JPH10245288A - Silicon carbide material with high emissivity antioxidant coat and its production - Google Patents

Silicon carbide material with high emissivity antioxidant coat and its production

Info

Publication number
JPH10245288A
JPH10245288A JP5308097A JP5308097A JPH10245288A JP H10245288 A JPH10245288 A JP H10245288A JP 5308097 A JP5308097 A JP 5308097A JP 5308097 A JP5308097 A JP 5308097A JP H10245288 A JPH10245288 A JP H10245288A
Authority
JP
Japan
Prior art keywords
oxide
lanthanoid
rare earth
silicon carbide
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5308097A
Other languages
Japanese (ja)
Inventor
Takahiro Sekikawa
貴洋 関川
Keiki Tsuzuki
圭紀 都築
Tsutomu Fujiwara
力 藤原
Masayuki Kondo
雅之 近藤
Ken Ogura
謙 小椋
Tatsuo Morimoto
立男 森本
Hiroshi Notomi
啓 納富
Yasuyuki Takeda
恭之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5308097A priority Critical patent/JPH10245288A/en
Publication of JPH10245288A publication Critical patent/JPH10245288A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a surface emissivity without markedly deteriorating the antioxidative properties of a silicon carbide material by applying an composite oxide containing a lanthanoid-based rare earth element and chromium to the surface of a silicon carbide material coated with an oxide of the lanthanoid- based rate earth element or a complex oxide of the lanthanoid-based rate earth element and silicon. SOLUTION: This silicon carbide material coated with a coat containing high emissivity lanthanoid-based rate earth element oxide is obtained by applying complex oxide 3 containing the lanthanoid-based rare earth element (with the proviso that Y is included) and chromium to the surface of a silicon carbide material 11 coated with the oxide of the lanthanoid-based rate earth element (with the proviso that Y is included) or a complex oxide 2 of the lanthanoid- based rate earth element (with the proviso that Y is included) and silicon. The composition of the complex oxide of the rate earth element and the chromium is 40-50mol% oxide of the lanthanoid-based rare earth element and 35-60mol% chromium oxide, <=15mol% magnesium oxide and <=10mol% calcium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温において表面輻
射による高い熱放射機能を必要とする宇宙往還機や次世
代超音速旅客機の機体構造材として有利なランタノイド
系希土類元素酸化物含有被膜被覆炭化珪素材並びにラン
タノイド系希土類元素酸化物含有被膜被覆炭化珪素材の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide-coated lanthanoid-based rare earth element oxide-containing silicon carbide material which is advantageous as a structural material for space planes and next-generation supersonic passenger aircraft requiring a high heat radiation function by surface radiation at high temperatures. The present invention relates to a method for producing a silicon carbide material coated with a material and a lanthanoid-based rare earth element oxide-containing coating.

【0002】[0002]

【従来の技術】炭化珪素材の耐酸化性向上を狙いとし
て、表面にランタノイド系希土類元素酸化物またはラン
タノイド系希土類元素と珪素との複合酸化物を被覆した
炭化珪素材が提案されている(特願平6−1906
3)。同提案では、被覆を成立させる上で重要な被覆と
基材との密着性を向上させるため、ランタノイド系希土
類元素の酸化物またはランタノイド系希土類元素と珪素
との複合酸化物による被覆と炭化珪素材との間に、ラン
タノイド系希土類元素の酸化物と炭化珪素との反応生成
物またはランタノイド系希土類元素と珪素との複合酸化
物と炭化珪素との反応生物生成物であるランタノイドシ
リサイドを形成する手法が提案されている。しかしなが
ら、宇宙往還機や次世代超音速旅客機の機体構造材は無
冷却条件で使用するには高温環境下で高い熱放射能、す
なわち高い輻射率も必要としている。ランタノイド系希
土類元素酸化物被膜被覆炭化珪素材の表面輻射率は、た
とえばイットリウムシリケート(Y2 SiO5 )を被覆
した炭化珪素で1700℃附近で約0.5程度であっ
て、炭化珪素材の1700℃附近での輻射率とされる
0.7〜0.9とくらべて小さく、無冷却条件で使用す
るには非常に困難となる。
2. Description of the Related Art A silicon carbide material whose surface is coated with a lanthanoid-based rare earth element oxide or a composite oxide of a lanthanoid-based rare earth element and silicon has been proposed with the aim of improving the oxidation resistance of the silicon carbide material. 6-1906
3). According to the proposal, in order to improve the adhesion between the coating and the substrate, which is important for forming the coating, the coating with a lanthanoid-based rare earth element oxide or a composite oxide of a lanthanoid-based rare earth element and silicon and a silicon carbide material A lanthanoid silicide, which is a reaction product of a lanthanoid-based rare earth element oxide and silicon carbide, or a reaction product of a silicon oxide and a lanthanoid-based rare earth element-silicon composite oxide. Proposed. However, the structural materials of space planes and next-generation supersonic passenger aircraft also require high thermal activity, that is, high emissivity in a high-temperature environment, in order to be used without cooling. The surface emissivity of a silicon carbide material coated with a lanthanoid-based rare earth element oxide film is, for example, about 0.5 at about 1700 ° C. with silicon carbide coated with yttrium silicate (Y 2 SiO 5 ). It is smaller than the emissivity of 0.7 to 0.9 which is considered to be close to ° C., and it is very difficult to use it under non-cooling conditions.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、ランタノイド系希土類元素酸化物被膜被覆炭化
珪素材の有する耐酸化性を著しく劣化させることなく、
高輻射率を有するランタノイド系希土類元素酸化物被膜
被覆炭化珪素材及びその製造方法を提供しようとするも
のである。
SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention does not significantly degrade the oxidation resistance of a silicon carbide material coated with a lanthanoid-based rare earth oxide coating.
An object of the present invention is to provide a silicon carbide material coated with a lanthanoid-based rare earth element oxide film having a high emissivity and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は下記構成 (1)〜
(5) を有する。
The present invention provides the following constitutions (1) to
(5).

【0005】(1) ランタノイド系希土類元素(但し、イ
ットリウムを含む)の酸化物またはランタノイド系希土
類元素(但し、イットリウムを含む)と珪素の複合酸化
物で被覆された炭化珪素材の表面に、さらにランタノイ
ド系希土類元素(但し、イットリウムを含む)とクロム
を含む複合酸化物を被覆して表面輻射率を向上させてな
ることを特徴とする高輻射率ランタノイド系希土類元素
酸化物含有被膜被覆炭化珪素材、
(1) The surface of a silicon carbide material coated with an oxide of a lanthanoid-based rare earth element (including yttrium) or a composite oxide of a lanthanoid-based rare earth element (including yttrium) and silicon, A high-emissivity lanthanoid-based rare-earth-oxide-containing coating-coated silicon carbide material characterized by being coated with a complex oxide containing a lanthanoid-based rare-earth element (including yttrium) and chromium to improve the surface emissivity ,

【0006】(2) ランタノイド系希土類元素(但し、イ
ットリウムを含む)とクロムを含む複合酸化物の組成
が、ランタノイド系希土類元素(但し、イットリウムを
含む)の酸化物が40〜50モル%、酸化クロムが35
〜60モル%、酸化マグネシウムが15モル%以下、酸
化カルシウムが10モル%以下であることを特徴とする
前記(1) の高輻射率ランタノイド系希土類元素酸化物含
有被膜被覆炭化珪素材、
(2) The composition of a composite oxide containing a lanthanoid rare earth element (including yttrium) and chromium is 40 to 50 mol% of a lanthanoid rare earth element (including yttrium) oxide. Chrome is 35
(1) a high-emissivity lanthanoid-based rare earth element oxide-containing coated silicon carbide material according to the above (1), wherein the content is up to 60 mol%, magnesium oxide is 15 mol% or less, and calcium oxide is 10 mol% or less;

【0007】(3) 炭化珪素材が表面を炭化珪素で覆われ
た炭素材であることを特徴とする前記(1) または(2) の
高輻射率ランタノイド系希土類元素酸化物含有被膜被覆
炭化珪素材、
(3) The high-emissivity lanthanoid-based oxide-containing silicon carbide-coated silicon carbide according to (1) or (2), wherein the silicon carbide material is a carbon material whose surface is covered with silicon carbide. Material,

【0008】(4) 炭素材がカーボン/カーボンコンポジ
ットであることを特徴とする前記(3) の高輻射率ランタ
ノイド系希土類元素酸化物含有被膜被覆炭化珪素材、
(4) The high-emissivity lanthanoid-based rare earth oxide-containing silicon carbide coated silicon carbide material of (3), wherein the carbon material is a carbon / carbon composite;

【0009】(5) 前記(1) ないし(4) のいずれかに記載
のランタノイド系希土類元素酸化物含有被膜被覆炭化珪
素材で、最表面にランタノイド系希土類元素(但し、イ
ットリウムを含む)とクロムを含む複合酸化物をプラズ
マ溶射法により被覆することを特徴とする高輻射率ラン
タノイド系希土類元素酸化物含有被膜被覆炭化珪素材の
製造方法、
(5) The silicon carbide material coated with a lanthanoid-based rare earth element oxide-containing film according to any one of (1) to (4) above, wherein a lanthanoid-based rare earth element (including yttrium) and chromium are formed on the outermost surface. A method for producing a high-emissivity lanthanoid-based rare earth oxide-containing coating-coated silicon carbide material, characterized by coating a composite oxide containing by plasma spraying,

【0010】(作用)本発明でいう炭化珪素材としては
殆どが炭化珪素で構成されている素材、表面の一部が炭
化珪素で覆われた素材及び表面の全部が炭化珪素で覆わ
れた素材があげられる。ほとんどが炭化珪素で構成され
る素材としては炭化珪素粉を炭素またはボロンまたはア
ルミナ助剤として焼結した素材があり、市販されている
ものは殆どがこの炭化珪素である。表面の一部が炭化珪
素で覆われた素材としては、カーボン/カーボンコンポ
ジットなどの板状の炭素材の表面の片面に化学蒸着法に
より炭化珪素を被覆した素材、板状の窒化珪素焼結体の
表面の片面に化学蒸着により炭化珪素を被覆した素材な
どがあげられる。また、表面の全部が炭化珪素で覆われ
た素材としては、カーボン/カーボンコンポジットなど
の炭素材の全面に化学蒸着により炭化珪素を被覆した素
材などが上げられる。
(Function) As the silicon carbide material referred to in the present invention, a material composed mostly of silicon carbide, a material whose surface is partially covered with silicon carbide, and a material whose surface is entirely covered with silicon carbide Is raised. As a material mostly composed of silicon carbide, there is a material obtained by sintering silicon carbide powder as carbon, boron or alumina auxiliary agent, and most of commercially available materials are this silicon carbide. Examples of the material whose surface is partially covered with silicon carbide include a material in which one surface of a plate-like carbon material such as carbon / carbon composite is coated with silicon carbide by a chemical vapor deposition method, and a plate-like silicon nitride sintered body. And a material obtained by coating one side of the surface with silicon carbide by chemical vapor deposition. Examples of the material whose entire surface is covered with silicon carbide include a material in which a carbon material such as a carbon / carbon composite is entirely coated with silicon carbide by chemical vapor deposition.

【0011】また、本発明でランタノイド系希土類元素
(但し、イットリウムを含む)とクロムを含む複合酸化
物を被覆する基材にあたるランタノイド系希土類元素
(但し、イットリウムを含む)の酸化物またはランタノ
イド系希土類元素(但し、イットリウムを含む)と珪素
の複合酸化物で被覆された炭化珪素材(以下、ランタノ
イド系酸化物含有被覆基材)とは、炭化珪素材の表面の
うち炭化珪素で覆われた部分の全面または一部の面の上
に、ランタノイド系希土類元素(但し、イットリウムを
含む)の酸化物またはランタノイド系希土類元素(但
し、イットリウムを含む)と珪素の複合酸化物で被覆さ
れた素材があげられる。また、ランタノイド系希土類元
素酸化物含有被膜を密着性よく被覆するため、炭化珪素
材の表面にランタノイド系希土類元素(但し、イットリ
ウムを含む)と珪素との複合酸化物と炭化珪素との反応
生成物またはランタノイド系希土類元素(但し、イット
リウムを含む)の酸化物と炭化珪素との反応生成物であ
るランタノイドシリサイドの層を炭化珪素材とランタノ
イド酸化物含有被膜の間に形成する従来技術を使用して
もかまわない。
Further, in the present invention, a lanthanoid-based rare earth element (including yttrium) oxide or a lanthanoid-based rare earth, which is a base material for coating a composite oxide containing lanthanoid-based rare earth element (including yttrium) and chromium, is used. A silicon carbide material coated with a composite oxide of an element (including yttrium) and silicon (hereinafter, a lanthanoid-based oxide-containing coated base material) is a portion of the surface of the silicon carbide material covered with silicon carbide A material coated on the entire surface or a part of the surface with a lanthanoid-based rare earth element (including yttrium) oxide or a lanthanoid-based rare earth element (including yttrium) and silicon composite oxide Can be In addition, in order to coat the lanthanoid-based rare earth element oxide-containing coating with good adhesion, a reaction product of a composite oxide of lanthanoid-based rare earth element (including yttrium) and silicon and silicon carbide on the surface of the silicon carbide material. Alternatively, using a conventional technique of forming a layer of a lanthanoid silicide which is a reaction product of an oxide of a lanthanoid-based rare earth element (including yttrium) and silicon carbide between a silicon carbide material and a lanthanoid oxide-containing coating. It doesn't matter.

【0012】上記(1) ないし(5) のランタノイド系希土
類元素(但し、イットリウムを含む。以下これらの元素
をLnと略記する)とクロムを含む複合酸化物(以下、
希土類クロマイトと称す)を構成するLnとしては、ラ
ンタン(La)が輻射率が高い点で特に優れている。希
土類クロマイトはLnとクロムのみを含む複合酸化物の
ほか、マグネシウム、カルシウムなどの原子を少量含む
複合酸化物であってもよい。希土類クロマイトがLn酸
化物と酸化クロムから構成される場合、Ln酸化物は4
0〜50モル%、酸化クロムは50〜60モル%の組成
域で高い輻射率を有している。また、酸化マグネシウ
ム、酸化カルシウムは希土類クロマイトを焼結法で作製
する際に焼結助剤として添加されるもので、添加量が酸
化マグネシウム:15モル%以下、酸化カルシウム:1
0モル%以下であれば、希土類クロマイトの輻射率や高
温安定性を過度に低下させることはない。さらに、焼結
性や高温安定性の点で酸化クロムの一部を酸化マグネシ
ウムと置換させ、Ln酸化物の一部を酸化カルシウムと
置換し、希土類クロマイトの組成が、Ln酸化物:40
〜50モル%、酸化クロム:35〜60モル%、酸化マ
グネシウム:15モル%以下、酸化カルシウム:10モ
ル%以下になるようにしてもよい。
The lanthanoid-based rare earth elements (1) to (5) (including yttrium; these elements are abbreviated as Ln hereinafter) and a composite oxide containing chromium (hereinafter referred to as Ln).
As Ln constituting rare earth chromite), lanthanum (La) is particularly excellent in that it has a high emissivity. The rare earth chromite may be a composite oxide containing only Ln and chromium, or a composite oxide containing a small amount of atoms such as magnesium and calcium. When the rare earth chromite is composed of Ln oxide and chromium oxide, Ln oxide is 4%.
Chromium oxide has a high emissivity in the composition range of 0 to 50 mol% and 50 to 60 mol%. Magnesium oxide and calcium oxide are added as a sintering aid when rare earth chromite is produced by a sintering method.
If it is 0 mol% or less, the emissivity and high-temperature stability of the rare earth chromite will not be excessively reduced. Further, in terms of sinterability and high-temperature stability, part of chromium oxide is replaced by magnesium oxide, part of Ln oxide is replaced by calcium oxide, and the composition of rare earth chromite is 40%.
-50 mol%, chromium oxide: 35-60 mol%, magnesium oxide: 15 mol% or less, calcium oxide: 10 mol% or less.

【0013】希土類クロマイトは、下地となるLn酸化
物含有被膜(Ln酸化物、Lnと珪素を含む複合酸化
物)と高温で安定して存在することが可能である。また
希土類クロマイトは、クロム酸化物単体とくらべると、
高温でのクロムを含むガス種の蒸気圧が小さいため、ク
ロム酸化物成分の減量速度が小さく、高温で長時間にわ
たり高い輻射率を示す。このため、希土類クロマイトを
Ln酸化物含有被膜の表面を覆うことにより、表面輻射
率を向上させることが可能となる。ただし長時間の使用
により希土類クロマイトよりクロム酸化物成分か減量し
ていく過程で輻射率は徐々に低下する。
The rare earth chromite can be stably present at a high temperature with an Ln oxide-containing film (Ln oxide, composite oxide containing Ln and silicon) to be a base. Rare-earth chromite, compared to chromium oxide alone,
Due to the low vapor pressure of the gas species containing chromium at high temperatures, the rate of weight loss of the chromium oxide component is low, and high emissivity is exhibited for a long time at high temperatures. Therefore, the surface emissivity can be improved by covering the surface of the Ln oxide-containing film with rare earth chromite. However, the emissivity gradually decreases in the process of reducing the amount of the chromium oxide component from the rare earth chromite over a long period of use.

【0014】希土類クロマイトをLn酸化物含有被覆の
表面に被覆する手法は様々な手法があり、例えば、プラ
ズマ溶射法で被覆する手法、スラリーを塗布乾燥させる
手法、スパッタ法などがあげられる。ただし、宇宙往還
機の耐熱構造材の表面にLn酸化物含有被膜を被覆する
手法として、成膜速度や膜の気密性などの工業的観点か
ら、プラズマ溶射法が最適と考えられるため、一連の工
程として希土類クロマイトをプラズマ溶射法で被覆でき
ることは工業的に大きなメリットである。
There are various methods for coating the surface of the Ln oxide-containing coating with rare earth chromite, such as a method of coating by plasma spraying, a method of applying and drying a slurry, and a sputtering method. However, plasma spraying is considered to be the most suitable method for coating the surface of the heat-resistant structural material of the spacecraft with the Ln oxide-containing coating from the industrial viewpoints such as the deposition rate and the airtightness of the film. The fact that rare earth chromite can be coated by a plasma spraying method as a process is a great industrial advantage.

【0015】以上で説明した本発明であるところの希土
類クロマイトを被覆したLn酸化物含有被覆炭化珪素材
の断面を観察すると、図1のように観察され、つまり上
部にあたる最外層には希土類クロマイトの層3が存在
し、その下にはLn酸化物含有層2が存在し、その下に
は炭化珪素材1が存在する。
When the cross section of the Ln oxide-containing coated silicon carbide material coated with the rare earth chromite according to the present invention described above is observed, it is observed as shown in FIG. 1, that is, the outermost layer corresponding to the upper portion is made of rare earth chromite. The layer 3 exists, the Ln oxide-containing layer 2 exists thereunder, and the silicon carbide material 1 exists thereunder.

【0016】[0016]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。 (例1)化学蒸着法(以下、CVD法)により全面を炭
化珪素(以下、SiC)で覆った黒鉛材(30mm×2
5mm×3mm)の表面に大気圧プラズマ溶射法により
イットリウムシリケート(Y2 SiO5 )を被覆したも
のを基材として、片面に大気圧プラズマ溶射により、い
くつかの希土類クロマイトを溶射した試料を作製した。
炭化珪素層の厚さは約100μm、イットリウムシリケ
ート層の厚さは約100μm、希土類クロマイトの厚さ
は約10μmとした。希土類クロマイトの組成と各試料
の1700℃での表面輻射率は表Aのとおりであった。
希土類クロマイトを被覆した試料の輻射率は0.6以上
を示し、希土類クロマイトを被覆しない従来のY2 Si
5 被覆の輻射率の0.52とくらべて格段に上昇し
た。
EXAMPLES Hereinafter, specific examples of the present invention will be described to clarify the effects of the present invention. (Example 1) A graphite material (30 mm × 2) covered entirely with silicon carbide (hereinafter, SiC) by a chemical vapor deposition method (hereinafter, CVD method).
A sample in which several rare earth chromites were sprayed on one surface by atmospheric pressure plasma spraying was prepared using a substrate having a surface of 5 mm × 3 mm) coated with yttrium silicate (Y 2 SiO 5 ) by atmospheric pressure plasma spraying. .
The thickness of the silicon carbide layer was about 100 μm, the thickness of the yttrium silicate layer was about 100 μm, and the thickness of the rare earth chromite was about 10 μm. The composition of the rare earth chromite and the surface emissivity at 1700 ° C. of each sample were as shown in Table A.
The emissivity of the sample coated with rare earth chromite is 0.6 or more, and the conventional Y 2 Si not coated with rare earth chromite
The emissivity of the O 5 coating was significantly higher than 0.52.

【0017】[0017]

【表1】 [Table 1]

【0018】(例2)CVD法により全面をSiCで覆
った黒鉛材(30mm×25mm×3mm)の表面に大
気圧プラズマ溶射法によりイットリウムシリケート(Y
2 SiO5 )を被覆したものを基材として、片面に希土
類クロマイトのスラリーを塗布乾燥させて10mg/c
2 塗膜した試料を作製した。炭化珪素層の厚さは約1
00μm、イットリウムシリケート層の厚さは約100
μmとした。希土類クロマイトの組成と各試料の170
0℃での表面輻射率は表Bのとおりであった。希土類ク
ロマイトを被覆した試料の輻射率は0.6以上を示す、
希土類クロマイトを被覆しない従来のY2 SiO5 被覆
の輻射率の0.52とくらべて格段に上昇した。また、
輻射率測定後の試料の断面観察を行ったが、Y2 SiO
5 層に顕著な組織変化は見られなかった。
Example 2 Yttrium silicate (Y) was applied to the surface of a graphite material (30 mm × 25 mm × 3 mm) whose entire surface was covered with SiC by the CVD method by the atmospheric pressure plasma spraying method.
2 SiO 5 ) as a base material, apply a slurry of rare earth chromite on one surface and dry to obtain 10 mg / c
A sample coated with m 2 was prepared. The thickness of the silicon carbide layer is about 1
00 μm, the thickness of the yttrium silicate layer is about 100
μm. Rare earth chromite composition and 170 of each sample
The surface emissivity at 0 ° C. was as shown in Table B. The emissivity of the sample coated with rare earth chromite shows 0.6 or more,
The emissivity of the conventional Y 2 SiO 5 coating not coated with the rare earth chromite was significantly higher than the emissivity of 0.52. Also,
Were subjected to cross-section observation of the sample after emissivity measurements, Y 2 SiO
No remarkable structural change was observed in the five layers.

【0019】[0019]

【表2】 [Table 2]

【0020】(例3)CVDにより全面を炭化珪素(S
iC)で覆った30mm×25mm×3mmのカーボン
/カーボン複合材の表面に大気圧プラズマ溶射法により
イットリウムシリケート(Y2 SiO5 )を被覆したも
のを基材として、片面にY2 3 が50モル%でCr2
3 が50モル%の希土類クロマイトとLa2 3 が5
0モル%でCr2 3 が40モル%でMgOが10モル
%の希土類クロマイトを各々塗布乾燥させて10mg/
cm2 塗膜した2種類の試料作製した。1700℃での
輻射率は各々0.62、0.83であった。
(Example 3) The entire surface is formed of silicon carbide (S) by CVD.
A 30 mm × 25 mm × 3 mm carbon / carbon composite material covered with iC) coated with yttrium silicate (Y 2 SiO 5 ) by atmospheric pressure plasma spraying is used as a base material, and Y 2 O 3 is coated on one surface. Cr 2 in mole%
O 3 is 50 mol% rare earth chromite and La 2 O 3 is 5
Rare earth chromite of 0 mol%, 40 mol% of Cr 2 O 3 and 10 mol% of MgO was coated and dried to obtain 10 mg / mg.
Two kinds of samples coated with cm 2 were prepared. The emissivity at 1700 ° C. was 0.62 and 0.83, respectively.

【0021】(例4)CVD法により全面をSiCで覆
った黒鉛材(30mm×25mm×3mm)の表面に、
大気圧プラズマ溶射法によりイットリウムシリサイト
(YSi2 )を約10μm溶射したものに、Y2 SiO
5 ならびにY2 3 を溶射した。さらに、Y2 SiO5
層ならびにY2 3 層の表面に表AのNo.2とNo.
4の希土類クロマイトを溶射した試料を作製した。Si
C層の厚さは約100μm、Y2SiO5 層ならびにY
2 3 層の厚さはともに約100μmとした。下地にY
2SiO5 を被覆した試料について、表AのNo.2お
よびNo.4の希土類クロマイトを被覆した試料の輻射
率は各々、0.72と0.84で、希土類クロマイトを
被覆しなかった試料の輻射率0.52とくらべて格段に
向上した。下地にY 2 3 を被覆した試料について、表
AのNo.2およびNo.4の希土類クロマイトを被覆
した試料の輻射率は各々、0.70と0.80で、希土
類クロマイトを被覆しなかった試料の輻射率0.42と
くらべて格段に向上した。
(Example 4) The entire surface is covered with SiC by the CVD method.
Graphite material (30 mm x 25 mm x 3 mm)
Yttrium silicite by atmospheric plasma spraying
(YSiTwo) Is sprayed about 10 μm,TwoSiO
FiveAnd YTwoOThreeWas sprayed. Furthermore, YTwoSiOFive
Layer and YTwoOThreeNo. of Table A was applied to the surface of the layer. 2 and No.
Sample No. 4 was prepared by spraying rare earth chromite. Si
The thickness of the C layer is about 100 μm, YTwoSiOFiveLayer and Y
TwoOThreeThe thickness of each layer was about 100 μm. Y on base
TwoSiOFiveNo. in Table A for the samples coated with Two
And No. Of sample coated with rare earth chromite No.4
The rates are 0.72 and 0.84, respectively, and rare earth chromite
The emissivity of the uncoated sample is significantly higher than 0.52
Improved. Y on base TwoOThreeTable for samples coated with
A No. 2 and No. 4 rare earth chromite coating
The emissivity of the tested samples was 0.70 and 0.80, respectively.
The emissivity of the sample not coated with chromites was 0.42.
It was much better than it was.

【0022】表Cに例1と例2で作製した試験片につき
宇宙往還機が大気圏再突入の際にさらされる環境を模擬
して酸素の分圧が0.002atmの環境で1700℃
×10分間の酸化試験を実施した結果を示す。希土類ク
ロマイト被覆によるY2 SiO5 被覆炭素材の重量減少
率に有意な変化はなく、希土類クロマイト被覆によるY
2 SiO5 被覆の耐酸化特性の劣化は認められなかっ
た。
In Table C, the test pieces prepared in Examples 1 and 2 were simulated in an environment where the spacecraft is exposed when re-entering the atmosphere, and the environment where the partial pressure of oxygen is 0.002 atm and 1700 ° C.
The result of performing an oxidation test for 10 minutes is shown. There was no significant change in the weight loss rate of the Y 2 SiO 5 -coated carbon material by the rare earth chromite coating, and the Y by the rare earth chromite coating
No deterioration of the oxidation resistance of the 2 SiO 5 coating was observed.

【0023】[0023]

【表3】 [Table 3]

【0024】例3で作製した希土類クロマイトを被覆し
たY2 SiO5 被覆SiCコートカーボン/カーボン複
合材を酸素の分圧が0.002atmの環境で1700
℃×10分間の酸化試験を実施した。Y2 3 が50モ
ル%でCr2 3 が50モル%の希土類クロマイトを被
覆した試料の重量減少率は約0.11%、La2 3
50モル%でCr2 3 が40モル%でMgOが10モ
ル%の希土類クロマイトを被覆した試料の重量減少率は
約0.13%で、希土類クロマイトを被覆していない試
料の重量減少率約0.12%と有為な差はなく、希土類
クロマイト被覆によるY2 SiO5 被覆の耐酸化性の劣
化は認められなかった。
The Y 2 SiO 5 -coated SiC-coated carbon / carbon composite material coated with the rare earth chromite prepared in Example 3 was heated to 1700 in an environment where the partial pressure of oxygen was 0.002 atm.
An oxidation test at 10 ° C. × 10 minutes was performed. The weight loss of the sample coated with rare earth chromite of 50 mol% of Y 2 O 3 and 50 mol% of Cr 2 O 3 was about 0.11%, 50 mol% of La 2 O 3 and 40 mol of Cr 2 O 3. The weight loss rate of the sample coated with the rare earth chromite in which the molar percentage is 10% by mole of MgO is about 0.13%, and the weight loss rate of the sample not coated with the rare earth chromite is about 0.12%. No deterioration of the oxidation resistance of the Y 2 SiO 5 coating due to the rare earth chromite coating was observed.

【0025】[0025]

【発明の効果】本発明により、高い表面輻射率を有する
Ln酸化物被膜被覆炭化珪素材を提供することができ、
その工業的効果は極めて顕著である。
According to the present invention, a silicon carbide material coated with an Ln oxide film having a high surface emissivity can be provided.
The industrial effect is very remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の希土類クロマイトを被覆したLn酸化
物含有被膜被覆炭化珪素材の模式図。
FIG. 1 is a schematic view of an Ln oxide-containing coating-coated silicon carbide material coated with a rare earth chromite of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 力 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 (72)発明者 近藤 雅之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 小椋 謙 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 森本 立男 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 納富 啓 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 武田 恭之 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Riki Fujiwara 10 Nagoya Aerospace System Works, Minato-ku, Nagoya-shi, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. 8-1-chome, Mitsubishi Heavy Industries, Ltd. (72) Inventor Ken Ogura 1-8-1, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa, Japan 1-8-1, Yukiura, Kanazawa-ku, Mitsubishi-shi Basic Technology Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Kei Hiroshi Notomi 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries, Ltd. Yasuyuki 5-7-1, Fukabori-cho, Nagasaki-shi, Nagasaki Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ランタノイド系希土類元素(但し、イッ
トリウムを含む)の酸化物またはランタノイド系希土類
元素(但し、イットリウムを含む)と珪素の複合酸化物
で被覆された炭化珪素材の表面に、さらにランタノイド
系希土類元素(但し、イットリウムを含む)とクロムを
含む複合酸化物を被覆して表面輻射率を向上させてなる
ことを特徴とする高輻射率ランタノイド系希土類元素酸
化物含有被膜被覆炭化珪素材。
1. A surface of a silicon carbide material coated with an oxide of a lanthanoid-based rare earth element (including yttrium) or a composite oxide of a lanthanoid-based rare earth element (including yttrium) and silicon, and a lanthanoid A high-emissivity lanthanoid-based rare-earth oxide-containing silicon-coated silicon carbide material characterized by being coated with a complex oxide containing a rare earth element (including yttrium) and chromium to improve the surface emissivity.
【請求項2】 ランタノイド系希土類元素(但し、イッ
トリウムを含む)とクロムを含む複合酸化物の組成が、
ランタノイド系希土類元素(但し、イットリウムを含
む)の酸化物が40〜50モル%、酸化クロムが35〜
60モル%、酸化マグネシウムが15モル%以下、酸化
カルシウムが10モル%以下であることを特徴とする請
求項1に記載の高輻射率ランタノイド系希土類元素酸化
物含有被膜被覆炭化珪素材。
2. The composition of a composite oxide containing a lanthanoid-based rare earth element (including yttrium) and chromium,
40 to 50 mol% of oxide of lanthanoid rare earth element (including yttrium) and 35 to 50% of chromium oxide
The high-emissivity lanthanoid-based rare-earth-element-oxide-containing coated silicon carbide material according to claim 1, wherein the content is 60 mol%, the content of magnesium oxide is 15 mol% or less, and the content of calcium oxide is 10 mol% or less.
【請求項3】 炭化珪素材が表面を炭化珪素で覆われた
炭素材であることを特徴とする請求項1または請求項2
に記載の高輻射率ランタノイド系希土類元素酸化物含有
被膜被覆炭化珪素材。
3. The silicon carbide material is a carbon material whose surface is covered with silicon carbide.
2. The silicon carbide material coated with a high-emissivity lanthanoid-based rare earth element oxide-containing film according to item 1.
【請求項4】 炭素材がカーボン/カーボンコンポジッ
トであることを特徴とする請求項3に記載の高輻射率ラ
ンタノイド系希土類元素酸化物含有被膜被覆炭化珪素
材。
4. The silicon carbide material coated with a high-emissivity lanthanoid-based rare earth oxide-containing coating according to claim 3, wherein the carbon material is a carbon / carbon composite.
【請求項5】 請求項1ないし4のいずれかに記載のラ
ンタノイド系希土類元素酸化物含有被膜被覆炭化珪素材
で、最表面のランタノイド系希土類元素(但し、イット
リウムを含む)とクロムを含む複合酸化物をプラズマ溶
射法により被覆することを特徴とする高輻射率ランタノ
イド系希土類元素酸化物含有被膜被覆炭化珪素材の製造
方法。
5. A composite oxide containing the lanthanoid-based rare earth element (including yttrium) and chromium on the outermost surface of the silicon carbide material coated with a lanthanoid-based rare earth element oxide according to any one of claims 1 to 4. A method for producing a silicon carbide material coated with a high-emissivity lanthanoid-based rare earth element oxide-containing coating, characterized in that the material is coated by a plasma spraying method.
JP5308097A 1997-03-07 1997-03-07 Silicon carbide material with high emissivity antioxidant coat and its production Withdrawn JPH10245288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5308097A JPH10245288A (en) 1997-03-07 1997-03-07 Silicon carbide material with high emissivity antioxidant coat and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5308097A JPH10245288A (en) 1997-03-07 1997-03-07 Silicon carbide material with high emissivity antioxidant coat and its production

Publications (1)

Publication Number Publication Date
JPH10245288A true JPH10245288A (en) 1998-09-14

Family

ID=12932829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5308097A Withdrawn JPH10245288A (en) 1997-03-07 1997-03-07 Silicon carbide material with high emissivity antioxidant coat and its production

Country Status (1)

Country Link
JP (1) JPH10245288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572481A (en) * 2022-09-29 2023-01-06 炜宏新材料科技有限公司 Resin-based complex phase material, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572481A (en) * 2022-09-29 2023-01-06 炜宏新材料科技有限公司 Resin-based complex phase material, preparation method and application thereof
CN115572481B (en) * 2022-09-29 2023-07-18 炜宏新材料科技有限公司 Resin-based multiphase material, preparation method and application thereof

Similar Documents

Publication Publication Date Title
Han et al. Oxidation behavior of zirconium diboride–silicon carbide at 1800° C
Cairo et al. Functionally gradient ceramic coating for carbon–carbon antioxidation protection
CN102515850B (en) Carbon/carbon composite material ultrahigh temperature oxidation resistant coating and preparation method thereof
Jiang et al. Oxidation and ablation protection of multiphase Hf0. 5Ta0. 5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon
Ritt et al. Mo–Si–B based coating for oxidation protection of SiC–C composites
US5569427A (en) High temperature coating on ceramic substrate and non-firing process for obtaining same
Qian-Gang et al. Microstructure and anti-oxidation property of CrSi2–SiC coating for carbon/carbon composites
Ramasamy et al. Mullite–gadolinium silicate environmental barrier coatings for melt infiltrated SiC/SiC composites
Hu et al. SiC coatings for carbon/carbon composites fabricated by vacuum plasma spraying technology
EP1373684B1 (en) Environmental and thermal barrier coating for ceramic components
Kwon et al. The improvement in oxidation resistance of carbon by a graded SiC/SiO2 coating
JPH07157384A (en) Heat and oxidation resistant high strength member and production thereof
Jafari et al. Nano-SiC/SiC anti-oxidant coating on the surface of graphite
Feng et al. Influence of Cr content on the microstructure and anti-oxidation property of MoSi2–CrSi2–Si multi-composition coating for SiC coated carbon/carbon composites
Wang et al. Oxidation protective ZrB2–SiC coatings with ferrocene addition on SiC coated graphite
Li et al. Si–W–Mo coating for SiC coated carbon/carbon composites against oxidation
Jiang et al. Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating
US8685357B2 (en) Firing support for ceramics and method for obtaining same
Zhou et al. A novel oxidation protective SiC-ZrB2-ZrSi2 coating with mosaic structure for carbon/carbon composites
CN109689595B (en) Roller for a roller furnace having at least one coating on the surface
Yang et al. Oxidation resistance of hot-pressed SiC–BN composites
US6331362B1 (en) Refractory composite materials protected against oxidising at high temperature, precursors of the said materials, their preparation
JPH07315969A (en) Two-layer high temperature coating provided on ceramic base material and method for forming it
JP3583812B2 (en) Ceramic coating member and method of manufacturing the same
JPH10245288A (en) Silicon carbide material with high emissivity antioxidant coat and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511