JPH07315969A - Two-layer high temperature coating provided on ceramic base material and method for forming it - Google Patents

Two-layer high temperature coating provided on ceramic base material and method for forming it

Info

Publication number
JPH07315969A
JPH07315969A JP7057715A JP5771595A JPH07315969A JP H07315969 A JPH07315969 A JP H07315969A JP 7057715 A JP7057715 A JP 7057715A JP 5771595 A JP5771595 A JP 5771595A JP H07315969 A JPH07315969 A JP H07315969A
Authority
JP
Japan
Prior art keywords
layer
weight
coating
content
sib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7057715A
Other languages
Japanese (ja)
Inventor
Stanislav S Solntsev
スタニスラフ、セルゲーエウィッチ、ソルンツェフ
Vladimir M Tjurin
ウラジミール、ミハイロウィッチ、チュリン
Natalia V Izaeva
ナタリア、ウラジミロウナ、イザエワ
Alexei Y Bersenev
アレクセイ、ユリエウィッチ、ベルセネフ
Galina A Solovjeva
ガリーナ、アナトリエウナ、ソロビエワ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V I EE M ALL RASHIAN INST OF ABIEESHIYON MATERIALS
VIAM ALL
Airbus Group SAS
All Russian Scientific Research Institute of Aviation Materials
Original Assignee
V I EE M ALL RASHIAN INST OF ABIEESHIYON MATERIALS
VIAM ALL
Airbus Group SAS
All Russian Scientific Research Institute of Aviation Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V I EE M ALL RASHIAN INST OF ABIEESHIYON MATERIALS, VIAM ALL, Airbus Group SAS, All Russian Scientific Research Institute of Aviation Materials filed Critical V I EE M ALL RASHIAN INST OF ABIEESHIYON MATERIALS
Publication of JPH07315969A publication Critical patent/JPH07315969A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To obtain a two-layer high temp. coating excellent in practical high thermochemical stability and high thermal shock resistance and exhibiting a stable phase and low shrinkage by disposing a barrier layer having a specified contents of constituents and a top coat layer on a porous ceramic substrate.
CONSTITUTION: Quartz glass is pulverized and sieved and 95 pts.wt. quartz glass is blended with 5 pts.wt. SiB4, diluted with distilled water in a weight ratio of 1:1 and sprayed on the surface of a fibrous ceramic material subjected to dust removal pretreatment. After drying in an oven, the resultant barrier layer (primer layer) is calcined at 1,120°C for about 15 min. Glass consisting of 95 pts.wt. high silica glass and 5 pts.wt. SiB4 is then pulverized, mixed, dried and calcined at l,250°C to apply a cooled emissivity glaze layer (top coat) on the barrier layer. The barrier layer is thus densified and the objective high temp. coating having 70-140 μm thickness and a high density of 0.5 g/cm3 is obtd.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック基材、特に
多孔質セラミック基材を侵食および化学的、機械的破損
から保護する材料、より詳細にはコーティングに関す
る。
FIELD OF THE INVENTION This invention relates to materials that protect ceramic substrates, especially porous ceramic substrates, from erosion and chemical and mechanical failure, and more particularly to coatings.

【0002】[0002]

【従来の技術】高温で機能する耐火性酸化物系繊維状セ
ラミック材料は、広く使用されている。これらの材料が
使用される条件としては、保護用コーティングに対し
て、高耐熱性、耐侵食性、熱化学安定性及び相安定性が
求められる。
Refractory oxide fibrous ceramic materials that function at high temperatures are widely used. The conditions under which these materials are used are required to have high heat resistance, erosion resistance, thermochemical stability and phase stability for the protective coating.

【0003】現在、1260℃以下の温度で使用される
全範囲の耐侵食性コーティングが公知である。バリヤー
層とゆう薬層とを含んでなる2層コーティングが知られ
ている(米国特許第3,953,646号明細書参
照)。このバリヤー層は、固形分約80〜90重量%の
溶融シリカの付着により形成される。コーティングは、
噴霧により基材に適用される。バリヤー層は、約930
〜約1370℃の温度で焼成される。高シリカガラス
と、ホウケイ酸ガラスと、輻射能剤とからなるゆう薬層
を、バリヤー層に適用する。輻射能層は、炭化ケイ素、
酸化クロム、酸化コバルト、酸化ニッケル、ニッケル−
クロムスピネル、窒化ケイ素並びに鉄、クロム及び/又
はニッケルのか焼混合酸化物からなる群から選択され
る。高シリカガラス(Corning Glass N
o.7913)は、SiO94重量%以上を含有す
る。ホウケイ酸ガラスの重量組成(Corning G
lass No.7740)は、SiO70〜87
%、B10〜20%、NaO2〜5%及びAl
1〜5%である。
Currently, a full range of erosion resistant coatings used at temperatures below 1260 ° C. are known. Two-layer coatings are known which comprise a barrier layer and a glaze layer (see US Pat. No. 3,953,646). This barrier layer is formed by the deposition of fused silica having a solids content of about 80-90% by weight. The coating is
It is applied to the substrate by spraying. The barrier layer is about 930
~ Baked at a temperature of about 1370 ° C. A metallic layer composed of high silica glass, borosilicate glass and a radiation activator is applied to the barrier layer. The radiation layer is silicon carbide,
Chromium oxide, cobalt oxide, nickel oxide, nickel-
It is selected from the group consisting of chromium spinel, silicon nitride and calcined mixed oxides of iron, chromium and / or nickel. High silica glass (Corning Glass N)
o. 7913) contains 94% by weight or more of SiO 2 . Borosilicate glass weight composition (Corning G
lass No. 7740) is SiO 2 70-87.
%, B 2 O 3 10~20% , Na 2 O2~5% and Al
2 O 3 1 to 5%.

【0004】高シリカガラス成分とホウケイ酸ガラス成
分は、重量比約3:1〜約19:1で使用される。ガラ
ス成分(高シリカガラス及びホウケイ酸ガラス)と輻射
能剤は、重量比50:1〜約4:1で使用される。ゆう
薬塗料約10〜約90重量%を含有する水性スラリー
を、930〜約1370℃の温度範囲で焼成する。
The high silica glass component and the borosilicate glass component are used in a weight ratio of about 3: 1 to about 19: 1. The glass components (high silica glass and borosilicate glass) and the emissive agent are used in a weight ratio of 50: 1 to about 4: 1. An aqueous slurry containing from about 10 to about 90% by weight of the galenic paint is fired in the temperature range of 930 to about 1370 ° C.

【0005】シリカバリヤー層と;高シリカガラス成分
と、炭化ケイ素、酸化ニッケル、酸化クロム、酸化コバ
ルト、ニッケル−クロムスピネル、窒化ケイ素並びに
鉄、クロム及びコバルトのか焼混合酸化物からなる群か
ら選択される輻射能剤とを、高シリカガラス:輻射能剤
重量比約50:1〜約4:1で含んでなる輻射能層と;
高シリカガラスとホウケイ酸ガラスとから高シリカガラ
ス:ホウケイ酸ガラス重量比約3:1〜約19:1で構
成されるオーバーグレーズ層とを含んでなるシリカ断熱
用3成分コーティングが、当該技術分野において公知で
ある(米国特許第3,955,034号明細書参照)。
このコーティングは、930〜約1370℃の温度範囲
で焼成される。これらのコーティングは、耐熱衝撃性や
熱輻射安定性が十分でなく、そして収縮が生じる。
A silica layer and a high silica glass component selected from the group consisting of silicon carbide, nickel oxide, chromium oxide, cobalt oxide, nickel-chromium spinel, silicon nitride and calcined mixed oxides of iron, chromium and cobalt. An emissive agent comprising a high silica glass: the emissive agent in a weight ratio of about 50: 1 to about 4: 1;
A silica thermal insulation three component coating comprising a high silica glass and a borosilicate glass and an overglaze layer composed of a high silica glass: borosilicate glass weight ratio of about 3: 1 to about 19: 1 is known in the art. (See US Pat. No. 3,955,034).
The coating is fired in the temperature range of 930 to about 1370 ° C. These coatings have insufficient thermal shock resistance and thermal radiation stability, and shrinkage occurs.

【0006】これらの問題を克服するために、四ホウ化
ケイ素、六ホウ化ケイ素、他のケイ化ホウ素、ホウ素及
びこれらの混合物からなる群から選択される化合物と、
高シリカ多孔質ホウケイ酸ガラスと酸化ホウ素とからな
る反応性ガラスフリットとを反応させることにより作成
される1層コーティングが提案された(米国特許第4,
093,771号明細書参照)。ホウケイ酸ガラスから
なる薄層を高シリカガラスの微細粒子上に形成して、熱
膨脹係数を実質的に増加させることなくコーティングの
焼結性を向上させる。
To overcome these problems, a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron suicides, boron and mixtures thereof.
A one-layer coating made by reacting a high silica porous borosilicate glass with a reactive glass frit consisting of boron oxide has been proposed (US Pat.
093,771). A thin layer of borosilicate glass is formed on the fine particles of high silica glass to improve the sinterability of the coating without substantially increasing the coefficient of thermal expansion.

【0007】反応性グラスフリットは、酸化ホウ素約2
〜10重量部とVycon(登録商標)7930ガラス
等の高シリカ多孔質ホウケイ酸ガラス100重量部とを
配合して調製するのが有利である。Vycon(登録商
標)7930高シリカホウケイ酸ガラスは、多孔度が約
28%である。酸化ホウ素を、脱イオン化水200〜4
00重量部に溶解する。この混合物を、約95℃で攪拌
した後、75〜95℃の温度で24時間以下乾燥する。
得られたガラスフリットを分散し、篩分けし、1150
℃で1時間焼成する。得られた焼成複合体を粉砕して粉
末とし、篩分けする。
Reactive glass frits have a boron oxide content of about 2
Advantageously, -10 parts by weight and 100 parts by weight of highly silica porous borosilicate glass such as Vycon® 7930 glass are prepared. Vycon® 7930 high silica borosilicate glass has a porosity of about 28%. Boron oxide, deionized water 200-4
Dissolves in 00 parts by weight. The mixture is stirred at about 95 ° C and then dried at a temperature of 75-95 ° C for up to 24 hours.
The glass frit obtained is dispersed, sieved and 1150
Bake at ℃ for 1 hour. The resulting calcined composite is ground to a powder and screened.

【0008】典型的な組成は、酸化ホウ素5.5重量%
を含有する反応性ガラスフリット97.5重量%と、ケ
イ素63±3重量%、ホウ素36±3重量%及びマグネ
シウム0.2重量%未満からなる四ホウ化ケイ素化合物
2.5重量%との組み合わせである。コーティングスラ
リーは、反応性ガラスフリットと四ホウ化ケイ素とから
なる微細粒子を、エタノール等のキャリヤー及びメチル
セルロース等の予備バインダーと、固体成分35〜50
重量%の割合で配合することにより調製する。コーティ
ング成分の混合物を、アルミナボールを用いてアルミナ
ボールミルで3〜12時間微粉砕する。この塗工液を噴
霧により適用する。塗工試料を、20〜約70℃の温度
範囲で2〜5時間乾燥する。乾燥後、塗工試料をオーブ
ンで1215℃で1.5時間艶だしを行う。得られたコ
ーティングは、周囲温度〜1260℃を超える温度での
輻射率が約0.90〜0.93である。熱膨脹係数は、
1.1×10−6−1である。
A typical composition is 5.5% by weight of boron oxide.
97.5% by weight of a reactive glass frit containing 5% by weight of silicon tetraboride compound consisting of 63 ± 3% by weight of silicon, 36 ± 3% by weight of boron and less than 0.2% by weight of magnesium. Is. The coating slurry comprises fine particles of reactive glass frit and silicon tetraboride, a carrier such as ethanol and a preliminary binder such as methylcellulose, and solid components 35 to 50.
It is prepared by blending in a weight percentage. The mixture of coating components is milled with alumina balls in an alumina ball mill for 3-12 hours. This coating solution is applied by spraying. The coated sample is dried in the temperature range of 20 to about 70 ° C. for 2 to 5 hours. After drying, the coated sample is polished in an oven at 1215 ° C. for 1.5 hours. The resulting coating has an emissivity of about 0.90 to 0.93 at temperatures from ambient to above 1260 ° C. The coefficient of thermal expansion is
It is 1.1 * 10 <-6> K < -1 > .

【0009】使用温度が1300℃以下であるアルミノ
シリカ多孔質材料の保護用高性能低密度コーティングも
公知である。このコーティング組成物は、反応性ガラス
フリット77.5重量%と、四ホウ化ケイ素2.5重量
%と、二ケイ化モリブデン20重量%とを含んでいる。
このコーティングを、1230℃で1.5時間で処理し
て基材上に形成する(Advanced Porous
Coating for low density
Ceramic Insulation Materi
als、J.Amer. Ceram. Soc.、第
72巻、第6号、第1003〜1010頁、1989年
参照)。塗工組成物に活性表面を有する高シリカホウケ
イ酸ガラスを使用すると、熱化学安定性と相安定性が減
少する。コーティングにおける相転移は、コーティング
に亀裂を生じさせるα−クリストバライトの形成と関連
がある。
High performance, low density coatings for protection of aluminosilica porous materials with operating temperatures below 1300 ° C. are also known. The coating composition contained 77.5% by weight reactive glass frit, 2.5% by weight silicon tetraboride, and 20% by weight molybdenum disilicide.
This coating is processed at 1230 ° C. for 1.5 hours to form on a substrate (Advanced Porous).
Coating for low density
Ceramic Insulation Material
als, J .; Amer. Ceram. Soc. 72, No. 6, 1003-1010, 1989). The use of high silica borosilicate glass with an active surface in the coating composition reduces thermochemical and phase stability. The phase transition in the coating is associated with the formation of α-cristobalite, which causes the coating to crack.

【0010】[0010]

【発明が解決しようとする課題】本発明は、従来技術の
コーティングの欠点を有しない、セラミック基材上に設
けた高温コーティングを提供する。本発明によるコーテ
ィングは、実際高熱化学安定性、高耐熱衝撃性、極めて
安定な相及び低収縮を示す。
The present invention provides a high temperature coating on a ceramic substrate that does not have the disadvantages of prior art coatings. The coating according to the invention exhibits in fact a high thermochemical stability, a high thermal shock resistance, a very stable phase and a low shrinkage.

【0011】[0011]

【課題を解決するための手段】本発明は、セラミック基
材上、特に多孔質セラミック基材上に設けた高温コーテ
ィングであって、前記コーティングが、石英ガラスとS
iB含量が96重量%を超える四ホウ化ケイ素とを含
有するバリヤー(プライマー)層と、高シリカガラスと
SiB含量が96重量%を超える四ホウ化ケイ素とを
含んでなる輻射能ゆう薬(トップコート)層とを含んで
なり、これらの層が下記の重量組成を有していることを
特徴とする高温コーティングである。 バリヤー層: −四ホウ化ケイ素(SiB含量:96重量%を超え
る):0.1〜10%; −石英ガラス:90〜99.9%; 輻射能ゆう薬層: −四ホウ化ケイ素(SiB含量:96重量%を超え
る):1.5〜5.0% −高シリカガラス:95〜98.5%。
SUMMARY OF THE INVENTION The present invention is a high temperature coating provided on a ceramic substrate, particularly a porous ceramic substrate, said coating comprising quartz glass and S.
A barrier (primer) layer containing silicon tetraboride having an iB 4 content of more than 96% by weight, a high-silica glass, and a radioactivity enhancer containing silicon tetraboride having an SiB 4 content of more than 96% by weight. And a (topcoat) layer, the layers having the following weight composition: Barrier layer: - four silicon boride (SiB 4 content: greater than 96% by weight) 0.1 to 10%; - quartz glass: 90 to 99.9%; emissivity Yu drug layer: - four silicon boride ( SiB 4 content:> 96% by weight): 1.5-5.0% -high silica glass: 95-98.5%.

【0012】セラミック基材は、Al、Zr
、SiO、SiC及びSiからなる群から
選択される一種以上の化合物を一般的に含んでなるセラ
ミック材料から作成される。その密度は、一般的に10
0kg/m(0.1g/cm)を超える。
The ceramic substrate is Al 2 O 3 , Zr.
It is made of a ceramic material that generally comprises one or more compounds selected from the group consisting of O 2 , SiO 2 , SiC and Si 3 N 4 . Its density is generally 10
It exceeds 0 kg / m 3 (0.1 g / cm 3 ).

【0013】コーティングにおいて、大きさが5μm未
満である四ホウ化ケイ素粒子含量が前記四ホウ化ケイ素
の70〜80重量%が好ましく、石英ガラスSiO
量は99.96重量%が好ましい。また、高シリカガラ
スは重量でSiO94〜96%、B3.5〜6
%、Al0.1〜0.5%及びNaO0.1〜
0.5%を含んでいるのが有利である。
In the coating, the content of silicon tetraboride particles having a size of less than 5 μm is preferably 70 to 80% by weight of the silicon tetraboride, and the silica glass SiO 2 content is preferably 99.96% by weight. Further, the high silica glass has a weight ratio of SiO 2 94 to 96% and B 2 O 3 3.5 to 6
%, Al 2 O 3 0.1-0.5% and Na 2 O 0.1-
Advantageously, it contains 0.5%.

【0014】特定の組成、特にケイ素、アルミニウム及
びナトリウム酸化物、その高純度並びにその特定の分散
性に由来する高シリカガラスの熱化学特性により、コー
ティングの非晶質(ガラス)成分とセラミック多結晶
(四ホウ化ケイ素)成分との間の所望の化学的作用が確
保される。その結果、コーティングを有するセラミック
基材の焼成により、反応性輻射能ゆう薬層で硬化が生じ
る。この硬化により、セラミック基材の収縮を実質的に
減少させ、耐熱衝撃性を増加させ、コーティングの熱安
定性を増加して熱化学性を安定化できる。
Due to the thermochemical properties of high silica glass due to its specific composition, in particular silicon, aluminum and sodium oxide, its high purity and its specific dispersibility, the amorphous (glass) component of the coating and the ceramic polycrystals. The desired chemistry with the (silicon tetraboride) component is ensured. As a result, firing of the ceramic substrate with the coating causes curing of the reactive emissivity agent layer. This curing can substantially reduce shrinkage of the ceramic substrate, increase thermal shock resistance and increase the thermal stability of the coating to stabilize thermochemistry.

【0015】輻射能ゆう薬層に98.5重量%を超える
高シリカガラス及び1.5重量%未満の四ホウ化ケイ素
が存在すると、コーティングの軟化温度が増加し、その
結果相安定性及び輻射能が減少する。この層が高シリカ
ガラス95重量%未満と四ホウ化ケイ素を5重量%を超
えて含んでいると、耐熱性と熱化学安定性が不十分とな
る。
The presence of greater than 98.5% by weight of high silica glass and less than 1.5% by weight of silicon tetraboride in the emissivity layer increases the softening temperature of the coating, resulting in phase stability and radiation. Noh is reduced. If this layer contains less than 95% by weight of high silica glass and more than 5% by weight of silicon tetraboride, heat resistance and thermochemical stability will be insufficient.

【0016】大きさが5μm未満の四ホウ化ケイ素粒子
含量が80重量%を超えると、多孔質セラミック基材へ
の侵入が実質的に増加し、多孔質セラミック基材が収縮
する。一方、この種の粒子含量が70重量%未満である
と、ガラスマトリックスに四ホウ化ケイ素が不均一局在
分布する。その結果、コーティングにかかる応力が増加
し、耐熱衝撃性が減少する。
If the content of silicon tetraboride particles having a size of less than 5 μm exceeds 80% by weight, the penetration into the porous ceramic substrate is substantially increased and the porous ceramic substrate shrinks. On the other hand, when the content of particles of this kind is less than 70% by weight, silicon tetraboride is non-uniformly localized distributed in the glass matrix. As a result, the stress on the coating increases and the thermal shock resistance decreases.

【0017】四ホウ化ケイ素の温度と分散は制御され
る。バリヤー層の石英ガラス含量が99.9重量%を超
えると、バリヤー層と基材との界面の密度が低すぎてコ
ーティングと基材との接着性が減少し、輻射能ゆう薬層
の浸透性が増加して収縮が生じる。また、石英ガラス含
量が90重量%未満であると、バリヤー層の密度が実質
的に増加して輻射能ゆう薬層を形成するためのスラリー
組成物による含浸が不均一となるだけでなく、輻射能ゆ
う薬層に亀裂が生じる。
The temperature and dispersion of silicon tetraboride is controlled. When the silica glass content of the barrier layer exceeds 99.9% by weight, the density of the interface between the barrier layer and the base material is too low and the adhesiveness between the coating and the base material is reduced, resulting in the permeability of the radiation layer. And contraction occurs. Further, if the silica glass content is less than 90% by weight, the density of the barrier layer is substantially increased and the impregnation with the slurry composition for forming the emissivity agent layer is not uniform. A crack develops in the Nouyu drug layer.

【0018】コーティング組成物に活性表面を有する高
シリカホウケイ酸ガラスを使用すると、その熱化学安定
性と相安定性が減少する。コーティングにおける相転移
はα−クリストバライトの形成と関連があり、これによ
りコーティングに亀裂が生じる。
The use of high silica borosilicate glass with an active surface in the coating composition reduces its thermochemical and phase stability. The phase transition in the coating is associated with the formation of α-cristobalite, which causes the coating to crack.

【0019】コーティングが多孔質基材に浸透すると、
高接着性が付与される。厚さ70〜140μm、密度5
00kg/m(0.5g/cm)以下である高密度
化層が、一般的に基材上に形成される。このコーティン
グは、圧力0.8×10〜1.1×10Pa(0.
8〜1.1気圧)の圧縮空気を用いて適用するのが有利
である。分散相(コーティング粉末):分散媒体(好ま
しくは蒸留水)重量比は、1:1〜1:5である。分散
媒体高含量、特に高水含量では、コーティングの化学組
成が不均一となる。低水含量であると、コーティングと
基材との間の接着性が減少する。コーティングを、例え
ば基材を形成しているフェルトを脱じんして接着性をよ
くする予備処理を施したセラミック基材の表面に適用す
る。
When the coating penetrates the porous substrate,
High adhesiveness is given. Thickness 70-140 μm, density 5
A densified layer that is less than or equal to 00 kg / m 3 (0.5 g / cm 3 ) is generally formed on the substrate. This coating has a pressure of 0.8 × 10 5 to 1.1 × 10 5 Pa (0.
It is advantageous to apply with compressed air (8-1.1 atm). The disperse phase (coating powder): dispersion medium (preferably distilled water) weight ratio is 1: 1 to 1: 5. At high dispersion medium contents, especially at high water contents, the chemical composition of the coating becomes non-uniform. The low water content reduces the adhesion between the coating and the substrate. The coating is applied, for example, to the surface of a ceramic substrate that has been pretreated to degrease the felt forming the substrate to improve adhesion.

【0020】バリヤー(プライマー)層を温度1100
〜1150℃で10〜20分間で焼成し、輻射能ゆう薬
層(トップコート層)を温度1250〜1300℃で1
0〜20分間焼成すると、材料の収縮を減少できる。塗
工材料の収縮は、焼成温度が1300℃を超え焼成時間
が20分間を超えると生じるのに対して、輻射能は上記
の値未満の焼成温度及び焼成時間で減少する。
The barrier (primer) layer is heated to a temperature of 1100.
Calcination is performed at ˜1150 ° C. for 10 to 20 minutes, and the emissivity agent layer (top coat layer) is heated at a temperature of 1250 to 1300 ° C.
Firing for 0-20 minutes can reduce material shrinkage. The shrinkage of the coating material occurs when the firing temperature exceeds 1300 ° C. and the firing time exceeds 20 minutes, while the radiation capacity decreases at the firing temperature and the firing time below the above values.

【0021】本発明は、別の態様によれば、上記のコー
ティングを有するセラミック基材、特に多孔質セラミッ
ク基材を形成する方法であって、前記方法が、 −四ホウ化ケイ素(SiB含量が96重量%を超え
る)0.1〜10重量%と石英ガラス90〜99.9重
量%とからなる粉末を混和性分散媒体、好ましくは蒸留
水に、粉末:液体重量比1:1〜1:5で添加した第一
スラリーを調製する工程と、 −前記第一スラリーを、予備処理した被塗工セラミック
基材上に加圧噴霧により適用する工程と、 −このようにして得た層を乾燥し、それを1100〜1
150℃の温度で10〜20分間焼成してバリヤー層を
得る工程と、 −四ホウ化ケイ素(SiB含量が96重量%を超え
る)1.5〜5.0重量%と高シリカガラス95〜9
8.5重量%とからなる粉末を混和性分散媒体、好まし
くは蒸留水に、粉末:液体重量比1:1〜1:5で添加
した第二スラリーを調製する工程と、 −前記第二スラリーを、前記工程で形成したバリヤー層
に加圧噴霧により適用する工程と、および −このようにして得た層を乾燥し、それを1250〜1
300℃の温度で10〜20分間焼成して輻射能ゆう薬
層を得る工程、とを実質的に含んでなることを特徴とす
る方法が提供される。
The invention, according to another aspect, is a method of forming a ceramic substrate, in particular a porous ceramic substrate, having a coating as described above, said method comprising: -silicon tetraboride (SiB 4 content). Powder of 90% to more than 96% by weight) and 90 to 99.9% by weight of quartz glass in a miscible dispersion medium, preferably distilled water, in a powder to liquid weight ratio of 1: 1 to 1. : Preparing the first slurry added in step 5; -applying the first slurry by pressure spraying onto a pretreated ceramic substrate to be coated, -the layer thus obtained Dry it 1100-1
A step of baking at a temperature of 150 ° C. for 10 to 20 minutes to obtain a barrier layer, silicon tetraboride (SiB 4 content exceeds 96% by weight) 1.5 to 5.0% by weight, and high silica glass 95 to 9
Preparing a second slurry in which a powder consisting of 8.5% by weight is added to a miscible dispersion medium, preferably distilled water, in a powder: liquid weight ratio of 1: 1 to 1: 5; Is applied to the barrier layer formed in the preceding step by pressure spraying, and-the layer thus obtained is dried and it is 1250 to 1
And a step of calcination at a temperature of 300 ° C. for 10 to 20 minutes to obtain a radiation-stimulating agent layer, the method being provided.

【0022】[0022]

【実施例】以下の実施例は、本発明を例証し、より詳細
に説明することを意図したものである。実施例1: スラリー塗工−焼成法を用いてコーティング
を作成した。まず、バリヤー層(プライマー層)を作成
した。石英ガラスをアルミナボールミル微粉砕して、比
表面積が0.6〜1m/gである粉末とし、それを篩
分けした。石英ガラス95重量部と、大きさ5μm未満
の粒子が70重量%を占める四ホウ化ケイ素5重量部と
を、ポリエチレン容器中で25時間配合した。粉末を秤
量し、蒸留水で重量比1:1で希釈し、脱じん予備処理
した繊維状セラミック材料の表面に空気圧力10Pa
(1気圧)で噴霧して適用した。これにより、厚さ10
0μmの高密度化層が適用された。この試料を空気中で
30分間及びオーブン中80℃で30分間乾燥した。次
に、バリヤー層(プライマー層)を、1120℃で15
分間焼成した。
EXAMPLES The following examples are intended to illustrate the invention and to explain it in more detail. Example 1: A coating was prepared using the slurry coating-firing method. First, a barrier layer (primer layer) was created. The quartz glass was finely pulverized with an alumina ball mill to obtain a powder having a specific surface area of 0.6 to 1 m 2 / g, which was sieved. 95 parts by weight of quartz glass and 5 parts by weight of silicon tetraboride occupying 70% by weight of particles having a size of less than 5 μm were blended in a polyethylene container for 25 hours. The powder was weighed, diluted with distilled water at a weight ratio of 1: 1 and air pressure was applied to the surface of the dust-free pretreated fibrous ceramic material at 10 5 Pa.
It was applied by spraying (1 atm). This gives a thickness of 10
A 0 μm densification layer was applied. The sample was dried in air for 30 minutes and in an oven at 80 ° C. for 30 minutes. Next, a barrier layer (primer layer) is applied at 1120 ° C. for 15
Bake for minutes.

【0023】次に、冷輻射能ゆう薬層(トップコート)
をバリヤー層に適用した。輻射能ゆう薬層は、高シリカ
ガラス95重量部と、大きさが5μm未満である粒子が
70重量%である四ホウ化ケイ素5重量部とから作成し
た。このガラスをアルミナボールミルで微粉砕して比表
面積0.6〜1m/gの粉末を製造し篩分けした。こ
のガラスと四ホウ化ケイ素粉末を、ポリエチレン容器中
で48時間配合した。
Next, a cold radiation function medicine layer (top coat)
Was applied to the barrier layer. The emissivity agent layer was prepared from 95 parts by weight of high silica glass and 5 parts by weight of silicon tetraboride containing 70% by weight of particles having a size of less than 5 μm. This glass was finely pulverized with an alumina ball mill to produce powder having a specific surface area of 0.6 to 1 m 2 / g and sieved. This glass and silicon tetraboride powder were blended for 48 hours in a polyethylene container.

【0024】粉末を秤量し、蒸留水で重量比1:3で希
釈し、空気圧10Pa(1.0気圧)で噴霧してバリ
ヤー層(プライマー層)に適用した。試料を空気中、2
0℃で30分間乾燥し、オーブン中80℃で30分間乾
燥した。輻射能ゆう薬層を、1250℃で15分間焼成
した。
The powder was weighed, diluted with distilled water at a weight ratio of 1: 3, sprayed at an air pressure of 10 5 Pa (1.0 atm), and applied to the barrier layer (primer layer). Sample in air, 2
Dry at 0 ° C. for 30 minutes and at 80 ° C. for 30 minutes in oven. The emissivity agent layer was baked at 1250 ° C. for 15 minutes.

【0025】実施例2:実施例1に記載の方法に準じて
バリヤー層を作成した。このバリヤー層は、石英ガラス
98重量%と、大きさが5μm未満である粒子が75重
量%を占める四ホウ化ケイ素2重量%とを含んでいた。
粉末:水比は1:2であり、空気圧は0.8×10
(0.8気圧)であった。得られた高密度化層の厚さ
は、70μmであった。バリヤー層を、1150℃で1
0分間焼成した。輻射能ゆう薬層を、実施例1に記載の
方法に準じて作成した。
Example 2 A barrier layer was prepared according to the method described in Example 1. This barrier layer contained 98% by weight of quartz glass and 2% by weight of silicon tetraboride, with 75% by weight of particles having a size of less than 5 μm.
The powder: water ratio is 1: 2 and the air pressure is 0.8 × 10.
It was 5 (0.8 atm). The thickness of the obtained densified layer was 70 μm. Barrier layer 1 at 1150 ° C
Bake for 0 minutes. A radioactive layer was prepared according to the method described in Example 1.

【0026】実施例3:輻射能ゆう薬層は、高シリカガ
ラス98重量%と、大きさが5μm未満である粒子が8
0重量%を占める四ホウ化ケイ素2重量%とを含んでい
た。輻射能ゆう薬層(トップコート)を、実施例2に記
載の方法に準じて作成したバリヤー層(プライマー層)
に適用し、1280℃で10分間焼成した。得られたコ
ーティングを、熱化学的及び相安定性試験と、分離空気
流中での耐侵食性試験に付した。1250℃で30サイ
クル後、α−クリストバライト含量は、0.5重量%以
下であった。
Example 3: The emissivity agent layer contained 98% by weight of high silica glass and 8 particles having a size of less than 5 μm.
2% by weight of silicon tetraboride accounting for 0% by weight. Barrier layer (primer layer) prepared by the method described in Example 2 for the radiation layer (top coat).
And was baked at 1280 ° C. for 10 minutes. The resulting coating was subjected to thermochemical and phase stability tests and erosion resistance test in a separate air stream. After 30 cycles at 1250 ° C., the α-cristobalite content was below 0.5% by weight.

【0027】熱化学安定性は、電子顕微鏡により、多孔
質層(熱化学安定性試験中に形成された欠陥層)の厚さ
で評価したところ、30μmであった。積分輻射率は
0.86であり、熱膨脹係数は1.1×10−6−1
であった。コーティングに収縮は観察されなかった。
The thermochemical stability was 30 μm when evaluated by the thickness of the porous layer (the defect layer formed during the thermochemical stability test) by an electron microscope. The integrated emissivity is 0.86 and the coefficient of thermal expansion is 1.1 × 10 −6 K −1.
Met. No shrinkage was observed in the coating.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
セラミック基材上に設けた高熱安定性、高耐熱衝撃性、
極めて安定な相及び低収縮を示す高温コーティングが提
供される。
As described above, according to the present invention,
High thermal stability, high thermal shock resistance, provided on a ceramic substrate,
A high temperature coating is provided that exhibits a very stable phase and low shrinkage.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 595024766 ブイアイエーエム‐オール、ラシアン、イ ンスティチュート、オブ、アビエーショ ン、マテリアルズ VIAM−ALL RUSSIAN IN STITUT OF AVIATION MATERIALS ロシア連邦モスクワ、ラジオ、ストリー ト、17 (72)発明者 スタニスラフ、セルゲーエウィッチ、ソル ンツェフ ロシア連邦モスクワ、プロエズド、ナポル ヌイ、デー、6、カーベー、80 (72)発明者 ウラジミール、ミハイロウィッチ、チュリ ン ロシア連邦モスクワ、ブールバール、ズブ イエズドヌイ、デー、2、カーベー、41 (72)発明者 ナタリア、ウラジミロウナ、イザエワ ロシア連邦モスクワ、ウーリッツア、コン スタンチノワ、デー、9、カーベー、60 (72)発明者 アレクセイ、ユリエウィッチ、ベルセネフ ロシア連邦モスクワ、ボルチャヤ、オチャ コフスカヤ、ウーリッツア、デー、17、カ ーベー、35 (72)発明者 ガリーナ、アナトリエウナ、ソロビエワ ロシア連邦モスクワ、ウーリッツア、フヤ ツカヤ、デー、1、カーベー、73 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 595024766 BMI-ALL, RASIAN, INSTITUTION, OF, AVITION, MATERIALS VIAM-ALL RUSSIAN IN STITUT OF OF VIATION MATERIALS Moscow, Radio, Street , 17 (72) Inventor Stanislav, Sergeie Witch, Soruntsev Moscow, Russia, Plouezd, Napolny, D, 6, Kabe, 80 (72) Inventor Vladimir, Mikhailovich, Turin Russian Federation Moscow, Boulevard, Zub Yeezdonui, D, 2, Carve, 41 (72) Inventor Natalia, Vladimirona, Izaeva Russia Japan Moscow, Wuritza, Konstantinova, Day, 9, Kavey, 60 (72) Inventor Alexei, Yuriewich, Bersenev Russian Federation Moscow, Volchaya, Ochakovskaya, Wuritza, Day, 17, Kaber, 35 (72) Inventor Galena, Anatolie Una, Solobiewa Russian Federation Moscow, Woolitza, Huatskaya, Day 1, Carve, 73

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】セラミック基材上、特に多孔質セラミック
基材上に設けた高温コーティングであって、 このコーティングが、石英ガラスとSiB含量が96
重量%を超える四ホウ化ケイ素とを含有するバリヤー
(プライマー)層と、高シリカガラスとSiB含量が
96重量%を超える四ホウ化ケイ素とを含んでいる輻射
能ゆう薬(トップコート)層とから成り、これらの層
が、重量%で、下記の組成を有していることを特徴とす
る二層高温コーティング。 バリヤー(プライマー)層: 四ホウ化ケイ素(SiB含量:96重量%を超え
る):0.1〜10%; 石英ガラス:90〜99.9%; 輻射能ゆう薬(トップコート)層: 四ホウ化ケイ素(SiB含量:96重量%を超え
る):1.5〜5.0% 高シリカガラス:95〜98.5%。
1. A high temperature coating on a ceramic substrate, in particular a porous ceramic substrate, which coating has a silica glass and SiB 4 content of 96.
A barrier (primer) layer containing more than wt% silicon tetraboride, and a radioactive agent (top coat) layer containing high silica glass and silicon tetraboride having a SiB 4 content of more than 96 wt%. A two-layer high-temperature coating, characterized in that these layers, in% by weight, have the following composition: Barrier (primer) layer: Silicon tetraboride (SiB 4 content: more than 96% by weight): 0.1 to 10%; Quartz glass: 90 to 99.9%; Emissivity agent (top coat) layer: 4 Silicon boride (SiB 4 content: more than 96% by weight): 1.5 to 5.0% High silica glass: 95 to 98.5%.
【請求項2】バリヤー層が高密度化されており、厚さが
70〜140μmであることおよび、密度が高密度0.
5g/cmであることを特徴とする請求項1に記載の
コーティング。
2. The barrier layer is densified, the thickness is 70 to 140 μm, and the density is high.
The coating according to claim 1, which is 5 g / cm 3 .
【請求項3】請求項1に記載のコーティングを有するセ
ラミック基材、特に多孔質セラミック基材を形成する方
法であって、この方法が、 四ホウ化ケイ素(SiB含量が96重量%を超える)
0.1〜10重量%と石英ガラス90〜99.9重量%
とからなる粉末を混和性分散媒体、好ましくは蒸留水
に、粉末:液体重量比1:1〜1:5で添加した第一ス
ラリーを調製する工程と、 前記第一スラリーを、予備処理した被塗工セラミック基
材上に加圧噴霧により適用する工程と、 このようにして得た層を乾燥し、それを1100〜11
50℃の温度で10〜20分間焼成してバリヤー層を得
る工程と、 四ホウ化ケイ素(SiB含量が96重量%を超える)
1.5〜5.0重量%と高シリカガラス95〜98.5
重量%とからなる粉末を混和性分散媒体、好ましくは蒸
留水に、粉末:液体重量比1:1〜1:5で添加した第
二スラリーを調製する工程と、 前記第二スラリーを、前記工程で形成したバリヤー層に
加圧噴霧により適用する工程と、 このようにして得た層を乾燥し、それを1250〜13
00℃の温度で10〜20分間焼成して輻射能ゆう薬層
を得る工程、 とを実質的に含んでいることを特徴とする二層高温コー
ディングの形成方法。
3. A method for forming a ceramic substrate, in particular a porous ceramic substrate, having a coating according to claim 1, which method comprises: silicon tetraboride (SiB 4 content> 96% by weight). )
0.1-10 wt% and quartz glass 90-99.9 wt%
Preparing a first slurry in which a powder consisting of (1) is added to a miscible dispersion medium, preferably distilled water, at a powder: liquid weight ratio of 1: 1 to 1: 5; Applying by pressure spraying onto the coated ceramic substrate, and drying the layer thus obtained, which is 1100-11
A step of obtaining a barrier layer by baking at a temperature of 50 ° C. for 10 to 20 minutes, and silicon tetraboride (SiB 4 content exceeds 96% by weight)
1.5 to 5.0% by weight and high silica glass 95 to 98.5
And a step of preparing a second slurry in which a powder consisting of 10% by weight of a powder is added to a miscible dispersion medium, preferably distilled water, at a powder: liquid weight ratio of 1: 1 to 1: 5, Applying by pressure spraying to the barrier layer formed in 1. and drying the layer thus obtained, which is 1250-13
And a step of firing at a temperature of 00 ° C. for 10 to 20 minutes to obtain a radiation-stimulating agent layer, and a method of forming a two-layer high-temperature coating.
【請求項4】セラミック基材が、Al、Zr
、SiO、SiC及びSiからなる群から
選択される一種以上の化合物を含んでおり、密度が0.
1g/cmを超えることを特徴とする請求項3に記載
の方法。
4. The ceramic base material is Al 2 O 3 , Zr.
It contains one or more compounds selected from the group consisting of O 2 , SiO 2 , SiC and Si 3 N 4 , and has a density of 0.
Method according to claim 3, characterized in that it is above 1 g / cm 3 .
【請求項5】大きさが5μm未満である四ホウ化ケイ素
粒子の含量が、前記四ホウ化ケイ素の70〜80重量%
であることを特徴とする請求項3又は4に記載の方法。
5. The content of silicon tetraboride particles having a size of less than 5 μm is 70 to 80% by weight of the silicon tetraboride.
The method according to claim 3 or 4, wherein
【請求項6】石英ガラスのSiO含量が、99.96
重量%であることを特徴とする請求項3〜5のいずれか
1項に記載の方法。
6. The SiO 2 content of quartz glass is 99.96.
The method according to any one of claims 3 to 5, wherein the method is wt%.
【請求項7】高シリカガラスが、重量%で、下記の組成
を有することを特徴とする請求項3〜6のいずれか1項
に記載の方法。 SiO:94〜96% B:3.5
〜6% Al:0.1〜0.5% NaO:0.
1〜0.5%。
7. The method according to claim 3, wherein the high silica glass has the following composition in% by weight. SiO 2: 94~96% B 2 O 3: 3.5
~6% Al 2 O 3: 0.1~0.5 % Na 2 O: 0.
1-0.5%.
【請求項8】コーティング層を、空気圧0.8×10
〜1.1×10Paで適用することを特徴とする請求
項3〜7のいずれか1項に記載の方法。
8. A coating layer having an air pressure of 0.8 × 10 5
The method according to any one of claims 3 to 7, wherein the method is applied at ˜1.1 × 10 5 Pa.
JP7057715A 1994-03-16 1995-03-16 Two-layer high temperature coating provided on ceramic base material and method for forming it Pending JPH07315969A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9403049 1994-03-16
FR9403049A FR2717472B1 (en) 1994-03-16 1994-03-16 High temperature coating, in two layers, on ceramic substrate, its production and its applications.

Publications (1)

Publication Number Publication Date
JPH07315969A true JPH07315969A (en) 1995-12-05

Family

ID=9461090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7057715A Pending JPH07315969A (en) 1994-03-16 1995-03-16 Two-layer high temperature coating provided on ceramic base material and method for forming it

Country Status (7)

Country Link
US (2) US5534300A (en)
EP (1) EP0672631B1 (en)
JP (1) JPH07315969A (en)
CA (1) CA2144699C (en)
DE (1) DE69502859T2 (en)
ES (1) ES2120143T3 (en)
FR (1) FR2717472B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653004B1 (en) * 2004-02-23 2006-12-01 가부시키가이샤 고베 세이코쇼 Two-phase glass-like carbon member and method of manufacturing the same
JP2014154352A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Arc-extinguishing plate and air circuit breaker

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717472B1 (en) * 1994-03-16 1996-05-24 Aerospatiale High temperature coating, in two layers, on ceramic substrate, its production and its applications.
JP3269001B2 (en) * 1997-04-11 2002-03-25 株式会社ノリタケカンパニーリミテド Method for producing high radiation glass coating material and method for producing high radiation glass film
US6299988B1 (en) 1998-04-27 2001-10-09 General Electric Company Ceramic with preferential oxygen reactive layer
US6485848B1 (en) 1998-04-27 2002-11-26 General Electric Company Coated article and method of making
US6517960B1 (en) 1999-04-26 2003-02-11 General Electric Company Ceramic with zircon coating
US6534427B1 (en) 2001-12-12 2003-03-18 Christian R. Quemere Night glow glaze for ceramics
US6767659B1 (en) * 2003-02-27 2004-07-27 Siemens Westinghouse Power Corporation Backside radiative cooled ceramic matrix composite component
ES2247903B1 (en) * 2004-01-08 2007-02-01 Maprice, S.L. PROCEDURE FOR THE MANUFACTURE OF CERAMIC OR GLASS PARTS WITH PHOTOLUMINISCENT EFFECT AND OBTAINED PRODUCT.
JP5050363B2 (en) * 2005-08-12 2012-10-17 株式会社Sumco Heat treatment jig for semiconductor silicon substrate and manufacturing method thereof
WO2007020872A1 (en) * 2005-08-19 2007-02-22 Tokyo Electron Limited Placing table structure, method for manufacturing placing table structure and heat treatment apparatus
US8481152B2 (en) * 2008-08-14 2013-07-09 General Electric Company Refractory material with improved resistance to molten slag
CN111848122A (en) * 2020-08-05 2020-10-30 广东博德精工建材有限公司 Travertine full-polished glazed porcelain tile and preparation method thereof
CN114231981B (en) * 2021-12-21 2024-01-26 浙江开尔新材料股份有限公司 Enamel plate with surface textures and preparation method
CN115285997B (en) * 2022-07-29 2023-07-07 上海应用技术大学 Preparation method of wide-temperature-range oxidation-resistant silicon dioxide coated molybdenum disilicide powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953646A (en) * 1974-06-24 1976-04-27 Nasa Two-component ceramic coating for silica insulation
US4093771A (en) * 1976-10-29 1978-06-06 Nasa Reaction cured glass and glass coatings
US4381333A (en) * 1981-10-02 1983-04-26 Beggs James M Administrator Of High temperature glass thermal control structure and coating
US4831333A (en) * 1986-09-11 1989-05-16 Ltv Aerospace & Defense Co. Laser beam steering apparatus
SU1759816A1 (en) * 1990-05-15 1992-09-07 Институт Химии Силикатов Им.И.В.Гребенщикова Compound for producing erosion resistant coat
FR2717472B1 (en) * 1994-03-16 1996-05-24 Aerospatiale High temperature coating, in two layers, on ceramic substrate, its production and its applications.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653004B1 (en) * 2004-02-23 2006-12-01 가부시키가이샤 고베 세이코쇼 Two-phase glass-like carbon member and method of manufacturing the same
JP2014154352A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Arc-extinguishing plate and air circuit breaker

Also Published As

Publication number Publication date
FR2717472B1 (en) 1996-05-24
CA2144699C (en) 2000-10-24
ES2120143T3 (en) 1998-10-16
FR2717472A1 (en) 1995-09-22
DE69502859T2 (en) 1999-01-28
EP0672631A1 (en) 1995-09-20
US5534300A (en) 1996-07-09
US5736248A (en) 1998-04-07
CA2144699A1 (en) 1995-09-17
EP0672631B1 (en) 1998-06-10
DE69502859D1 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPH07315969A (en) Two-layer high temperature coating provided on ceramic base material and method for forming it
US5569427A (en) High temperature coating on ceramic substrate and non-firing process for obtaining same
JP3421369B2 (en) How to protect composite products from oxidation
JP3177915B2 (en) Articles and methods having a support with a surface barrier layer
US9126873B2 (en) Process for producing a self-healing layer on a part made of a C/C composite
CA2482001C (en) Protection against oxidation of parts made of composite material
US4381333A (en) High temperature glass thermal control structure and coating
CN106630978B (en) The alumina fibre rigidity thermal insulation tile multilayer materials of surface toughening, coating composition, preparation method and applications
US5536574A (en) Oxidation protection for carbon/carbon composites
WO1997011040A1 (en) Ceramic coating compositions and method of applying such compositions to ceramic or metallic substrates
Tao et al. MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation
US5420084A (en) Coatings for protecting materials against reactions with atmosphere at high temperatures
CAI Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites
US3955034A (en) Three-component ceramic coating for silica insulation
US8685357B2 (en) Firing support for ceramics and method for obtaining same
US5609961A (en) Single-layer high temperature coating on a ceramic substrate and its production
CN108975953A (en) A kind of C/SiC composite material surface laser melting coating combines by force the preparation method of glass film layers
JP3269001B2 (en) Method for producing high radiation glass coating material and method for producing high radiation glass film
US7767305B1 (en) High efficiency tantalum-based ceramic composite structures
Sun et al. The preparation, microstructure and mechanical properties of a dense MgO–Al 2 O 3–SiO 2 based glass-ceramic coating on porous BN/Si 2 N 2 O ceramics
KR100503929B1 (en) High-radiation glass base covering material, high-radiation glass film, and process for the production of high-radiation glass film
CN104276839A (en) Sealing method for ceramic vitrification
JP3137234B2 (en) Glass film coating method of lightweight refractory and high precision glass film coated lightweight refractory
CN113045287A (en) Preparation method of non-cracking environment-friendly medium plate ceramic tile
YANG et al. FABRICATION AND PROPERTIES OF SiO2/ZIRCONIUM PHOSPHATE–B2O3–SiO2 ANTI-OXIDATION COATINGS FOR Cf/SiC COMPOSITES

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404