO・MgO・Al23・SiO2:以後、BMASと呼ぶ)の混合体が好ましいことが知られている。
BMASは、中間層をCMC上に形成・定着させるときにガラスとして溶融し、CMC中に浸透した後にさらに高温で熱処理すると一部が結晶化し、耐熱性が向上する性質を持っている。
トップコートにする希土類ケイ酸塩の熱膨張率が約2×10-6/K、CMCの熱膨張率が約3×10-6/Kであるのに対して、BMASの熱膨張率は約4×10-6/Kであるので、希土類ケイ酸塩と適当な割合で混合することにより、トップコートとCMCの間の熱膨張率差を緩和することができる。
When the rare earth silicate is used as a top coat, a mixture of rare earth silicate and crystallized glass (BaO.MgO.Al 2 O 3 .SiO 2 : hereinafter referred to as BMAS) is preferable as the intermediate layer. Are known.
BMAS has the property that it melts as glass when the intermediate layer is formed and fixed on the CMC, and when it is infiltrated into the CMC, if it is heat-treated at a higher temperature, it partially crystallizes and heat resistance is improved.
The thermal expansion coefficient of the rare earth silicate used as the top coat is about 2 × 10 −6 / K and the thermal expansion coefficient of CMC is about 3 × 10 −6 / K, whereas the thermal expansion coefficient of BMAS is about Since it is 4 × 10 −6 / K, the difference in thermal expansion coefficient between the top coat and the CMC can be reduced by mixing with the rare earth silicate at an appropriate ratio.

CMCと希土類ケイ酸塩の弾性率がそれぞれ約200GPaであるのに対して、BMASは高温で130GPa程度に軟化するので、トップコートの亀裂がCMCに伝播するのを効果的に抑制する。
したがって、MBASを混合した中間層は、良好な耐熱性を持ち、トップコートとCMCとの熱膨張差を緩衝し、トップコート亀裂がCMCに伝播することを防止するという、中間層に適した性質を備える。
しかし、SiC系繊維強化セラミックス複合材料(CMC)の表面には、SiC繊維部分、SiCマトリックス部分、さらに気孔部分が存在するので、処理中に溶融する結晶化ガラス(BMAS)との濡れ性が場所によって異なるため、中間層の厚さにムラが生じ、均質なトップコートを形成することが困難である。
While the elastic modulus of CMC and rare earth silicate is about 200 GPa, respectively, BMAS softens to about 130 GPa at high temperature, so that the crack of the top coat is effectively suppressed from propagating to CMC.
Therefore, the intermediate layer mixed with MBAS has good heat resistance, buffers the difference in thermal expansion between the topcoat and CMC, and prevents the topcoat crack from propagating to the CMC. Is provided.
However, the SiC fiber reinforced ceramic composite material (CMC) has a SiC fiber part, a SiC matrix part, and a pore part on the surface, so that the wettability with the crystallized glass (BMAS) that melts during processing is in place. Therefore, it is difficult to form a uniform top coat because the thickness of the intermediate layer is uneven.

なお、特許文献2には、炭化珪素を含有する第1層と、一般式RE2Si27(式中のREは、Y,Yb,Er,Dyのいずかの希土類元素)で表される希土類珪酸化合物(シリケート)を含有する第2層とを酸化珪素の層で接合した積層セラミックスが開示されている。接合層は、酸化珪素層とムライト層やアルミナ層の多層構造を有するものであっても良い。高温強度に優れる炭化珪素を、高温での耐酸化性、耐食性が優れる酸化物系セラミックスで被覆することで、優れた構造用材料、特に高温ガスタービン用部材等を製造するための材料として利用することができる。希土類珪酸化合物は耐酸化性に優れ炭化珪素に近い熱膨張率を持つのでコーティングに適しているが、炭化珪素との接着性が悪いので両者を接合する中間層を導入して炭化珪素との接着性を改善しようとしたものである。 Patent Document 2 discloses a first layer containing silicon carbide and a general formula RE 2 Si 2 O 7 (where RE is any rare earth element of Y, Yb, Er, and Dy). A multilayer ceramic is disclosed in which a second layer containing a rare earth silicate compound (silicate) is bonded with a silicon oxide layer. The bonding layer may have a multilayer structure of a silicon oxide layer and a mullite layer or an alumina layer. Silicon carbide, which has excellent high-temperature strength, is coated with oxide ceramics that have excellent oxidation resistance and corrosion resistance at high temperatures, so that it can be used as a material for manufacturing excellent structural materials, particularly high-temperature gas turbine components. be able to. Rare earth silicate compounds are suitable for coating because they have excellent oxidation resistance and a thermal expansion coefficient close to that of silicon carbide. However, since they have poor adhesion to silicon carbide, an intermediate layer that joins them is introduced to adhere to silicon carbide. I tried to improve the sex.

また、特許文献3には、SiC繊維の焼結結合体の表面に希土類酸化物を主成分とする被覆層を形成したセラミックス複合材料が開示されている。この技術はSiC/SiC複合材料にも適用できるとされている。希土類酸化物を主成分とする層は、一般式RE2Si27またはRE2SiO5(式中のREは、Y,Yb,Er,Ho,Dyのいずれかの希土類元素)で表される希土類酸化物からなるトップコートである第1層と、少なくとも1種の希土類酸化物を含む2種以上の金属の酸化物の共晶で形成される第2層から構成される。なお、この第2層は一般式RE3Al512またはREAlO3(式中のREは、Y,Yb,Er,Ho,Dy,Gd,Sm,Nd,Luのいずれかの希土類元素)で表される希土類酸化物で置き換えることもできる。本文献開示の被覆を付することにより、母材の焼結SiC繊維結合体の強度特性を損なうことなく、高温化での酸化及び腐食に十分に耐え、長時間使用可能な高温構造部材を得ることができる。 Patent Document 3 discloses a ceramic composite material in which a coating layer mainly composed of a rare earth oxide is formed on the surface of a sintered combination of SiC fibers. This technique is also applicable to SiC / SiC composite materials. The layer containing a rare earth oxide as a main component is represented by the general formula RE 2 Si 2 O 7 or RE 2 SiO 5 (where RE is a rare earth element selected from Y, Yb, Er, Ho, and Dy). The first layer is a top coat made of a rare earth oxide, and the second layer is formed of a eutectic of two or more metal oxides including at least one rare earth oxide. The second layer has a general formula RE 3 Al 5 O 12 or REAlO 3 (where RE is a rare earth element of Y, Yb, Er, Ho, Dy, Gd, Sm, Nd, or Lu). It can also be replaced by the rare earth oxides represented. By applying the coating disclosed in this document, a high-temperature structural member that can sufficiently withstand oxidation and corrosion at high temperatures and can be used for a long time without impairing the strength characteristics of the sintered SiC fiber bonded body of the base material is obtained. be able to.

これら文献に記載された、トップコートとSiC基材の間に介装されるこれらの接合層は、互いに接合しにくいトップコートと基材を接合する機能に加えて、両者の熱膨張挙動の差を緩和する機能を備え、セラミックス複合材料を長寿命化する効果を有する。しかし、柔軟性が小さいのでトップコートで発生する亀裂が伝播するのを防ぐ機能は持たない。
米国特許公報US6,607,852B2 特開平11−12050号公報 特開2002−104892号公報
These bonding layers interposed between the top coat and the SiC base material described in these documents have a difference in thermal expansion behavior between them in addition to the function of joining the top coat and the base material, which are difficult to bond to each other. It has the effect of extending the life of the ceramic composite material. However, since the flexibility is small, it does not have a function to prevent propagation of cracks generated in the top coat.
US Patent Publication US 6,607,852 B2 Japanese Patent Laid-Open No. 11-12050 JP 2002-104982 A

本発明が解決しようとする課題は、炭化ケイ素繊維強化セラミックス複合材料(CMC)表面に結晶化ガラス(BMAS)を介して耐水蒸気腐食コーティング(EBC)を施すときに、CMC表面の濡れ性不均一性を改善して、厚さが均一なコーティングを可能にすることである。   The problem to be solved by the present invention is that when wet corrosion resistance coating (EBC) is applied to the surface of silicon carbide fiber reinforced ceramic composite material (CMC) via crystallized glass (BMAS), the wettability of the CMC surface is not uniform. To improve the properties and to enable a coating with a uniform thickness.

上記課題を解決するため本発明のSiC系繊維強化セラミックス複合材料耐環境コーティングは、SiC系繊維強化セラミックス(CMC)基材表面層に形成されたBaO・MgO・Al23・SiO2からなる結晶化ガラス(BMAS)と希土類ケイ酸塩の混合体が含浸した層と、混合体が含浸した基材表面層の上に形成されたBMASと希土類ケイ酸塩の混合体が含浸した多孔質の炭化ケイ素層との2層からなる中間層が形成され、さらに多孔質炭化ケイ素層上にトップコートとして希土類ケイ酸塩層が形成されていることを特徴とする。
希土類ケイ酸塩は、一般式RE2Si27(式中のREは希土類元素)で表される希土類酸化物のジシリケートであることが好ましく、特にイッテルビウムシリケート(Yb23−2SiO2)またはルテチウムシリケート(Lu23−2SiO2)であることが好ましい。
In order to solve the above-described problems, the SiC fiber reinforced ceramic composite environmental resistant coating of the present invention comprises BaO.MgO.Al 2 O 3 .SiO 2 formed on the surface layer of a SiC fiber reinforced ceramic (CMC) substrate. A layer impregnated with a mixture of crystallized glass (BMAS) and a rare earth silicate, and a porous material impregnated with a mixture of BMAS and a rare earth silicate formed on a substrate surface layer impregnated with the mixture; An intermediate layer composed of two layers with a silicon carbide layer is formed, and a rare earth silicate layer is formed as a top coat on the porous silicon carbide layer.
The rare earth silicate is preferably a disilicate of a rare earth oxide represented by the general formula RE 2 Si 2 O 7 (where RE is a rare earth element), and particularly ytterbium silicate (Yb 2 O 3 -2SiO 2 ). or is preferably lutetium silicate (Lu 2 O 3 -2SiO 2) .

本発明のSiC系繊維強化セラミックス複合材料耐環境コーティングは、SiC系繊維強化セラミックスの表面に形成された多孔質の炭化ケイ素層にBMASが含浸するようにしたため、CMC表面の濡れ性不均一が改善され、厚さが均一な中間層およびトップコートが容易に形成される。
また、高温水蒸気による腐食に強い耐性を有する希土類ケイ酸塩で形成されたトップコートで被覆してCMCの損傷を防止し高い耐熱性能と強度を維持すると共に、トップコートとCMCの中間層に高温で軟化し室温でも弾性率が低いBMASを充填したためトップコートに発生する亀裂がCMCに伝播するのを防いで複合材料として基材の強度と同じ水準の強度を保持させることができる。
The SiC fiber reinforced ceramic composite environment-resistant coating of the present invention improves the non-uniform wettability of the CMC surface because the porous silicon carbide layer formed on the surface of the SiC fiber reinforced ceramic is impregnated with BMAS. Thus, an intermediate layer and a top coat having a uniform thickness can be easily formed.
In addition, it is coated with a top coat made of rare earth silicate that has strong resistance to corrosion by high temperature steam to prevent damage to the CMC and maintain high heat resistance and strength, while the intermediate layer between the top coat and the CMC has a high temperature. Since it is filled with BMAS which is softened and has a low elastic modulus even at room temperature, the crack generated in the top coat is prevented from propagating to the CMC, and the composite material can maintain the same strength as the strength of the base material.

さらに、本発明のSiC系繊維強化セラミックス複合材料耐環境コーティングの製造方法は、SiC系繊維強化セラミックス(CMC)基材上にCVD法によりSiCの多孔質膜を形成し、BaO・MgO・Al23・SiO2からなる結晶化ガラス(BMAS)と希土類ケイ酸塩の混合液を多孔質膜表面に塗布して高温処理することにより、BMASと希土類ケイ酸塩をSiC多孔質膜と基材表面層に含浸させるとともに、多孔質膜表面に残存した希土類ケイ酸塩の層を形成することを特徴とする。
多孔質膜表面に、さらに、希土類ケイ酸塩の割合を増加したBMASとの混合体を塗布して加熱処理することにより、多孔質膜表面上の希土類ケイ酸塩層を形成してもよい。
なお、基材表面層まで含浸させる混合液におけるBMAS粉末と希土類ケイ酸塩粉末の割合を重量比でほぼ1対1とし、多孔質膜表面に処理する混合液における割合を重量比でほぼ1対3とすることが好ましい。
Furthermore, the manufacturing method of the SiC fiber-reinforced ceramic composite material environment-resistant coating according to the present invention comprises forming a SiC porous film on a SiC-based fiber reinforced ceramic (CMC) substrate by a CVD method, and BaO · MgO · Al 2. A mixed liquid of crystallized glass (BMAS) and rare earth silicate composed of O 3 · SiO 2 is applied to the surface of the porous film and subjected to high temperature treatment, whereby BMAS and the rare earth silicate are converted into a SiC porous film and a substrate. The surface layer is impregnated and a rare earth silicate layer remaining on the surface of the porous membrane is formed.
A rare earth silicate layer on the surface of the porous film may be formed by further applying a mixture with BMAS having an increased proportion of the rare earth silicate to the surface of the porous film and performing a heat treatment.
In addition, the ratio of the BMAS powder and the rare earth silicate powder in the mixed liquid impregnated to the surface layer of the base material is approximately 1: 1, and the ratio of the mixed liquid to be treated on the porous membrane surface is approximately 1: 1. 3 is preferable.

以下、図面を用いて、本発明の炭化ケイ素(SiC)系繊維強化セラミックス複合材料耐環境コーティングの最良の形態について詳細に説明する。本発明は、SiC繊維で強化したSiCマトリックスで構成される繊維強化セラミックスに耐環境コーティングを施して、高温水蒸気に対する耐性が大きく、高温強度が大きく、寿命が長い複合材料を得ることに関するものである。
図1は本発明の1実施例に係る耐環境コーティングの施工方法を説明する工程図、図2はコーティング強度を比較して示すグラフである。
Hereinafter, the best mode of an environmental resistant coating of a silicon carbide (SiC) -based fiber reinforced ceramic composite material of the present invention will be described in detail with reference to the drawings. The present invention relates to obtaining a composite material having a high resistance to high temperature steam, a high temperature strength and a long life by applying an environment resistant coating to a fiber reinforced ceramic composed of a SiC matrix reinforced with SiC fibers. .
FIG. 1 is a process diagram for explaining a method for applying an environment-resistant coating according to one embodiment of the present invention, and FIG. 2 is a graph showing a comparison of coating strength.

本実施例では、SiC系繊維強化セラミックスに対して、図1に示した工程により耐環境コーティングを施して複合材料を製造する。
すなわち、(a)炭化ケイ素(SiC)系繊維強化セラミックス(CMC)の基材1の上にCVD法によりSiC被膜を積層する。このとき、CVD−SiC被膜2が多孔質になるように温度やプロセスガス濃度などの積層条件を調整して堆積させる。CMCはSiCマトリックスにSiC繊維を混合して強化したもので、内部に多数の空孔3が存在する。
In the present embodiment, a composite material is manufactured by applying an environment-resistant coating to the SiC fiber reinforced ceramic by the process shown in FIG.
That is, (a) a SiC film is laminated on a substrate 1 of silicon carbide (SiC) fiber reinforced ceramics (CMC) by a CVD method. At this time, deposition is performed by adjusting the lamination conditions such as temperature and process gas concentration so that the CVD-SiC coating 2 becomes porous. CMC is obtained by mixing SiC fibers in a SiC matrix and reinforcing it, and a large number of pores 3 exist inside.

(b)次に、多孔質CVD−SiC被膜を形成させたCMC基材1をBaO・MgO・Al23・SiO2からなる結晶化ガラス(BMAS)の粉末と希土類ケイ酸塩の粉末を混ぜた溶液に漬けてSiC被膜表面に塗布し、高温度で処理する。
なお、希土類ケイ酸塩は、一般式RE2Si27(式中のREは希土類元素)で表される希土類酸化物のジシリケートであることが好ましく、特にイッテルビウムジシリケート(Yb23−2SiO2:Yb2Sと略称する)またはルテチウムジシリケート(Lu23−2SiO2)であることが好ましい。
また、希土類ケイ酸塩粉末はBMAS粉末に対して重量比でほぼ1対1に混合することが好ましい。
(B) Next, the CMC substrate 1 on which the porous CVD-SiC film is formed is made of a crystallized glass (BMAS) powder made of BaO.MgO.Al 2 O 3 .SiO 2 and a rare earth silicate powder. It is immersed in the mixed solution, applied to the surface of the SiC coating, and processed at a high temperature.
The rare earth silicate is preferably a disilicate of a rare earth oxide represented by the general formula RE 2 Si 2 O 7 (where RE is a rare earth element), and particularly ytterbium disilicate (Yb 2 O 3 − 2SiO 2 : abbreviated as Yb2S) or lutetium disilicate (Lu 2 O 3 -2SiO 2 ).
The rare earth silicate powder is preferably mixed with the BMAS powder in a weight ratio of approximately 1: 1.

(c)すると、SiC被膜表面に塗布た混合体は溶融して多孔質CVD−SiC被膜層2を透過し、CMC基材1の内側まで浸透してCMC内の比較的浅いところに存在する空孔3を充填し、かつCMC表層部にBMAS成分の多いBMAS−希土類ケイ酸塩系中間層4が形成される。また多孔質CVD−SiC被膜2中の隙間にもBMASが充填される。さらに、被膜表面上に希土類ケイ酸塩が残存し、トップコート5を形成する。
(d)さらに、被膜表面を、希土類ケイ酸塩の濃度が高い、たとえばBMAS粉末1対Yb2S粉末3の割合で混ぜた溶液に漬けて、焼成することにより、希土類ケイ酸塩のトップコート層5をより厚く確実に形成させるようにしてもよい。
(C) Then, the mixture applied to the surface of the SiC coating melts and permeates through the porous CVD-SiC coating layer 2, penetrates into the inside of the CMC substrate 1, and exists in a relatively shallow place in the CMC. A BMAS-rare earth silicate-based intermediate layer 4 having a large BMAS component is formed in the CMC surface layer portion while filling the holes 3. Further, BMAS is also filled in the gaps in the porous CVD-SiC coating 2. Further, the rare earth silicate remains on the surface of the coating, and the top coat 5 is formed.
(D) Furthermore, the surface of the coating is immersed in a solution in which the concentration of the rare earth silicate is high, for example, in a ratio of BMAS powder 1 to Yb2S powder 3, and is fired, whereby the rare earth silicate topcoat layer 5 is obtained. May be formed thicker and more reliably.

上の施工方法にしたがってSiC系繊維強化セラミックス(CMC)表面に耐環境コーティングを施すことによって得られた複合材料は、CMC基材1の上に基材表面層にBMASとYb2Sの混合体が含浸した層4と、基材表面上にBMASとYb2Sの混合体が含浸した多孔質のCVD−SiC層2が形成され、さらにCVD−SiC層2上にYb2Sトップコート層5が形成されたものである。基材表面層にBMASとYb2Sが含浸した層4と多孔質CVD−SiC層2で中間層を構成する。
図2に示すように、CMC単体では200MPa程度の座屈強度を有するが、CMC表面にCVD−SiC層を形成しただけでは140MPa程度に強度が低下する。しかし、さらにBMASと希土類ケイ酸塩を含浸させ希土類ケイ酸塩のコーティング層を形成することによって、基材強度が約250MPaと大きく回復する結果を得ている。
The composite material obtained by applying an environmental coating to the surface of SiC fiber reinforced ceramics (CMC) according to the above construction method is impregnated with a mixture of BMAS and Yb2S on the surface layer of the base material on the CMC base material 1 Layer 4 and a porous CVD-SiC layer 2 impregnated with a mixture of BMAS and Yb2S on the surface of the base material, and a Yb2S topcoat layer 5 formed on the CVD-SiC layer 2 is there. An intermediate layer is composed of the layer 4 impregnated with BMAS and Yb2S on the substrate surface layer and the porous CVD-SiC layer 2.
As shown in FIG. 2, the CMC alone has a buckling strength of about 200 MPa, but the strength is reduced to about 140 MPa only by forming a CVD-SiC layer on the CMC surface. However, by further impregnating BMAS and rare earth silicate to form a rare earth silicate coating layer, the strength of the base material is greatly recovered to about 250 MPa.

また、希土類酸化物のうちでも特にシリケートであることが好ましい。たとえばイッテルビウムアルミネート(YbAlO3:YAと略称する)をコーティングしたものでは化学反応により強度が低下するので、図2に示した通り、強度が50MPa程度にしかならず、Yb2Sを用いたもののような基材強度回復効果が見られなかった。なお、図中YAに異なるサフィックス(1)(2)が付いているのは、BMASとの配合比が異なることを意味する。 Of the rare earth oxides, silicate is particularly preferable. For example, in the case of coating with ytterbium aluminate (abbreviated as YbAlO 3 : YA), the strength decreases due to a chemical reaction. Therefore, as shown in FIG. 2, the strength is only about 50 MPa, and a substrate such as that using Yb2S is used. Strength recovery effect was not seen. In the figure, YA with different suffixes (1) and (2) means that the blending ratio with BMAS is different.

本実施例により得られるSiC系繊維強化セラミックス複合材料は、CVD−SiC層が導入されたことにより、高温処理中に中間層とトップコート成分の濡れ性不均一が改善され、厚さが均一なコーティングが形成されている。
トップコートは耐水蒸気性に優れる希土類ケイ酸塩で形成され、基材との間には室温で柔軟性を持ちかつ高温で軟化する結晶化ガラスを充填した中間層を有するのでトップコート亀裂が基材まで伝播することを抑制するので、高温水蒸気雰囲気中でもSiC系繊維強化セラミックスの高い耐熱性と損傷許容性を発揮する。この特性を生かしてガスタービン高温部品用材料としても利用することができる。特にイッテルビウムジシリケートでトップコートを形成すると、極めて耐環境性の高い複合材料を得ることができる。
In the SiC fiber reinforced ceramic composite material obtained in this example, the introduction of the CVD-SiC layer improves the wettability non-uniformity of the intermediate layer and the top coat component during the high temperature treatment, and the thickness is uniform. A coating is formed.
The topcoat is made of rare earth silicate with excellent water vapor resistance, and has an intermediate layer filled with crystallized glass that is flexible at room temperature and softens at high temperature between the topcoat and the topcoat cracks. Since the propagation to the material is suppressed, the high heat resistance and damage tolerance of the SiC fiber reinforced ceramics is exhibited even in a high-temperature steam atmosphere. Taking advantage of this property, it can also be used as a material for gas turbine high-temperature components. In particular, when the top coat is formed of ytterbium disilicate, a composite material having extremely high environmental resistance can be obtained.

本発明の1実施例に係る耐環境コーティングの施工方法を説明する工程図である。It is process drawing explaining the construction method of the environmental resistant coating which concerns on one Example of this invention. 本実施例のコーティングを施した複合材料の強度を比較して示すグラフである。It is a graph which compares and shows the intensity | strength of the composite material which gave the coating of the present Example.

符号の説明Explanation of symbols

1 CMC基材
2 CVD−SiC層
3 空孔
4 BMAS−Yb2S層
5 トップコート
1 CMC substrate 2 CVD-SiC layer 3 Void 4 BMAS-Yb2S layer 5 Top coat

Claims (5)

SiC系繊維強化セラミックス(CMC)を基材とし、BaO・MgO・Al23・SiO2からなる結晶化ガラス(BMAS)と希土類ケイ酸塩の混合体が含浸した基材表面層と該基材表面層の上に形成されたBMASと希土類ケイ酸塩の混合体が含浸した多孔質の炭化ケイ素層との2層からなる中間層が形成され、さらに該中間層上にトップコートとして希土類ケイ酸塩層が形成されていることを特徴とするSiC系繊維強化セラミックス複合材料耐環境コーティング。 A substrate surface layer impregnated with a mixture of crystallized glass (BMAS) and rare earth silicate composed of SiC fiber reinforced ceramics (CMC) and made of BaO, MgO, Al 2 O 3 and SiO 2 An intermediate layer composed of two layers of BMAS formed on the surface layer of the material and a porous silicon carbide layer impregnated with a mixture of the rare earth silicate is formed, and a rare earth silica as a top coat is further formed on the intermediate layer. An environment-resistant coating of SiC fiber reinforced ceramic composite material, wherein an acid salt layer is formed. 前記希土類ケイ酸塩は、一般式RE2Si27(式中のREは希土類元素)で表される希土類酸化物のジシリケートであることを特徴とする請求項1記載のSiC系繊維強化セラミックス複合材料耐環境コーティング。 The SiC-based fiber-reinforced ceramic according to claim 1, wherein the rare earth silicate is a disilicate of a rare earth oxide represented by a general formula RE 2 Si 2 O 7 (where RE is a rare earth element). Composite environmental resistant coating. 前記希土類ケイ酸塩は、イッテルビウムシリケート(Yb23−2SiO2)またはルテチウムシリケート(Lu23−2SiO2)であることを特徴とする請求項1記載のSiC系繊維強化セラミックス複合材料耐環境コーティング。 The SiC-based fiber reinforced ceramic composite material according to claim 1, wherein the rare earth silicate is ytterbium silicate (Yb 2 O 3 -2SiO 2 ) or lutetium silicate (Lu 2 O 3 -2SiO 2 ). Environmental coating. SiC系繊維強化セラミックス(CMC)基材上にCVD法によりSiCの多孔質膜を形成し、BaO・MgO・Al23・SiO2からなる結晶化ガラス(BMAS)と希土類ケイ酸塩の混合液を多孔質膜表面に塗布して高温処理することにより、BMASと希土類ケイ酸塩をSiC多孔質膜と基材表面層に含浸させるとともに、多孔質膜表面に残存した希土類ケイ酸塩の層を形成することを特徴とするSiC系繊維強化セラミックス複合材料耐環境コーティングの製造方法。 A SiC porous film is formed on a SiC fiber reinforced ceramic (CMC) substrate by CVD, and a mixture of crystallized glass (BMAS) and rare earth silicates made of BaO, MgO, Al 2 O 3 and SiO 2 The liquid is applied to the surface of the porous membrane and subjected to high temperature treatment to impregnate the SiC porous membrane and the substrate surface layer with BMAS and the rare earth silicate layer, and the rare earth silicate layer remaining on the porous membrane surface. A process for producing an environment-resistant coating of SiC fiber reinforced ceramic composite material, characterized in that: さらに、前記多孔質膜表面に、希土類ケイ酸塩の割合を増加したBMASと希土類ケイ酸塩の混合体を塗布して加熱処理することにより、多孔質膜表面上の希土類ケイ酸塩層を形成してトップコートとすることを特徴とする請求項4記載の遮熱コーティング製造方法。
Furthermore, a rare earth silicate layer on the surface of the porous film is formed by applying a heat treatment by applying a mixture of BMAS and rare earth silicate with an increased proportion of the rare earth silicate to the surface of the porous film. The method for producing a thermal barrier coating according to claim 4, wherein a top coat is used.
JP2004338857A 2004-11-24 2004-11-24 SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same Expired - Fee Related JP4753568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338857A JP4753568B2 (en) 2004-11-24 2004-11-24 SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338857A JP4753568B2 (en) 2004-11-24 2004-11-24 SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006143553A true JP2006143553A (en) 2006-06-08
JP4753568B2 JP4753568B2 (en) 2011-08-24

Family

ID=36623672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338857A Expired - Fee Related JP4753568B2 (en) 2004-11-24 2004-11-24 SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP4753568B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247722A (en) * 2007-03-30 2008-10-16 Ihi Corp Ceramic-based composite member and method for manufacturing ceramic-based composite member
JP2008308374A (en) * 2007-06-15 2008-12-25 Kawasaki Heavy Ind Ltd Environment-resistant coating of silicon carbide based fiber reinforced ceramic composite material
US7951736B2 (en) 2006-09-20 2011-05-31 Ube Industries, Ltd SiC fiber-bonded ceramic and process for production of the same
WO2011122219A1 (en) 2010-03-31 2011-10-06 宇部興産株式会社 CERAMIC MATERIAL COATED WITH SiC AND HAVING SiC FIBERS BOUND THERETO
JP2013112562A (en) * 2011-11-28 2013-06-10 Ihi Corp Ceramic-based composite material with film and method for producing the same
US8802225B2 (en) 2011-05-31 2014-08-12 United Technologies Corporation Article having vitreous monocoating
CN105755423A (en) * 2016-04-14 2016-07-13 航天材料及工艺研究所 Anti-oxidation coating and preparation method thereof
JP2017524571A (en) * 2014-07-29 2017-08-31 ゼネラル・エレクトリック・カンパニイ Articles with environmental coating
JP2017528408A (en) * 2014-08-25 2017-09-28 ゼネラル・エレクトリック・カンパニイ High temperature service articles
US9964455B2 (en) 2014-10-02 2018-05-08 General Electric Company Methods for monitoring strain and temperature in a hot gas path component
CN108356719A (en) * 2018-03-20 2018-08-03 常州市金牛研磨有限公司 A kind of ceramic corundum grinding belt
JP2018530503A (en) * 2015-08-18 2018-10-18 ゼネラル・エレクトリック・カンパニイ High density environmental resistant coating composition
WO2019103145A1 (en) * 2017-11-27 2019-05-31 株式会社Ihi Environment-resistant coated reinforcing fibre for use in fibre-reinforced composite material
EP3611146A1 (en) * 2018-08-16 2020-02-19 United Technologies Corporation Machinable coatings fabricated by slurry methods for use on ceramic matrix composites
EP3611145A1 (en) * 2018-08-16 2020-02-19 United Technologies Corporation Protective coating for ceramic matrix composites
CN112301306A (en) * 2020-09-28 2021-02-02 华帝股份有限公司 High-temperature-resistant heat insulation assembly and preparation method thereof
CN113716977A (en) * 2021-06-10 2021-11-30 西北工业大学 Wide-temperature-range composite anti-oxidation coating on surface of carbon/carbon composite material and preparation method thereof
CN114349485A (en) * 2022-01-11 2022-04-15 无锡特科精细陶瓷有限公司 Preparation method of high-strength alumina ceramic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395301B2 (en) 2014-10-02 2016-07-19 General Electric Company Methods for monitoring environmental barrier coatings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277861A (en) * 1994-02-16 1995-10-24 Mitsubishi Heavy Ind Ltd Oxide coated silicon carbide material and its production
JP2000355753A (en) * 1999-04-15 2000-12-26 United Technol Corp <Utc> Article having substrate containing silicon and barrier layer containing yttrium, and its production
JP2002087896A (en) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd Self-repairing high heat resistant and oxidation resistant coating film, and laminated body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277861A (en) * 1994-02-16 1995-10-24 Mitsubishi Heavy Ind Ltd Oxide coated silicon carbide material and its production
JP2000355753A (en) * 1999-04-15 2000-12-26 United Technol Corp <Utc> Article having substrate containing silicon and barrier layer containing yttrium, and its production
JP2002087896A (en) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd Self-repairing high heat resistant and oxidation resistant coating film, and laminated body

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951736B2 (en) 2006-09-20 2011-05-31 Ube Industries, Ltd SiC fiber-bonded ceramic and process for production of the same
JP2008247722A (en) * 2007-03-30 2008-10-16 Ihi Corp Ceramic-based composite member and method for manufacturing ceramic-based composite member
JP2008308374A (en) * 2007-06-15 2008-12-25 Kawasaki Heavy Ind Ltd Environment-resistant coating of silicon carbide based fiber reinforced ceramic composite material
WO2011122219A1 (en) 2010-03-31 2011-10-06 宇部興産株式会社 CERAMIC MATERIAL COATED WITH SiC AND HAVING SiC FIBERS BOUND THERETO
US8802225B2 (en) 2011-05-31 2014-08-12 United Technologies Corporation Article having vitreous monocoating
JP2013112562A (en) * 2011-11-28 2013-06-10 Ihi Corp Ceramic-based composite material with film and method for producing the same
JP2017524571A (en) * 2014-07-29 2017-08-31 ゼネラル・エレクトリック・カンパニイ Articles with environmental coating
US11542824B2 (en) 2014-08-25 2023-01-03 General Electric Company Article for high temperature service
JP2017528408A (en) * 2014-08-25 2017-09-28 ゼネラル・エレクトリック・カンパニイ High temperature service articles
US9964455B2 (en) 2014-10-02 2018-05-08 General Electric Company Methods for monitoring strain and temperature in a hot gas path component
JP7009359B2 (en) 2015-08-18 2022-01-25 ゼネラル・エレクトリック・カンパニイ High density environment resistant coating composition
US11414356B2 (en) 2015-08-18 2022-08-16 General Electric Company Dense environmental barrier coating compositions
JP2018530503A (en) * 2015-08-18 2018-10-18 ゼネラル・エレクトリック・カンパニイ High density environmental resistant coating composition
CN105755423A (en) * 2016-04-14 2016-07-13 航天材料及工艺研究所 Anti-oxidation coating and preparation method thereof
JP6989878B2 (en) 2017-11-27 2022-01-12 株式会社Ihi Environmentally resistant coating reinforcing fiber used for fiber reinforced composite materials
WO2019103145A1 (en) * 2017-11-27 2019-05-31 株式会社Ihi Environment-resistant coated reinforcing fibre for use in fibre-reinforced composite material
US11873604B2 (en) 2017-11-27 2024-01-16 Ihi Corporation Environment-resistive coated reinforcement fiber applicable to fiber-reinforced composite
JPWO2019103145A1 (en) * 2017-11-27 2020-11-19 株式会社Ihi Environmentally resistant coating reinforcing fiber used for fiber reinforced composite materials
CN108356719B (en) * 2018-03-20 2024-04-19 常州市金牛研磨有限公司 Ceramic corundum grinding abrasive belt
CN108356719A (en) * 2018-03-20 2018-08-03 常州市金牛研磨有限公司 A kind of ceramic corundum grinding belt
US11192828B2 (en) 2018-08-16 2021-12-07 Raytheon Technologies Corporation Machinable coatings fabricated by slurry methods for use on ceramic matrix composites
US11148980B2 (en) * 2018-08-16 2021-10-19 Raytheon Technologies Corporation Protective coating for ceramic matrix composites
US11623897B2 (en) 2018-08-16 2023-04-11 Raytheon Technologies Corporation Machinable coatings fabricated by slurry methods for use on ceramic matrix composites
EP3611145A1 (en) * 2018-08-16 2020-02-19 United Technologies Corporation Protective coating for ceramic matrix composites
EP3611146A1 (en) * 2018-08-16 2020-02-19 United Technologies Corporation Machinable coatings fabricated by slurry methods for use on ceramic matrix composites
CN112301306A (en) * 2020-09-28 2021-02-02 华帝股份有限公司 High-temperature-resistant heat insulation assembly and preparation method thereof
CN113716977A (en) * 2021-06-10 2021-11-30 西北工业大学 Wide-temperature-range composite anti-oxidation coating on surface of carbon/carbon composite material and preparation method thereof
CN113716977B (en) * 2021-06-10 2022-07-05 西北工业大学 Wide-temperature-range composite anti-oxidation coating on surface of carbon/carbon composite material and preparation method thereof
CN114349485A (en) * 2022-01-11 2022-04-15 无锡特科精细陶瓷有限公司 Preparation method of high-strength alumina ceramic

Also Published As

Publication number Publication date
JP4753568B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4753568B2 (en) SiC fiber reinforced ceramic composite environment resistant coating and method for producing the same
RU2435673C2 (en) Coating for component for protection from environmental effects and method of producing said coating
JP5436761B2 (en) Environmentally resistant coating structure of silicon carbide fiber reinforced ceramic composites
JP4877880B2 (en) Ceramic material containing a layer that preferentially reacts with oxygen
US6759151B1 (en) Multilayer article characterized by low coefficient of thermal expansion outer layer
JP2007197307A5 (en)
RU2752182C2 (en) Part comprising a substrate and a protective barrier
JP5068902B2 (en) Ceramic with zircon coating
US20090324930A1 (en) Protective coatings for silicon based substrates with improved adhesion
WO2018212139A1 (en) Silicon carbide ceramic
JP2005325014A (en) Article comprising substrate and top barrier layer and method of preparing it
CN114195556A (en) High temperature resistant ceramic matrix composite and environmental barrier coatings
JP2017057132A (en) Hot dust resistant environmental barrier coatings
EP2931679B1 (en) Composite components with coated fiber reinforcements
JP2008247722A (en) Ceramic-based composite member and method for manufacturing ceramic-based composite member
JP5920788B2 (en) Oxide-based composite material
JP2002173376A (en) Oxide-based ceramic fiber/oxide-based ceramic composite material and method of producing the same
JP2007106644A (en) Ceramic member and its manufacturing method
JP2003321277A (en) Ceramic-based composite material and method for producing the same
JP2004075410A (en) Ceramic-based composite material having protective layer and its manufacturing process
KR102259348B1 (en) Environmental shield coating comprising non oxide substrate and method of fabricating thereof
Wang et al. Ceramic with preferential oxygen reactive layer
Wang Ceramic with zircon coating
JP2005225723A (en) Ceramic-based heat-resistant member, method for producing the same, and gas turbine
JP2000239073A (en) Ceramic-based composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees