JPH07277861A - Oxide coated silicon carbide material and its production - Google Patents

Oxide coated silicon carbide material and its production

Info

Publication number
JPH07277861A
JPH07277861A JP1792395A JP1792395A JPH07277861A JP H07277861 A JPH07277861 A JP H07277861A JP 1792395 A JP1792395 A JP 1792395A JP 1792395 A JP1792395 A JP 1792395A JP H07277861 A JPH07277861 A JP H07277861A
Authority
JP
Japan
Prior art keywords
silicon carbide
lanthanoid
oxide
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1792395A
Other languages
Japanese (ja)
Other versions
JP3129383B2 (en
Inventor
Tatsuo Morimoto
立男 森本
Ken Ogura
謙 小椋
Masayuki Kondo
雅之 近藤
Hiroshi Notomi
啓 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07017923A priority Critical patent/JP3129383B2/en
Publication of JPH07277861A publication Critical patent/JPH07277861A/en
Application granted granted Critical
Publication of JP3129383B2 publication Critical patent/JP3129383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve oxidation resistance by coating a surface with a silicide which is a reaction product of an oxide of lanthanoid rare earth element or its double oxide with silicon and silicon carbide. CONSTITUTION:A silicon carbide raw material which a raw material almost constituted of silicon carbide, or a platelike carbon material of carbon/carbon composite or the like, or a plate-like silicon nitride sintered body is coated with silicon carbide on all or a part of the surface by a chemical vapor deposition method to form is subjected to interfacial reaction with a lanthanoid silicide which is a reaction product of silicon carbide a oxide of a lanthanoid rare earth element (including yttrium) or its double oxide with silicon and has a composition of 30atm% C and 5atm% O by a sputtering method, a slurry coating and sintering method or the like, allowing a precursor of lanthanoid rare earth element oxide-contg. coating film coated silicon carbide material to be obtained. The surface of this is coated with a lanthanoid oxide or its double oxide with silicon by a plasma spraying method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は宇宙往還機、次世代超音
速旅客機の機体構造、エンジン部品やガスタービンなど
の耐熱構造材として有利に適用されるランタノイド系希
土類元素酸化物含有被膜被覆炭化珪素材及びその前駆体
であるランタノイドシリサイド被覆炭化珪素材並びにラ
ンタノイド系希土類元素酸化物含有被膜被覆炭化珪素材
の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a lanthanoid-based rare earth element oxide-containing film-coated silicon carbide which is advantageously applied as a heat resistant structural material for space vehicles, next-generation supersonic passenger aircraft, engine parts and gas turbines. The present invention relates to a material, a precursor thereof, a lanthanoid silicide-coated silicon carbide material, and a method for producing a lanthanoid-based rare earth element oxide-containing coating silicon carbide material.

【0002】[0002]

【従来の技術】炭化珪素素材の耐酸化性向上を狙いとし
て、炭化珪素素材の表面に耐酸化性の優れた各種の金属
酸化物層を被覆した炭化珪素素材が提案されている。し
かし、炭化珪素は、それ自体の酸化によって形成される
二酸化珪素の被膜を除いて、他の金属酸化物の被覆とは
密着性が乏しいため十分な耐酸化性を得ることができな
い。
2. Description of the Related Art In order to improve the oxidation resistance of a silicon carbide material, there has been proposed a silicon carbide material in which the surface of the silicon carbide material is coated with various metal oxide layers having excellent oxidation resistance. However, silicon carbide cannot provide sufficient oxidation resistance because it has poor adhesion with other metal oxide coatings, except for the silicon dioxide coating formed by oxidation of itself.

【0003】このため、炭化珪素素材と耐酸化性の優れ
た金属酸化物を密着させるため、両者の間に中間層を設
けて密着性を向上させる方法が提案されている(特開平
3−221444号公報、特願平4−202230号な
ど参照)。しかしながら、上記中間層を設ける方法には
いくつかの問題が認められた。特開平3−221444
号公報で提案されている中間層は、金属酸化物と金属炭
化物から構成されたもので、高温環境下で両者は反応生
成物を形成してしまうので耐久性に問題がある。また、
特願平4−202230号で提案されている方法は、こ
れまでにランタノイド系希土類元素(ただし、イットリ
ウムを含む)の酸化物と炭化珪素の組合せまたはランタ
ノイド系希土類元素(ただし、イットリウムを含む)と
珪素との複合酸化物と炭化珪素の組合せについて具体的
に適用していない。加えて、実際にこれらの組合せにつ
いて適用した場合、中間層の組成によっては長期間大気
中に放置することで酸化などのため粉塵化してしまうた
め非常に短時間のうちに接合を行わなければならないと
いう不具合が生じる恐れがあった。また、上記の先願明
細書に開示されているトリウム、ハフニウム等の金属で
は、金属酸化物の熱膨張係数が炭化珪素のそれと相違す
るため、加熱時の熱応力が大きく、密着性が不充分であ
る。
Therefore, in order to bring the silicon carbide material and the metal oxide having excellent oxidation resistance into close contact with each other, a method has been proposed in which an intermediate layer is provided between the two to improve the adhesion (Japanese Patent Laid-Open No. 3-221444). Japanese Patent Application No. 4-202230). However, some problems have been recognized in the method of providing the intermediate layer. JP-A-3-221444
The intermediate layer proposed in the publication is composed of a metal oxide and a metal carbide, and both of them form a reaction product in a high temperature environment, so that there is a problem in durability. Also,
The method proposed in Japanese Patent Application No. 4-202230 is based on the combination of a lanthanoid-based rare earth element (including yttrium) oxide and silicon carbide or a lanthanoid-based rare earth element (including yttrium). It does not specifically apply to a combination of silicon oxide and a composite oxide with silicon. In addition, when these combinations are actually applied, depending on the composition of the intermediate layer, leaving them in the air for a long period of time causes dusting due to oxidation, etc., so bonding must be performed within a very short time. There was a possibility that such a problem would occur. Further, in the metals such as thorium and hafnium disclosed in the above-mentioned prior specification, since the thermal expansion coefficient of the metal oxide is different from that of silicon carbide, the thermal stress during heating is large and the adhesion is insufficient. Is.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、炭化珪素素材と耐酸化性に優れた金属酸化物、
すなわちランタノイド系希土類元素(但し、イットリウ
ムを含む)の酸化物とが強固に密着したランタノイド系
希土類元素酸化物含有被膜被覆炭化珪素材及びその製造
法並びに前記ランタノイド系希土類元素酸化物含有被膜
被覆炭化珪素材の前駆体であるランタノイドシリサイド
被覆炭化珪素材を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention provides a silicon carbide material and a metal oxide excellent in oxidation resistance,
That is, a lanthanoid-based rare earth element oxide-containing coating-coated silicon carbide material in which an oxide of a lanthanoid-based rare earth element (including yttrium) is firmly adhered, a method for producing the same, and a lanthanoid-based rare earth element oxide-containing coating-coated silicon carbide. It is intended to provide a lanthanoid silicide-coated silicon carbide material which is a precursor of a material.

【0005】[0005]

【課題を解決するための手段】本発明は(1)シリサイ
ドに表面が覆われた炭化珪素素材であって、シリサイド
がランタノイド系希土類元素(但し、イットリウムを含
む)の酸化物と炭化珪素との反応生成物またはランタノ
イド系希土類元素(但し、イットリウムを含む)と珪素
との複合酸化物と炭化珪素との反応生成物であることを
特徴とするランタノイドシリサイド被覆炭化珪素材、
(2)シリサイドの組成がランタノイド系希土類元素
(但し、イットリウムを含む)と珪素が主成分で残りを
炭素が最大で30原子%、酸素が最大で5原子%まで占
めるものであることを特徴とする前記(1)のランタノ
イドシリサイド被覆炭化珪素材、(3)炭化珪素素材が
表面を炭化珪素で覆われた炭素材であることを特徴とす
る前記(1)または(2)のランタノイドシリサイド被
覆炭化珪素材、(4)炭素材がカーボン/カーボンコン
ポジットであることを特徴とする前記(3)のランタノ
イドシリサイド被覆炭化珪素材、(5)前記(1)ない
し(4)のいずれかのランタノイドシリサイド被覆炭化
珪素材の表面に、ランタノイド系希土類元素(但しイッ
トリウムを含む)の酸化物またはランタノイド系希土類
元素(但し、イットリウムを含む)と珪素との複合酸化
物で被覆してなることを特徴とするランタノイド系希土
類元素酸化物含有被膜被覆炭化珪素材、(6)前記
(1)ないし(4)のいずれかのランタノイドシリサイ
ド被覆炭化珪素材の表面に、ランタノイド系希土類元素
(但しイットリウムを含む)の酸化物またはランタノイ
ド系希土類元素(但し、イットリウムを含む)と珪素と
の複合酸化物をプラズマ溶射法により被覆することを特
徴とするランタノイド系希土類元素酸化物含有被膜被覆
炭化珪素材の製造方法。(7)前記(1)ないし(4)
のいずれかのランタノイドシリサイド被覆炭化珪素材の
表面に、ランタノイド系希土類元素(但しイットリウム
を含む)の酸化物またはランタノイド系希土類元素(但
し、イットリウムを含む)と珪素との複合酸化物をプラ
ズマ溶射法により被覆した後、大気中または不活性ガス
雰囲気中で熱処理し、前記ランタノイド系希土類元素の
酸化物またはランタノイド系希土類元素と珪素との複合
酸化物被膜の緻密性及び密着性を高めることを特徴とす
るランタノイド系希土類元素酸化物含有被膜被覆炭化珪
素材の製造方法、である。
Means for Solving the Problems The present invention is (1) a silicon carbide material having a surface covered with a silicide, wherein the silicide is composed of an oxide of a lanthanoid rare earth element (including yttrium) and silicon carbide. A lanthanoid silicide-coated silicon carbide material, which is a reaction product or a reaction product of a complex oxide of a lanthanoid-based rare earth element (including yttrium) and silicon, and silicon carbide,
(2) The composition of the silicide is characterized in that the lanthanoid-based rare earth element (including yttrium) and silicon are main components, and the rest occupy up to 30 atom% of carbon and up to 5 atom% of oxygen. The (1) lanthanoid silicide-coated silicon carbide material, and (3) the silicon carbide material is a carbon material whose surface is covered with silicon carbide. Silicon material, (4) Carbon material is carbon / carbon composite, lanthanoid silicide-coated silicon carbide material of (3), (5) Lanthanoid silicide coating of any one of (1) to (4) above An oxide of a lanthanoid-based rare earth element (including yttrium) or a lanthanoid-based rare earth element (but it) A lanthanoid-based rare earth element oxide-containing film-coated silicon carbide material, characterized by being coated with a complex oxide of (including um) and silicon; The surface of the silicide-coated silicon carbide material is coated with a lanthanoid rare earth element (including yttrium) oxide or a composite oxide of a lanthanoid rare earth element (including yttrium) and silicon by plasma spraying. A method for producing a film-coated silicon carbide material containing a lanthanoid rare earth oxide. (7) The above (1) to (4)
Of the lanthanoid-based rare earth element (including yttrium) oxide or a composite oxide of lanthanoid-based rare earth element (including yttrium) and silicon on the surface of any of the lanthanoid silicide-coated silicon carbide materials by plasma spraying And then heat-treated in the atmosphere or in an inert gas atmosphere to enhance the denseness and adhesion of the oxide of the lanthanoid rare earth element or the complex oxide coating of lanthanoid rare earth element and silicon. A method for producing a film-coated silicon carbide material containing a lanthanoid-based rare earth element oxide.

【0006】[0006]

【作用】本発明でいう炭化珪素素材としては殆んどが炭
化珪素で構成されている素材、表面の一部が炭化珪素で
覆われた素材及び表面の全部が炭化珪素で覆われた素材
があげられる。殆んどが炭化珪素で構成される素材とし
ては炭化珪素粉を炭素またはボロンまたはアルミナを助
剤として焼結して作製した素材であり、市販されている
ものは殆んどがこの炭化珪素である。表面の一部が炭化
珪素で覆われた素材としては、カーボン/カーボンコン
ポジットなどの板状の炭素材の表面の片面に化学蒸着法
により炭化珪素を被覆した素材、板状の窒化珪素焼結体
の表面の片面に化学蒸着法により炭化珪素を被覆した素
材などがあげられる。また、表面の全部が炭化珪素で覆
われた素材としては、カーボン/カーボンコンポジット
などの炭素材の全面に化学蒸着法により炭化珪素を被覆
した素材、片面に化学蒸着法により炭化珪素を被覆した
素材、窒化珪素焼結体の表面の片面に化学蒸着法により
炭化珪素を被覆した素材などがあげられる。
As the silicon carbide material referred to in the present invention, a material that is mostly composed of silicon carbide, a material whose surface is partially covered with silicon carbide, and a material whose surface is entirely covered with silicon carbide can give. Most of the materials composed of silicon carbide are materials produced by sintering silicon carbide powder with carbon, boron or alumina as an auxiliary agent, and most of the commercially available materials are silicon carbide. is there. As a material whose surface is partially covered with silicon carbide, a material in which one surface of a plate-shaped carbon material such as carbon / carbon composite is coated with silicon carbide by a chemical vapor deposition method, or a plate-shaped silicon nitride sintered body One example is a material in which one surface of the is coated with silicon carbide by a chemical vapor deposition method. Further, as a material whose entire surface is covered with silicon carbide, a carbon material such as carbon / carbon composite is coated with silicon carbide by a chemical vapor deposition method, or one surface is coated with silicon carbide by a chemical vapor deposition method. Examples include a material in which one surface of a silicon nitride sintered body is coated with silicon carbide by a chemical vapor deposition method.

【0007】上記(1)〜(4)の発明のランタノイド
シリサイド被覆炭化珪素材は上記(5)〜(7)のラン
タノイド系希土類元素酸化物含有被膜被覆炭化珪素材の
前駆体の地位をもつものである。こゝにおいて、ランタ
ノイドシリサイドに表面が覆われた炭化珪素素材とはラ
ンタノイドシリサイドが炭化珪素素材全面を覆うものに
限らず、その表面の一部を覆うものも意味する。例え
ば、宇宙往還機に使用が考えられる直径2メートルの半
円球状の部材の外表面の一部(直径1メートル相当)が
被覆されたもの、板状の部材で片面が被覆されている
が、端部ともう片面が被覆されていないもの、パイプ状
の部材で外表面には被覆されているが、内表面には被覆
されていないものなどが、これに相当する。
The lanthanoid silicide-coated silicon carbide material of the inventions (1) to (4) has the status of a precursor of the lanthanoid rare earth element oxide-containing film-coated silicon carbide material of (5) to (7). Is. Here, the silicon carbide material whose surface is covered with the lanthanoid silicide is not limited to one in which the lanthanoid silicide covers the entire surface of the silicon carbide material, but also one in which the surface is partially covered. For example, a part of the outer surface (corresponding to a diameter of 1 meter) of a semi-spherical member with a diameter of 2 meters, which is considered to be used in a space shuttle, is coated with one side with a plate-shaped member, The end and the other surface are not covered, and the pipe-shaped member is coated on the outer surface but not the inner surface.

【0008】上記(1)〜(4)の発明のランタノイド
シリサイドを構成するランタノイド系希土類元素(但
し、イットリウムを含む。以下、これらの元素をLnと
略記する)としては、イットリウム(Y)、ルテシウム
(Lu)、イッテルビウム(Yb)、ツリウム(T
m)、エルビウム(Er)、ホルミウム(Ho)、ディ
スプロシウム(Dy)、テルビウム(Tb)、ガドリウ
ム(Gd)が選定されるが、コスト的にイットリウム次
いでイッテルビウムが好ましい。
As the lanthanoid rare earth elements (including yttrium, which are included in the lanthanoid silicide of the inventions (1) to (4)), yttrium (Y) and lutetium are used as the lanthanoid rare earth elements (including yttrium. (Lu), ytterbium (Yb), thulium (T
m), erbium (Er), holmium (Ho), dysprosium (Dy), terbium (Tb) and gadolinium (Gd) are selected, but yttrium and then ytterbium are preferable in terms of cost.

【0009】また、上記(1)〜(4)の発明のランタ
ノイドシリサイドは炭化珪素とLn酸化物との化学反応
により形成される物質によって構成されるものであっ
て、Lnと珪素が主成分で残りを炭素と酸素が占めるも
のである。ここでLn酸化物としては、Lnの酸化物並
びにLnと珪素との複合酸化物がある。この場合、上記
(2)の発明に示したように、ランタノイドシリサイド
の組成を炭素を最大30原子%、酸素を最大5原子%に
することにより、ランタノイドシリサイドの粉塵化を抑
制することができる。
The lanthanoid silicide of the inventions (1) to (4) is composed of a substance formed by a chemical reaction between silicon carbide and Ln oxide, and Ln and silicon are the main components. The rest is carbon and oxygen. Here, the Ln oxide includes an oxide of Ln and a complex oxide of Ln and silicon. In this case, as shown in the invention of the above (2), by making the composition of the lanthanoid silicide to be at most 30 atom% of carbon and at most 5 atom% of oxygen, it is possible to suppress dusting of the lanthanoid silicide.

【0010】上記(1)〜(4)の発明において、ラン
タノイドシリサイドに覆われた炭化珪素素材はLnの酸
化物またはLnと珪素の複合酸化物をスパッタリング
法、スラリーを塗布して焼成する方法などにより炭化珪
素素材と界面反応させることによって作製することがで
きる。これらのランタノイドシリサイドはLn酸化物ま
たはLnと珪素の複合酸化物と炭化珪素との界面反応生
成物として生じるので、素材である炭化珪素に容易に密
着し、しかも目的物であるランタノイド系希土類元素酸
化物含有被膜被覆炭化珪素材(以下、これをLn酸化物
含有被膜被覆炭化珪素材と略称する)を作製する際に適
用されるLnの酸化物またはLnと珪素の複合酸化物と
も容易に密着する。
In the above inventions (1) to (4), the silicon carbide material covered with the lanthanoid silicide is a sputtering method of an oxide of Ln or a composite oxide of Ln and silicon, a method of applying a slurry and baking the same. Can be produced by interfacial reaction with a silicon carbide material. Since these lanthanoid silicides are produced as an interfacial reaction product of Ln oxide or a complex oxide of Ln and silicon and silicon carbide, they easily adhere to the silicon carbide which is the raw material, and further, the lanthanoid rare earth element oxidation which is the target product. Also easily adheres to an oxide of Ln or a composite oxide of Ln and silicon applied when manufacturing a substance-containing film-coated silicon carbide material (hereinafter, abbreviated as Ln oxide-containing film-coated silicon carbide material). .

【0011】上記(5)の発明のLn酸化物含有被膜被
覆炭化珪素材は上記(1)〜(4)のランタノイドシリ
サイド(以下、これをLnシリサイドと略称する)で表
面が覆われた炭化珪素素材前駆体の表面に、Lnの酸化
物またはLnと珪素の複合酸化物で被覆した耐酸化性の
優れたLn酸化物含有被膜被覆炭化珪素である。これら
Lnの酸化物及びLnと珪素の複合酸化物は、酸素バリ
ア機能(ある物質を膜状にし、これに酸素原子を拡散透
過させた際の透過しにくさ。透過しにくいほど耐酸化性
が良い。)が高く、とりわけLnがイットリウムである
場合は最も高い。
The Ln oxide-containing coating-coated silicon carbide material of the invention (5) is a silicon carbide whose surface is covered with the lanthanoid silicide (1) to (4) (hereinafter, abbreviated as Ln silicide). A film-coated silicon carbide containing an Ln oxide having excellent oxidation resistance, in which the surface of a material precursor is coated with an oxide of Ln or a composite oxide of Ln and silicon. The oxides of Ln and the composite oxides of Ln and silicon have an oxygen barrier function (difficulty in permeation when a certain substance is formed into a film and oxygen atoms are diffused and permeated therein. Good), especially when Ln is yttrium.

【0012】更に、前記前駆体表面には既にLnシリサ
イドが形成されているので、耐酸化性に優れたLn酸化
物またはLnと珪素の複合酸化物を被覆した場合に前駆
体に十分強固に密着したLn酸化物含有被膜被覆を形成
することができる。特に、Lnがイットリウム、イッテ
ルビウム、ジスプロシウム又はエルビウムである複合酸
化物(珪酸塩)では、それぞれの熱膨張係数が下地の炭
化珪素とほぼ同じ約5×10-6/℃であり、高温環境下
においても熱応力がほとんど生じず、密着性がより良好
となる。
Furthermore, since Ln silicide has already been formed on the surface of the precursor, when it is coated with Ln oxide or a complex oxide of Ln and silicon having excellent oxidation resistance, it adheres to the precursor sufficiently firmly. Ln oxide-containing coatings can be formed. Particularly, in a complex oxide (silicate) in which Ln is yttrium, ytterbium, dysprosium, or erbium, the coefficient of thermal expansion of each is about 5 × 10 −6 / ° C., which is almost the same as that of the underlying silicon carbide, and Also, the thermal stress hardly occurs, and the adhesion becomes better.

【0013】上記(3)、(4)の発明は、それぞれ上
記(1)、(2)の発明において炭化珪素材を表面が炭
化珪素で覆われた炭素材または表面が炭化珪素で覆われ
たカーボン/カーボンコンポジットとしたもので、炭素
材の軽量、高強度、耐熱材としての特性をもあわせも
ち、極めて有用な極限材料としうる。
The inventions of the above (3) and (4) are, respectively, in the inventions of the above (1) and (2), wherein the surface of the silicon carbide material is covered with silicon carbide or the surface thereof is covered with silicon carbide. It is made of carbon / carbon composite, and can be a very useful ultimate material because it has the characteristics of carbon material such as light weight, high strength, and heat resistance.

【0014】上記(6),(7)の発明は上記(5)の
発明のLn酸化物含有被膜被覆炭化珪素材の製造方法に
関するもので、上記(1)〜(4)の発明の前駆体の表
面にLn酸化物またはLnと珪素との複合酸化物をプラ
ズマ溶射法で被覆させる方法である。一般的にはプラズ
マガスとしてはアルゴンとヘリウムを、キャリヤガスと
してはアルゴンガスを使用して大気圧下で溶射すること
によって達成される。上記(7)の発明は上記(6)の
発明のプラズマ溶射法により上記(1)〜(4)の発明
の前駆体にLn酸化物またはLnと珪素との複合酸化物
を溶射した後、その溶射層を前駆体にさらに強固に密着
させるための熱処理方法であり、その熱処理は大気中ま
たは不活性ガス中で行われる。その熱処理条件の温度、
時間などは前駆体の種類及びLn酸化物またはLnと珪
素との複合酸化物の種類によって一概には特定できない
が、一例をあげるとアルゴンガス中で1700℃×1時
間加熱後大気中で1500℃×1時間加熱する熱処理方
法があげられる。
The inventions of (6) and (7) above relate to a method for producing the Ln oxide-containing coating-coated silicon carbide material of the invention of (5) above, and the precursors of the inventions of (1) to (4) above. This is a method of coating the surface of Ln oxide or a composite oxide of Ln and silicon by plasma spraying. This is generally achieved by spraying at atmospheric pressure using argon and helium as the plasma gas and argon gas as the carrier gas. In the invention of (7) above, after the Ln oxide or the composite oxide of Ln and silicon is sprayed on the precursor of the inventions of (1) to (4) by the plasma spraying method of the invention of (6) above, This is a heat treatment method for more firmly adhering the sprayed layer to the precursor, and the heat treatment is performed in the air or an inert gas. The temperature of the heat treatment conditions,
The time and the like cannot be unconditionally specified depending on the kind of the precursor and the kind of the Ln oxide or the composite oxide of Ln and silicon, but one example is heating at 1700 ° C. in argon gas for 1 hour and then 1500 ° C. in the atmosphere. A heat treatment method of heating for 1 hour can be used.

【0015】[0015]

【実施例】以下、本発明の各種の例をあげ、本発明の効
果をより明らかにする。例1〜5はLn酸化物含有被膜
被覆炭化珪素材の前駆体の製造方法の例であり、例6は
Ln酸化物含有被膜被覆炭化珪素材の製造方法の実施例
である。
EXAMPLES The effects of the present invention will be made clearer by giving various examples of the present invention. Examples 1 to 5 are examples of the method for producing the precursor of the Ln oxide-containing coating-coated silicon carbide material, and Example 6 is an example of the method of producing the Ln oxide-containing coating-coated silicon carbide material.

【0016】(例1)炭化珪素表面にイットリア粉をス
ラリー状にしたものを塗布し、乾燥してAr雰囲気で1
700℃の熱処理を施すことにより、表面にイットリウ
ム45原子%、珪素30原子%、炭素23原子%、酸素
2原子%なるイットリウムシリサイドを被覆することが
できた。
(Example 1) A slurry of yttria powder was applied to the surface of silicon carbide, dried, and dried in an Ar atmosphere at 1
By performing the heat treatment at 700 ° C., the surface could be coated with yttrium silicide consisting of 45 atom% of yttrium, 30 atom% of silicon, 23 atom% of carbon, and 2 atom% of oxygen.

【0017】(例2)炭化珪素表面にイットリア粉をス
ラリー状にしたものを塗布し、乾燥して一酸化炭素ガス
雰囲気で1700℃の熱処理を施すことにより、表面に
イットリウム45原子%、珪素5原子%、炭素48原子
%、酸素2原子%なるイットリウムシリサイド(但し、
イットリウムカーバイドを多量に含む)を被覆すること
ができた。
Example 2 A slurry of yttria powder was applied to the surface of silicon carbide, dried, and heat-treated at 1700 ° C. in a carbon monoxide gas atmosphere to give 45 atomic% of yttrium and 5% of silicon on the surface. Atomic%, carbon 48 atomic%, oxygen 2 atomic% yttrium silicide (however,
Yttrium Carbide).

【0018】(例3)炭化珪素表面にイットリアとシリ
カ(SiO2 )のモル比1:1の混合粉をスラリー状に
したものを塗膜、乾燥してAr雰囲気で1700℃の熱
処理を施すことにより、表面にイットリウム30原子
%、珪素60原子%、炭素8原子%、酸素2原子%なる
イットリウムシリサイドを被覆することができた。
Example 3 A surface of silicon carbide was slurried with a mixed powder of yttria and silica (SiO 2 ) in a molar ratio of 1: 1 to form a coating film, which was then dried and heat-treated at 1700 ° C. in an Ar atmosphere. As a result, it was possible to cover the surface with yttrium silicide containing 30 atomic% of yttrium, 60 atomic% of silicon, 8 atomic% of carbon, and 2 atomic% of oxygen.

【0019】(例4)イットリアあるいはイットリアと
シリカとのモル比が1:1なる複合酸化物と炭化珪素と
の反応生成物のうち表Aに示す組成の素材を溶解法によ
り作製して、これをスパッタターゲットに加工してスパ
ッタ法により炭化珪素にコーティングの後、Ar雰囲気
で1700℃の熱処理を施して、最終的に表Aに示す界
面反応層を被覆した炭化珪素材を作製した。溶解につい
てはAr雰囲気でアーク溶解で行い、電極にはタングス
テンを用いた。素材の原料には純度99.9原子%のイ
ットリウム粉末、組成がイットリウム90.5原子%で
酸素が9.5原子%の合金粉末、純度99.9原子%炭
素粉末、純度99.9原子%のシリコン粉末を用い、こ
れを混合したものをペレット状に圧粉成形し、水冷銅電
極ハース上に設置して溶解して素材を作製した。
(Example 4) Of the reaction products of yttria or a composite oxide having a molar ratio of yttria and silica of 1: 1 and silicon carbide, materials having the composition shown in Table A were prepared by a melting method, and Was processed into a sputter target and coated on silicon carbide by a sputtering method, and then heat-treated at 1700 ° C. in an Ar atmosphere to finally produce a silicon carbide material coated with the interface reaction layer shown in Table A. The melting was performed by arc melting in an Ar atmosphere, and tungsten was used for the electrodes. The raw material is yttrium powder having a purity of 99.9 atom%, alloy powder having a composition of yttrium 90.5 atom% and oxygen of 9.5 atom%, purity 99.9 atom% carbon powder, purity 99.9 atom%. The silicon powder of No. 1 was used, and a mixture thereof was pressed into pellets, placed on a water-cooled copper electrode hearth, and melted to prepare a raw material.

【0020】(例5)イッテルビウムあるいはイッテル
ビウムとシリカとのモル比が1:1なる複合酸化物と炭
化珪素との反応生成物のうち表Bに示す組成の素材を溶
解法により作製して、スパッタターゲットに加工してス
パッタ法により炭化珪素にコーティングの後、Ar雰囲
気で1700℃の熱処理を施して、最終的に表Bに示す
組成の界面反応層を被覆した炭化珪素材を作製した。溶
解についてはAr雰囲気でアーク溶解で行い、電極には
タングステンを用いた。素材の原料には純度99.9原
子%のイッテルビウム粉末、組成がイッテルビウム9
0.8原子%で酸素が9.2原子%の合金粉末、純度9
9.9原子%炭素粉末、純度99.9原子%のシリコン
粉末を用い、これを混合したものをペレット状に圧粉成
形し、水冷銅電極ハース上に設置して溶解して素材を作
製した。
(Example 5) Of the reaction products of ytterbium or the complex oxide having a molar ratio of ytterbium and silica of 1: 1 and silicon carbide, the materials having the compositions shown in Table B were prepared by a melting method and then sputtered. After being processed into a target and coating silicon carbide by a sputtering method, heat treatment was performed at 1700 ° C. in an Ar atmosphere to finally produce a silicon carbide material coated with an interface reaction layer having a composition shown in Table B. The melting was performed by arc melting in an Ar atmosphere, and tungsten was used for the electrodes. The raw material is ytterbium powder with a purity of 99.9 atom%, and the composition is ytterbium 9
Alloy powder containing 0.8 atomic% and 9.2 atomic% oxygen, purity 9
Using 9.9 atomic% carbon powder and 99.9 atomic% pure silicon powder, a mixture of the powders was compacted into pellets, placed on a water-cooled copper electrode hearth, and melted to prepare a raw material. .

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】例1〜例3により作製した試料の内、例1
と例3で作製したイットリウムシリサイド被覆炭化珪素
材については、大気中に24時間以上放置しても粉塵化
しなかったが、例2で作製したイットリウムシリサイド
(但し、イットリウムカーバイドを多量に含む)被覆炭
化珪素については1時間以内に粉塵化した。しかし、形
成時の被膜の密着性は良好であった。さらに、例4で作
製したものを調べた結果を示す表Aより、イットリウム
シリサイドの組成について、主成分をイットリウムと珪
素で構成し、残りを炭素が最大でも30原子%、酸素が
最大でも5原子%の範囲で、粉塵化を防ぐことができる
ことが確認された。
Of the samples prepared according to Examples 1 to 3, Example 1
The yttrium silicide-coated silicon carbide material produced in Example 3 and Example 3 did not become dust even if left in the atmosphere for 24 hours or more, but the yttrium silicide (including a large amount of yttrium carbide) coated carbonaceous material produced in Example 2 was used. Silicon became dust within 1 hour. However, the adhesion of the coating film when formed was good. Further, from Table A showing the results of examining the one produced in Example 4, regarding the composition of yttrium silicide, the main component was composed of yttrium and silicon, and the balance was 30 atoms% at maximum in carbon and 5 atoms at maximum in oxygen. It was confirmed that dusting can be prevented in the range of%.

【0024】また、先の例5で作製した試料について、
大気中に放置し粉塵化を調べた結果を示す表Bより、イ
ッテルビウムシリサイドの組成について、主成分をイッ
テルビウムと珪素で構成し、残りを炭素が最大でも30
原子%、酸素が最大でも5原子%の範囲で、粉塵化を防
ぐことができることが確認された。これらイットリアと
イッテルビウムの結果から、ランタノイド系金属元素に
同様な効果が期待される。
Regarding the sample prepared in Example 5 above,
From Table B showing the results of dusting by leaving it in the air, the composition of ytterbium silicide is composed of ytterbium and silicon as the main components, and the balance of carbon is at most 30.
It was confirmed that dusting can be prevented in the range of 5% by atom and at most 5% by atom of oxygen. From the results of these yttria and ytterbium, it is expected that the lanthanoid-based metallic elements have similar effects.

【0025】(例6)図1によって本発明のLn酸化物
含有被膜被覆炭化珪素材の構成を説明する。図1におい
て、1は炭化珪素基材、2はLnシリサイド層、3はL
n酸化物含有被膜である。Lnシリサイド層2は前記例
4によって形成された層である。
Example 6 The constitution of the Ln oxide-containing coating-coated silicon carbide material of the present invention will be described with reference to FIG. In FIG. 1, 1 is a silicon carbide base material, 2 is an Ln silicide layer, 3 is L
It is a film containing n oxide. The Ln silicide layer 2 is a layer formed according to Example 4 above.

【0026】前記例に示したLnシリサイドを表面に形
成した炭化珪素基材及び比較材として表面に何の処理も
施していない炭化珪素基材を使用して、種々のLn酸化
物含有被膜をプラズマ溶射してLn酸化物含有被膜被覆
炭化珪素を製造した。プラズマ溶射はプラズマガスとし
てアルゴンとヘリウムを、キャリアガスとしてアルゴン
を用いて大気圧下で実施し、しかる後、本発明材の一部
について、アルゴンガス中で1700℃×1時間加熱
後、大気中で1500℃×1時間加熱する熱処理を施し
た。その結果を表Cにまとめて示す。
Using the silicon carbide base material having the Ln silicide formed on the surface shown in the above example and the silicon carbide base material having no treatment on the surface as a comparison material, various Ln oxide-containing coatings were plasma-treated. The Ln oxide-containing coating-coated silicon carbide was manufactured by thermal spraying. Plasma spraying was carried out at atmospheric pressure using argon and helium as plasma gases and argon as a carrier gas. After that, a part of the material of the present invention was heated in argon gas at 1700 ° C. for 1 hour and then in the atmosphere. Heat treatment was performed by heating at 1500 ° C. for 1 hour. The results are summarized in Table C.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表Dにプラズマ溶射試験結果並びに170
0℃の大気中で90分加熱を2回繰り返した結果を示
す。比較材はいずれも溶射膜が密着せず膜に亀裂や剥離
が生じたが、本発明は基材上に密着したLn酸化物含有
被膜が維持された。次に加熱試験後の状況であるが、成
膜が不完全であった比較材はいずれも被膜が剥離、脱落
し、炭化珪素基材表面に酸化珪素の気泡が形成され、表
面の荒れと重量減少が確認されたが、本発明材ではいず
れも外観上の変化は認められず、重量変化もわずかであ
った。特に溶射後に熱処理を施したものについては、熱
処理しないものよりも重量変化が少ない傾向が認められ
た。
Table D shows the plasma spray test results and 170
The results obtained by repeating 90 minutes of heating twice in the atmosphere of 0 ° C. are shown. In each of the comparative materials, the sprayed film did not adhere to each other and cracks or peeling occurred in the film, but in the present invention, the adhered Ln oxide-containing coating on the substrate was maintained. Next, regarding the situation after the heating test, in all the comparative materials whose film formation was incomplete, the film peeled off and fell off, and bubbles of silicon oxide were formed on the surface of the silicon carbide substrate, resulting in surface roughness and weight. Although a decrease was confirmed, no change in appearance was observed in any of the materials of the present invention, and a change in weight was slight. In particular, it was observed that the heat treated material after thermal spraying had a smaller change in weight than the non-heat treated material.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【発明の効果】本発明により耐酸化性に優れたランタノ
イド系希土類元素酸化物被膜被覆炭化珪素材が提供さ
れ、かつ該炭化珪素材の前駆体としての被覆ランタノイ
ドシリサイドの粉塵化が少ないランタノイドシリサイド
被覆炭化珪素材を提供することができ、その工業的効果
は極めて顕著なものがある。
The present invention provides a silicon carbide material coated with a lanthanoid-based rare earth element oxide film having excellent oxidation resistance, and a lanthanoid silicide coating with less dusting of the coated lanthanoid silicide as a precursor of the silicon carbide material. A silicon carbide material can be provided, and its industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のランタノイド系希土類元素酸化物被膜
被覆炭化珪素材の模式図。
FIG. 1 is a schematic view of a lanthanoid-based rare earth element oxide film-coated silicon carbide material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 納富 啓 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kei Notomi 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Ltd. Nagasaki Research Institute

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリサイドに表面が覆われた炭化珪素素
材であって、シリサイドがランタノイド系希土類元素
(但し、イットリウムを含む)の酸化物と炭化珪素との
反応生成物またはランタノイド系希土類元素(但し、イ
ットリウムを含む)と珪素との複合酸化物と炭化珪素と
の反応生成物であることを特徴とするランタノイドシリ
サイド被覆炭化珪素材。
1. A silicon carbide material whose surface is covered with a silicide, wherein the silicide is a reaction product of an oxide of a lanthanoid-based rare earth element (including yttrium) and silicon carbide or a lanthanoid-based rare earth element (however. , Yttrium) and a complex oxide of silicon and a reaction product of silicon carbide and a lanthanoid silicide-coated silicon carbide material.
【請求項2】 シリサイドの組成がランタノイド系希土
類元素(但し、イットリウムを含む)と珪素が主成分で
残りを炭素が最大で30原子%、酸素が最大で5原子%
まで占めるものであることを特徴とする請求項1に記載
のランタノイドシリサイド被覆炭化珪素材。
2. The composition of the silicide is a lanthanoid-based rare earth element (including yttrium) and silicon as main components, with the balance being carbon at a maximum of 30 at%, and oxygen at a maximum of 5 at%.
The lanthanoid silicide-coated silicon carbide material according to claim 1, characterized in that
【請求項3】 炭化珪素素材が表面を炭化珪素で覆われ
た炭素材であることを特徴とする請求項1または2に記
載のランタノイドシリサイド被覆炭化珪素材。
3. The lanthanoid silicide-coated silicon carbide material according to claim 1, wherein the silicon carbide material is a carbon material whose surface is covered with silicon carbide.
【請求項4】 炭素材がカーボン/カーボンコンポジッ
トであることを特徴とする請求項3に記載のランタノイ
ドシリサイド被覆炭化珪素材。
4. The lanthanoid silicide-coated silicon carbide material according to claim 3, wherein the carbon material is a carbon / carbon composite.
【請求項5】 請求項1ないし4のいずれかに記載のラ
ンタノイドシリサイド被覆炭化珪素材の表面に、ランタ
ノイド系希土類元素(但しイットリウムを含む)の酸化
物またはランタノイド系希土類元素(但し、イットリウ
ムを含む)と珪素との複合酸化物を被覆してなることを
特徴とするランタノイド系希土類元素酸化物含有被膜被
覆炭化珪素材。
5. A lanthanoid rare earth element (including yttrium) oxide or a lanthanoid rare earth element (including yttrium) is formed on the surface of the lanthanoid silicide-coated silicon carbide material according to claim 1. ) And silicon, a lanthanoid-based rare earth element oxide-containing coating-coated silicon carbide material.
【請求項6】 請求項1ないし4のいずれかに記載のラ
ンタノイドシリサイド被覆炭化珪素材の表面に、ランタ
ノイド系希土類元素(但しイットリウムを含む)の酸化
物またはランタノイド系希土類元素(但し、イットリウ
ムを含む)と珪素との複合酸化物をプラズマ溶射法によ
り被覆することを特徴とするランタノイド系希土類元素
酸化物含有被膜被覆炭化珪素材の製造方法。
6. A lanthanoid-based rare earth element (including yttrium) oxide or a lanthanoid-based rare earth element (including yttrium) is formed on the surface of the lanthanoid silicide-coated silicon carbide material according to any one of claims 1 to 4. And a silicon compound oxide are coated by a plasma spraying method. A method for producing a film-coated silicon carbide material containing a lanthanoid-based rare earth element oxide.
【請求項7】 請求項1ないし4のいずれかに記載のラ
ンタノイドシリサイド被覆炭化珪素材の表面に、ランタ
ノイド系希土類元素(但しイットリウムを含む)の酸化
物またはランタノイド系希土類元素(但し、イットリウ
ムを含む)と珪素との複合酸化物をプラズマ溶射法によ
り被覆した後、大気中または不活性ガス雰囲気中で熱処
理し、前記ランタノイド系希土類元素の酸化物またはラ
ンタノイド系希土類元素と珪素との複合酸化物被膜の緻
密性及び密着性を高めることを特徴とするランタノイド
系希土類元素酸化物含有被膜被覆炭化珪素材の製造方
法。
7. A lanthanoid-based rare earth element (including yttrium) oxide or a lanthanoid-based rare earth element (including yttrium) is formed on the surface of the lanthanoid silicide-coated silicon carbide material according to any one of claims 1 to 4. ) And silicon compound oxide by a plasma spraying method, and then heat-treated in the atmosphere or in an inert gas atmosphere to form a lanthanoid rare earth element oxide or a lanthanoid rare earth element and silicon compound oxide film. A method for producing a film-coated silicon carbide material containing a lanthanoid-based rare earth element oxide, which is characterized by increasing the denseness and the adhesiveness.
JP07017923A 1994-02-16 1995-02-06 Oxide-coated silicon carbide material and its manufacturing method Expired - Lifetime JP3129383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07017923A JP3129383B2 (en) 1994-02-16 1995-02-06 Oxide-coated silicon carbide material and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-19063 1994-02-16
JP1906394 1994-02-16
JP07017923A JP3129383B2 (en) 1994-02-16 1995-02-06 Oxide-coated silicon carbide material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07277861A true JPH07277861A (en) 1995-10-24
JP3129383B2 JP3129383B2 (en) 2001-01-29

Family

ID=26354512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07017923A Expired - Lifetime JP3129383B2 (en) 1994-02-16 1995-02-06 Oxide-coated silicon carbide material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3129383B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579636B2 (en) 2000-09-12 2003-06-17 Mitsubishi Heavy Industries, Ltd. Coating having high resistance to heat and oxidation and multi-coated material having high resistance to heat and oxidation
JP2006143553A (en) * 2004-11-24 2006-06-08 Kawasaki Heavy Ind Ltd ENVIRONMENTAL BARRIER COATING OF SiC-BASED FIBER-REINFORCED CERAMIC MATRIX COMPOSITE AND ITS PRODUCTION METHOD
JP2006151720A (en) * 2004-11-26 2006-06-15 Mitsubishi Heavy Ind Ltd Heat resistant material and method of manufacturing the same
JP2007015913A (en) * 2005-06-13 2007-01-25 General Electric Co <Ge> Bond coat for silicon-containing substrate for ebc and manufacturing process thereof
WO2016052114A1 (en) * 2014-09-30 2016-04-07 学校法人日本大学 Steam corrosion-resistant multilayered film and method for manufacturing same
JPWO2014007406A1 (en) * 2012-07-06 2016-06-02 トーカロ株式会社 Carbon material with thermal spray coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579636B2 (en) 2000-09-12 2003-06-17 Mitsubishi Heavy Industries, Ltd. Coating having high resistance to heat and oxidation and multi-coated material having high resistance to heat and oxidation
JP2006143553A (en) * 2004-11-24 2006-06-08 Kawasaki Heavy Ind Ltd ENVIRONMENTAL BARRIER COATING OF SiC-BASED FIBER-REINFORCED CERAMIC MATRIX COMPOSITE AND ITS PRODUCTION METHOD
JP2006151720A (en) * 2004-11-26 2006-06-15 Mitsubishi Heavy Ind Ltd Heat resistant material and method of manufacturing the same
JP4690709B2 (en) * 2004-11-26 2011-06-01 三菱重工業株式会社 Heat resistant material and manufacturing method thereof
JP2007015913A (en) * 2005-06-13 2007-01-25 General Electric Co <Ge> Bond coat for silicon-containing substrate for ebc and manufacturing process thereof
JPWO2014007406A1 (en) * 2012-07-06 2016-06-02 トーカロ株式会社 Carbon material with thermal spray coating
WO2016052114A1 (en) * 2014-09-30 2016-04-07 学校法人日本大学 Steam corrosion-resistant multilayered film and method for manufacturing same
JP2016069229A (en) * 2014-09-30 2016-05-09 学校法人日本大学 Steam-corrosion resistant multi-layered coating and production process therefor

Also Published As

Publication number Publication date
JP3129383B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
KR101313470B1 (en) Heat Resistant Coated Member, Making Method, and Treatment Using the Same
US6753085B2 (en) Heat-resistant coated member
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US5560993A (en) Oxide-coated silicon carbide material and method of manufacturing same
US8685357B2 (en) Firing support for ceramics and method for obtaining same
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
JPH07277861A (en) Oxide coated silicon carbide material and its production
JP4171916B2 (en) Heat-resistant covering material
JP3403459B2 (en) Carbon member with ceramic spray coating
EP1435501B1 (en) Heat-resistant coated member
JP4189676B2 (en) Heat-resistant covering material
JP2004190056A (en) Heat-resistant coated member
JP4991093B2 (en) Firing member and method for producing sintered body using the same
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP2767972B2 (en) Method for producing TiAl-based intermetallic compound layer
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP4716042B2 (en) Heat-resistant covering material
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
JP2009001485A (en) Heat-resistant coated member
JPS62170183A (en) Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same
JPH06263567A (en) Heat-resistant sintered silicon nitride-based material and its production
JPH0474292B2 (en)
JPH0536501B2 (en)
JPH10245288A (en) Silicon carbide material with high emissivity antioxidant coat and its production
JPH0940463A (en) Sialon-boron nitride composite sintered compact and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

EXPY Cancellation because of completion of term