JP3114593B2 - Steel plate manufacturing method - Google Patents

Steel plate manufacturing method

Info

Publication number
JP3114593B2
JP3114593B2 JP07301843A JP30184395A JP3114593B2 JP 3114593 B2 JP3114593 B2 JP 3114593B2 JP 07301843 A JP07301843 A JP 07301843A JP 30184395 A JP30184395 A JP 30184395A JP 3114593 B2 JP3114593 B2 JP 3114593B2
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
δta
width
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07301843A
Other languages
Japanese (ja)
Other versions
JPH09143574A (en
Inventor
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07301843A priority Critical patent/JP3114593B2/en
Publication of JPH09143574A publication Critical patent/JPH09143574A/en
Application granted granted Critical
Publication of JP3114593B2 publication Critical patent/JP3114593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延鋼板の圧
延後の直接焼入れ強制冷却のように、高温の鋼板を強制
冷却した後、熱間矯正を行ってから自然放冷するプロセ
スにおいて、矯正後直ちに自然放冷後の鋼板の平坦形状
を予測し、製品鋼板の平坦形状良否判定を行い、特に適
切な条件での再矯正によって平坦不良の発生を未然に防
止する強制冷却鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a process for forcibly cooling a high-temperature steel sheet, performing hot straightening and then allowing it to cool naturally, such as direct quenching forced cooling of a hot-rolled steel sheet, Immediately after the straightening, the flat shape of the steel sheet after natural cooling is predicted, the flat shape of the product steel sheet is judged, and the flattened shape of the product steel sheet is determined. It is about.

【0002】[0002]

【従来の技術】近年、厚板などの鋼板製造プロセスにお
いては、制御圧延後の熱鋼板を水冷することより高強
度、高靭性鋼板を得る技術(以下強制冷却という)が広
く行われるようになってきている。
2. Description of the Related Art In recent years, in the process of manufacturing steel plates such as thick plates, a technique for obtaining high-strength, high-toughness steel plates by water-cooling hot steel plates after controlled rolling (hereinafter referred to as forced cooling) has been widely used. Is coming.

【0003】上記の方法は、従来の添加元素を増加させ
ることなどにより行っていた鋼板の高強度化ならびに高
靭性化を、制御圧延および強制冷却とを組み合わせるこ
とによって実現したもので、添加元素を低減して製造コ
ストを大幅に削減できるばかりでなく、溶接性にも優れ
た鋼板を製造することが可能となる。
[0003] The above-mentioned method realizes the strengthening and toughness of a steel sheet, which has been conventionally performed by increasing the number of additional elements, by combining controlled rolling and forced cooling. Not only can the production cost be reduced significantly, but also a steel sheet excellent in weldability can be produced.

【0004】このように強制冷却によって、優れた品質
の鋼板を安価に製造することが可能であるが、その一方
で、最近ますます高品質化のニーズが高まっていく中、
いくつかの問題が生じてきており、その中の重要な問題
として、強制冷却された鋼板の平坦不良の発生がある。
[0004] As described above, it is possible to produce steel sheets of excellent quality at low cost by forced cooling, but on the other hand, as the need for higher quality has been increasing more and more recently,
Several problems have arisen, of which an important one is the occurrence of flatness failure of the forcibly cooled steel plate.

【0005】すなわち、強制冷却においては、200℃
〜900℃の高温の鋼板の表面に、冷却ノズルより冷却
水を噴射し、鋼板を強制的に冷却することが一般的であ
るが、このとき鋼板表面において対流沸騰熱伝達現象が
発生する。強制冷却では、この対流沸騰熱伝達現象によ
って自然放冷などに比べ数十〜数百倍の高冷却速度が達
成でき、より微細な結晶構造を有する鋼板が得られ、前
述のように高強度ならびに高靭性を有する鋼板を製造す
ることができる。
That is, in the forced cooling, 200 ° C.
Generally, cooling water is injected from a cooling nozzle onto the surface of a steel sheet having a high temperature of about 900 ° C. to forcibly cool the steel sheet. At this time, a convective boiling heat transfer phenomenon occurs on the steel sheet surface. In forced cooling, this convection boiling heat transfer phenomenon can achieve a cooling rate several tens to hundreds times higher than natural cooling or the like, and a steel sheet having a finer crystal structure is obtained. A steel sheet having high toughness can be manufactured.

【0006】しかしその反面、この対流沸騰熱伝達現象
においては、鋼板表面温度が低温になるにつれて熱伝達
係数が増加するという傾向があるため、現象そのものが
非常に不安定である。
On the other hand, however, the convection boiling heat transfer phenomenon is very unstable because the heat transfer coefficient tends to increase as the steel sheet surface temperature decreases.

【0007】例えば、冷却開始時に鋼板表面に僅かの温
度むらがある場合、鋼板表面の熱伝達係数に作用する因
子の一つである冷却水の水量密度を鋼板表面全体でいか
に均一に制御したとしても、表面温度の低い領域におい
てますます冷却が促進されるため、冷却終了後には大き
な温度むらを生じることになる。これらの温度むらの発
生は最終的な機械的特性値のバラツキを生じるばかりで
なく、温度むらがある限界の温度差を超えたときは、常
温(室温)にまで冷えるまでの間に耳波や中伸びなどの
形状不良を生じるという問題がある。
For example, if there is slight temperature unevenness on the steel sheet surface at the start of cooling, it is assumed that the water density of the cooling water, which is one of the factors affecting the heat transfer coefficient of the steel sheet surface, is controlled uniformly over the entire steel sheet surface. However, since cooling is further promoted in a region where the surface temperature is low, large temperature unevenness occurs after cooling is completed. The occurrence of these temperature irregularities not only causes a variation in the final mechanical property values, but also when the temperature irregularity exceeds a certain limit temperature difference, an ear wave or an ear wave is generated until the temperature reaches room temperature (room temperature). There is a problem that shape defects such as middle elongation occur.

【0008】上記強制冷却における鋼板の形状不良の発
生を防止する方法としては、次の2方法が提案されてい
る。
The following two methods have been proposed as methods for preventing the occurrence of defective shape of the steel sheet in the forced cooling.

【0009】(1)強制冷却開始前に板幅方向温度分布
を測定し、冷却後に幅方向に均一な温度分布が得られる
ように演算した結果に基づき、遮蔽樋にて鋼板幅端部を
被い、鋼板幅端部に冷却水が直接当たることを防止し、
鋼板幅端部の温度低下を防止する方法(特開昭58−3
2511号公報)。
(1) The temperature distribution in the sheet width direction is measured before the start of the forced cooling, and based on the result calculated so as to obtain a uniform temperature distribution in the width direction after the cooling, the steel sheet width end is covered with the shielding gutter. To prevent the cooling water from directly hitting the edge of the steel plate width,
A method for preventing a temperature drop at a steel sheet width end (Japanese Patent Application Laid-Open No. 58-3
No. 2511).

【0010】(2)鋼板の少なくとも上下方向および幅
方向の中央部と幅端部における水冷開始直前、水冷途中
および水冷終了後の温度を検出して、各測温点の温度と
測温点間の温度差を求め、各測温点の温度と測温点間の
温度差に対応してあらかじめ定めた関係式に基づき前期
鋼板の常温域における変形量を予測・演算し、この予測
値が目標の許容範囲内となるように、複数のノズルに対
する冷却水の供給量を制御する方法(特公昭63−47
775号公報)。
(2) At least at the center of the steel plate in the vertical and width directions and at the width end, the temperatures immediately before the start of water cooling, during the water cooling, and after the end of the water cooling are detected, and the temperature between each temperature measuring point and the temperature between the temperature measuring points is detected. The temperature difference of each steel sheet is calculated, and the deformation of the steel sheet in the normal temperature range is predicted and calculated based on the relational expression determined in advance corresponding to the temperature difference between each temperature measurement point and the temperature difference between the temperature measurement points. Controlling the supply amount of the cooling water to the plurality of nozzles so as to fall within the allowable range (Japanese Patent Publication No. 63-47).
775).

【0011】前者(1)の方法においては、平坦不良が
生じる板幅中央部と板幅端部との温度差については明ら
かではないが、平坦不良防止のために幅方向に均一冷却
を行うことから、わずかな温度差があっても平坦不良が
生じるとの前提に立脚した方法と考えることができる。
In the former method (1), although it is not clear about the temperature difference between the center of the sheet width and the end of the sheet width at which flatness occurs, uniform cooling is performed in the width direction to prevent flatness. Therefore, it can be considered that the method is based on the premise that flatness failure occurs even with a slight temperature difference.

【0012】後者(2)の方法においては、板幅端部と
板幅中央部との温度差や鋼板上下面の温度差にある限界
値を設け、これらの温度差がそれぞれの限界値を超えた
ときに、耳波や中波などの平坦不良や反り曲がり平坦不
良が発生すると仮定している。
In the latter method (2), a limit value is provided for the temperature difference between the end portion of the sheet width and the center portion of the sheet width and the temperature difference between the upper and lower surfaces of the steel sheet, and these temperature differences exceed the respective limit values. It is assumed that a flat defect such as an ear wave or a medium wave or a flat defect due to a warp is generated when this occurs.

【0013】この他に、強制冷却後の鋼板の板面温度を
2次元測定して得られる板面温度分布データから常温で
の鋼板の残留応力を計算し、計算して得られた残留応力
から冷却後常温の鋼板を所定の形状に切断加工して得ら
れる部分材の変形量を推定する方法(特開昭62−23
6617号公報)が提案されている。
In addition, the residual stress of the steel sheet at normal temperature is calculated from the temperature distribution data obtained by two-dimensionally measuring the surface temperature of the steel sheet after the forced cooling, and the residual stress obtained by the calculation is calculated from the calculated residual stress. A method for estimating the amount of deformation of a part obtained by cutting a steel sheet at room temperature after cooling into a predetermined shape (Japanese Patent Laid-Open No. 62-23 / 1987)
No. 6617) has been proposed.

【0014】[0014]

【発明が解決しようとする課題】強制冷却によって生じ
る温度むらによる平坦不良を防止するためには、鋼板
を完全に均一に冷却することによって、温度むらを生じ
させないか、あるいは、平坦不良に至る限界の温度む
らを明らかにして、その限界未満に温度むらを抑えるよ
うに冷却を制御するかのどちらかである。平坦不良防止
のために提案された従来の前記2つの技術、すなわち、
特開昭58−32511号公報と特公昭63−4777
5号公報に開示されている方法がそれぞれこれらに相当
する。
In order to prevent flatness failure due to temperature unevenness caused by forced cooling, the steel plate is completely and uniformly cooled so that temperature unevenness does not occur or the flatness is limited. Either the temperature unevenness is clarified and the cooling is controlled so as to suppress the temperature unevenness below the limit. The two conventional techniques proposed for preventing flatness failure, namely,
JP-A-58-32511 and JP-B-63-4777.
The methods disclosed in Japanese Patent Publication No. 5 correspond to these, respectively.

【0015】前者に対応する特開昭58−32511
号公報で提案されている方法は、鋼板幅端部が過冷却と
なることを防止することにより鋼板の耳波を防止しよう
とするものであるが、実際には、鋼板の表面性状不均一
や冷却のゆらぎ等によって鋼板の幅端部以外の部分に過
冷却が生じて、これが原因となって平坦不良が発生する
ことが多い。従って、特開昭58−32511号公報の
方法では、幅端部以外が過冷却される場合の平坦不良の
発生は予測することができない。
JP-A-58-32511 corresponding to the former
The method proposed in the above publication aims to prevent the ear wave of the steel sheet by preventing the width end portion of the steel sheet from being supercooled, but in practice, the surface properties of the steel sheet are not uniform. Due to cooling fluctuations and the like, supercooling occurs in portions other than the width end portion of the steel sheet, which often causes poor flatness. Therefore, according to the method disclosed in Japanese Patent Application Laid-Open No. 58-32511, it is impossible to predict the occurrence of poor flatness when the part other than the width end is supercooled.

【0016】また、特開昭58−32511号公報に提
案の方法では、平坦不良を防止するために必要な鋼板の
温度むらが満たすべき要件が明らかにされていないため
に、平坦不良の予測と防止は場当たり的であり、確実性
に乏しい。
Further, in the method proposed in Japanese Patent Application Laid-Open No. 58-32511, since the requirements to be met for the temperature non-uniformity of the steel sheet required to prevent the flatness failure are not clarified, the prediction of the flatness failure is not possible. Prevention is ad hoc and poorly reliable.

【0017】後者に対応する特公昭63−47775
号公報に提案の方法は、各測温点の温度と測温点間の温
度差に対応して予め定めた関係式に基づき前記鋼板の常
温域における変形量を予測しているが、各測温点間の温
度と測温点間の温度差だけでは正確な変形量を予測する
ことはできないという欠点を有している。
Japanese Patent Publication No. 63-77775 corresponding to the latter
In the method proposed in the publication, the deformation amount of the steel sheet in a normal temperature range is predicted based on a relational expression predetermined according to the temperature at each temperature measuring point and the temperature difference between the temperature measuring points. There is a disadvantage that it is not possible to accurately predict the amount of deformation only by the temperature difference between the hot spots and the temperature difference between the hot spots.

【0018】さらに、前記特開昭62−236617号
公報に開示の方法は、鋼板の温度分布を測定して常温で
の鋼板の残留応力を予測し、この結果を用いて鋼板を条
切りした場合の条の曲がり変形予測に適用するものであ
り、条切り変形量と平坦不良とは対応するものではない
から、鋼板の耳波や中伸び平坦不良を予測することはで
きない。
Further, the method disclosed in Japanese Patent Application Laid-Open No. 62-236617 discloses a method in which the temperature distribution of a steel sheet is measured to predict the residual stress of the steel sheet at normal temperature, and the result is used to cut the steel sheet. Since the present invention is applied to the prediction of the bending deformation of the strip, and the stripping deformation amount and the flatness defect do not correspond to each other, it is impossible to predict the ear wave or the middle elongation flatness defect of the steel sheet.

【0019】上記のように、平坦不良の防止のために
は、平坦不良の発生を正しく予測し、鋼板の温度むらの
どの部分が起点となって平坦不良が生じるのかを明らか
にする必要がある。ところが、従来の方法は、平坦不良
の発生を正しく予測することが困難なために、鋼板の平
坦不良を偶然的には防止できることがあるものの、確実
に防止することはできない。このために強制冷却後の鋼
板を常温まで放冷した後に平坦不良の発生の有無を確認
する必要があり、直ちに次の精製工程へ搬送することが
できず、鋼板の冷却製造工程を滞らせる不具合の原因と
なる。
As described above, in order to prevent a flat defect, it is necessary to correctly predict the occurrence of the flat defect and to clarify which part of the temperature unevenness of the steel sheet starts from the flat defect. . However, in the conventional method, it is difficult to correctly predict the occurrence of flatness failure. Therefore, although the flatness failure of the steel sheet may be accidentally prevented, it cannot be surely prevented. For this reason, it is necessary to check for the occurrence of flat defects after allowing the steel sheet after forced cooling to cool to room temperature, and the steel sheet cannot be immediately conveyed to the next refining process, which delays the steel plate cooling manufacturing process. Cause.

【0020】常温における平坦不良の発生を、冷却後直
ちに予測することができれば、平坦と判断された鋼板は
直ちに精製行程へ回送することが可能である。一方、平
坦不良と判断された鋼板を、鋼板の温度が適正な範囲内
にある間に再矯正することにより、製品として不適当な
平坦不良鋼板の発生を未然に防ぐことが可能である。
If the occurrence of poor flatness at normal temperature can be predicted immediately after cooling, the steel sheet determined to be flat can be immediately sent to the refining process. On the other hand, by re-correcting a steel sheet determined to be poor in flatness while the temperature of the steel sheet is within an appropriate range, it is possible to prevent the occurrence of a poorly flat steel sheet unsuitable as a product.

【0021】本発明は、従来技術が有するこのような問
題点に鑑みてなされたものであり、強制冷却鋼板の製造
にあたり、強制冷却終了後直ちに常温に到るまでの平坦
不良の発生を確実に予測し、製品鋼板の良否判定を行
い、特に平坦不良の発生が予測された場合には再矯正を
行うことによって、再矯正以後の平坦不良の発生を防止
する製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and in the production of a forced cooling steel sheet, the occurrence of flat defects immediately after the completion of forced cooling until the temperature reaches room temperature is ensured. The purpose of the present invention is to provide a manufacturing method for predicting and determining the quality of a product steel sheet, and in particular, when the occurrence of flat defects is predicted, by performing re-correction, thereby preventing the occurrence of flat defects after re-correction. I do.

【0022】[0022]

【課題を解決するための手段】本発明は、熱鋼板を強制
冷却した後に熱間矯正し、その後に鋼板温度を室温にま
で自然放冷する鋼板の製造方法であって、次の手順で行
われることを要旨とする。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a steel sheet in which a hot steel sheet is forcibly cooled, hot-straightened, and then naturally cooled to room temperature. The gist is to be

【0023】熱間矯正後の鋼板の表面全体の温度分布
を面温度計等を用いて測定する。
The temperature distribution on the entire surface of the steel sheet after the hot straightening is measured using a surface thermometer or the like.

【0024】この測定温度分布上で、鋼板幅の1/2
から2倍の長さと鋼板幅と同じ幅を有する部分領域(ブ
ロック)rを鋼板の長さ方向に移動させつつ形成する。
On this measured temperature distribution, one half of the steel sheet width
Is formed while moving a partial region (block) r having a length twice as long as the width of the steel sheet in the length direction of the steel sheet.

【0025】前記の部分領域r内の平均温度TBrと
鋼板各部の温度とを比較演算する。
The average temperature TBr in the partial region r is compared with the temperature of each part of the steel plate.

【0026】全ての部分領域内において鋼板の長さ方
向に鋼板温度が平均温度TBrよりも連続して低い連続低
温域pを検出する。ここで「連続して低い」とは当該部
分領域内において「長さ方向の温度側定点の半数以上が
TBrよりも低い」ことをいう。
In all the partial regions, a continuous low-temperature region p in which the temperature of the steel sheet is continuously lower than the average temperature TBr in the length direction of the steel sheet is detected. Here, “continuously low” means that
In the sub-domain, "Half or more of the temperature-side fixed points in the length direction
Lower than TBr. "

【0027】前記の連続低温域の幅と幅方向の位置
から定義する座屈限界温度差(ΔTa)crと連続低温域
p内の鋼板温度と部分領域平均温度TBrとの差の平均値
(ΔTa )p とを演算する。
The buckling limit temperature difference (ΔTa) cr defined from the width of the continuous low temperature region and the position in the width direction, and the average value (ΔTa) of the difference between the steel plate temperature and the partial region average temperature TBr in the continuous low temperature region p ) P and are calculated.

【0028】下記(A)式に基づき、鋼板を自然放冷
する過程において座屈が発生することを未然に予測し、
製品鋼板の平坦形状の良否を判定する。
Based on the following equation (A), it is predicted that buckling will occur in the process of naturally cooling the steel sheet,
Judge the flatness of the product steel plate.

【0029】 (ΔTa )p >(ΔTa )cr ・・・(A) また、前記(A)式が成立する場合には、引き続き次の
手順を行うことが望ましい。
(ΔTa) p> (ΔTa) cr (A) When the above-mentioned equation (A) is satisfied, it is desirable to continue the following procedure.

【0030】自然放冷過程における前記連続低温域p
での平均温度差(ΔTa )p'を演算する。
The continuous low temperature range p in the natural cooling process
The average temperature difference (ΔTa) p ′ at the above is calculated.

【0031】前記の(ΔTa )p'の値が、下記
(B)式で示す範囲内にある間に再度矯正を行う。
The correction is performed again while the value of (ΔTa) p ′ is within the range shown by the following equation (B).

【0032】 (ΔTa )p −(ΔTa )cr<(ΔTa )p'<(ΔTa )cr・・・(B)(ΔTa) p− (ΔTa) cr <(ΔTa) p ′ <(ΔTa) cr (B)

【0033】[0033]

【発明の実施の形態】強制冷却された鋼板は、通常、強
制冷却後、熱間矯正機で平坦矯正を行った後、室温にま
で自然放冷される。このような製造プロセスでは、強制
冷却で生じた鋼板の温度むらが放冷により均一な常温
(室温)に至ることによって、熱収縮のむらが生じて鋼
板に内部応力が発生する。自然放冷過程で生じる平坦不
良は、この内部応力(残留応力)が原因となって発生す
る座屈である。従って、座屈の発生限界範囲内に残留応
力が収まれば平坦不良は発生しないし、逆に座屈の限界
を超えれば平坦不良が発生することになる。
BEST MODE FOR CARRYING OUT THE INVENTION Usually, a steel sheet which has been forcibly cooled is subjected to flat cooling by a hot straightening machine after forced cooling, and then naturally cooled to room temperature. In such a manufacturing process, the unevenness in temperature of the steel sheet caused by the forced cooling reaches a uniform room temperature (room temperature) by cooling, causing unevenness in heat shrinkage to generate internal stress in the steel sheet. Flatness that occurs during the natural cooling process is buckling that occurs due to the internal stress (residual stress). Therefore, if the residual stress falls within the buckling occurrence limit range, flatness failure does not occur. Conversely, if the buckling limit is exceeded, flatness failure occurs.

【0034】ところが、強制冷却で生じた温度むらによ
る熱応力による座屈限界を定量化することは容易ではな
い。通常の強制冷却で鋼板に形成される温度むらは、鋼
板の幅方向の一部が過冷却されるような単純なものでは
無く、幅方向ならびに長さ方向の複数箇所で差がある温
度分布となっていることが多い。このために、特公昭6
3−47775号公報に提案の方法のように、幅端部と
幅中央部の少なくとも2点以上の温度を測定して、各測
温点の温度と測温点間の温度差から座屈発生を予測しよ
うとしても、正確な座屈予測は困難である。
However, it is not easy to quantify the buckling limit due to thermal stress due to temperature unevenness generated by forced cooling. The temperature unevenness formed on the steel sheet by normal forced cooling is not a simple one in which a part of the steel sheet in the width direction is supercooled, and there is a temperature distribution with differences at multiple locations in the width direction and the length direction. Often become. For this reason,
As in the method proposed in Japanese Unexamined Patent Publication No. 3-47775, the temperature at at least two points at the width end and the center of the width is measured, and buckling occurs from the temperature at each temperature measurement point and the temperature difference between the temperature measurement points. , It is difficult to accurately predict buckling.

【0035】図3は、熱鋼板を強制冷却した後に熱間矯
正機の前にて測定した、鋼板幅端部と幅中央部との最大
温度差と平坦不良発生実績との対応を示す図である。
FIG. 3 is a view showing the correspondence between the maximum temperature difference between the width end portion and the width center portion of the steel sheet measured before the hot straightening machine after forcibly cooling the hot steel sheet and the occurrence of flat defects. is there.

【0036】この図3は、熱間圧延後の幅2200m
m、板厚30.7mm、長さ19000mmの鋼板16
枚と、幅3180mm、板厚30.5mm、長さ270
00mmの鋼板20枚を、766℃〜786℃から、速
度38m/min〜56m/minで搬送しつつ、鋼板
の上面を複数個のスリットノズルから流下させるラミナ
水膜で、鋼板下面を複数個の水スプレで、452℃〜5
20℃の範囲にまで強制冷却し、強制冷却装置に続く熱
間矯正機の前で鋼板の上面全域の温度を、面温度計で測
定し、幅端部と幅中央部との温度差の鋼板長さ方向の分
布を求め、その最大値を各鋼板について示したものであ
る。白抜きのマークは室温にまで自然放冷された状態で
鋼板が平坦であったことを表わし、黒く塗りつぶしたマ
ークは自然放冷過程で平坦不良が発生したことを表わ
す。
FIG. 3 shows a width of 2200 m after hot rolling.
m, steel plate thickness 30.7 mm, length 19000 mm steel plate 16
Sheet, width 3180mm, thickness 30.5mm, length 270
A laminar water film that allows the upper surface of a steel sheet to flow down from a plurality of slit nozzles while conveying 20 sheets of 00 mm steel from 766 ° C. to 786 ° C. at a speed of 38 m / min to 56 m / min. 452 ° C-5 with water spray
The temperature of the entire upper surface of the steel sheet is measured with a surface thermometer in front of the hot straightening machine following the forced cooling device, and the temperature difference between the width end and the width center is measured. The distribution in the length direction is obtained, and the maximum value is shown for each steel sheet. The white mark indicates that the steel sheet was flat while being naturally cooled to room temperature, and the black mark indicates that flatness occurred during the natural cooling process.

【0037】図3の結果から、幅端部と幅中央部との温
度差について、平坦不良が発生する限界の値を導き出す
ことは不可能であることがわかる。
From the results shown in FIG. 3, it can be seen that it is impossible to derive a limit value at which a flat defect occurs with respect to the temperature difference between the width end and the width center.

【0038】図4は、図3で示した鋼板の温度測定デー
タについて、幅端部と幅中央部との温度差を鋼板長さ方
向に平均したものと平坦不良発生実績との関係を示す図
である。この図4の場合も図3と同様に、平坦不良の限
界値を決定することはできない。
FIG. 4 is a diagram showing the relationship between the average of the temperature difference between the width end portion and the width center portion in the length direction of the steel sheet and the actual occurrence of flat defects in the temperature measurement data of the steel sheet shown in FIG. It is. In the case of FIG. 4, as in FIG. 3, the limit value of the flat defect cannot be determined.

【0039】この理由は、強制冷却による過冷却部がた
とえば鋼板幅端部のある決まった箇所に、一定の幅で生
じるのではなく、後に詳述する図10に示すように、鋼
板の幅方向および長さ方向に分散して発生するためであ
る。なお、図10は、強制冷却によって生じる鋼板の温
度分布を例示する図である。
The reason for this is that the supercooled portion due to the forced cooling does not occur at a fixed position at, for example, a width end portion of the steel sheet, but has a fixed width, as shown in FIG. This is because they are dispersed in the length direction. FIG. 10 is a diagram illustrating a temperature distribution of a steel sheet generated by forced cooling.

【0040】さらに、鋼板に平坦不良が生じるか否か
は、鋼板幅方向の温度差の値の大小だけで論じることは
できない。
Further, it cannot be discussed whether or not flatness occurs in the steel sheet only by the magnitude of the temperature difference in the width direction of the steel sheet.

【0041】図5は、鋼板長さ方向の各位置での幅方向
の最大温度差を求め、さらに鋼板長さ内で、その最大値
を求めて表示した結果である。この図5から、温度差の
大小のみでも平坦不良の発生限界を決定することが困難
であることがわかる。
FIG. 5 shows the result of obtaining the maximum temperature difference in the width direction at each position in the length direction of the steel sheet, and further obtaining and displaying the maximum value within the length of the steel sheet. From FIG. 5, it can be seen that it is difficult to determine the generation limit of the flat defect only by the magnitude of the temperature difference.

【0042】このように、従来の方法が有する問題点が
生じる原因と、平坦不良をより正確に予測するための方
策を理論解析ならびに実験にて検討したところ、以下の
ことを知見した。
As described above, when the cause of the problem of the conventional method and the measures for more accurately predicting the flat defect were examined by theoretical analysis and experiments, the following was found.

【0043】平坦不良は、放冷過程で生じる熱応力に
より発生する座屈であり、その発生には鋼板の長さ方向
圧縮応力が支配的である。
The flatness failure is buckling caused by thermal stress generated in the cooling process, and the occurrence of the buckling is dominated by the longitudinal compressive stress of the steel sheet.

【0044】上記熱応力は強制冷却に続く熱間矯正直
前、あるいは矯正直後の鋼板の温度分布において、相対
的に低温である部位で圧縮、高温である部位で引張りで
ある。
In the temperature distribution of the steel sheet immediately before or immediately after hot straightening following forced cooling, the above thermal stress is compression at a relatively low temperature portion and tension at a relatively high temperature portion.

【0045】上記の相対的低温部は鋼板の決まった箇
所に発生するとは限らない。従って、鋼板の平坦不良
は、鋼板の幅端部や幅中央部などの固定された数カ所で
の測温点で測定された温度差の大小を用いて予測するこ
とはできない。
The above-mentioned relatively low temperature portion does not always occur at a fixed portion of the steel sheet. Therefore, the flatness failure of the steel sheet cannot be predicted using the magnitude of the temperature difference measured at several fixed points such as the width end and the width center of the steel sheet.

【0046】比較的温度差が大きな低温部が鋼板の幅
方向および長さ方向に存在しても、その低温部が局所的
な場合は平坦不良は発生しにくい。
Even if a low-temperature portion having a relatively large temperature difference exists in the width direction and the length direction of the steel sheet, when the low-temperature portion is local, poor flatness hardly occurs.

【0047】従って、前記とから平坦不良の発生
を議論する場合には、相対的低温部を検出し、その幅方
向および長さ方向での連続性を考慮する必要がある。
Therefore, when discussing the occurrence of a flat defect from the above, it is necessary to detect a relatively low-temperature portion and consider its continuity in the width and length directions.

【0048】鋼板の幅方向平均温度は鋼板の長さ方向
に異なるために、前記で述べた圧縮応力となる部位
は、鋼板の全表面平均温度に対して低温である部分とは
一致しない。鋼板の長さ方向に連続するある一定区間
(以後「部分領域」と呼ぶ)における平均温度(以後
「部分領域平均温度」と呼ぶ)に対し、低温である部分
とよく対応する。
Since the average temperature in the width direction of the steel sheet differs in the length direction of the steel sheet, the above-mentioned portion where the compressive stress is generated does not coincide with the portion where the temperature is lower than the average temperature of the entire surface of the steel sheet. The average temperature (hereinafter, referred to as "partial region average temperature") in a certain fixed section (hereinafter, referred to as "partial region") continuous in the length direction of the steel sheet corresponds well to a portion having a low temperature.

【0049】平坦不良の発生は、上記で求めた低温
部の内、鋼板長さ方向にある程度連続的なものについ
て、低温部の幅と低温域の幅方向の位置、低温域の平均
温度などで定義するパラメータの大小によって予測が可
能である。
The occurrence of flatness failure is determined by the width of the low-temperature portion, the position in the width direction of the low-temperature region, the average temperature of the low-temperature region, etc., of the low-temperature portions determined above that are continuous to some extent in the steel sheet length direction. Prediction is possible depending on the size of the parameter to be defined.

【0050】上述の諸知見をふまえ、まず鋼板の少なく
とも上表面全体の温度を測定する必要性について論ず
る。
Based on the above findings, the necessity of measuring the temperature of at least the entire upper surface of the steel sheet will be discussed first.

【0051】図2は、本発明方法を実施した強制冷却鋼
板製造装置の圧延機以降の構成図である。
FIG. 2 is a structural view of a forced cooling steel plate manufacturing apparatus in which the method of the present invention has been carried out, including a rolling mill.

【0052】ここで、符号1は鋼板、2は圧延機、3は
強制冷却装置、4は熱間矯正機、5および7は赤外線放
射面温度計(以下、「面温度計」と略記する)、6およ
び8は面温度計5の計測サンプリングのタイミング等を
制御する温度計測制御装置ならびに9は矯正制御装置を
示す。なお、符号の後のUは鋼板上面用を、またLは鋼
板下面用を示す。
Here, reference numeral 1 denotes a steel plate, 2 denotes a rolling mill, 3 denotes a forced cooling device, 4 denotes a hot straightening machine, and 5 and 7 denote infrared radiation surface thermometers (hereinafter abbreviated as “surface thermometers”). , 6 and 8 denote a temperature measurement control device for controlling the timing of measurement sampling of the surface thermometer 5, and 9 denotes a correction control device. In addition, U after a code | symbol shows for steel plate upper surfaces, and L shows for steel plate lower surfaces.

【0053】熱間の板材を強制冷却した際に生じる平坦
不良は、強制冷却によって生じた板材面内の温度不均一
によって、板材が強制冷却後室温に至る迄の間に発生す
る板長さ方向の熱応力による座屈変形である。この熱応
力は、強制冷却後にホットレベラによる矯正を行う場合
には、矯正によってそれまでに生じている応力が解放さ
れるために、矯正終了直後の鋼板温度によって決定され
る。従って、熱間矯正直後の鋼板温度分布を測定するこ
とは、室温での残留応力を測定することと同じ意味を有
し、その温度分布測定結果から平坦不良の発生を予測す
ることが基本的に可能である。
The flatness defect that occurs when a hot plate material is forcibly cooled is caused by unevenness in the temperature of the plate material caused by the forced cooling, and in the plate length direction generated between the time when the plate material reaches room temperature after the forced cooling. Buckling deformation due to thermal stress of This thermal stress is determined by the temperature of the steel sheet immediately after the completion of the straightening, because when the straightening is performed by the hot leveler after the forced cooling, the stress generated so far is released by the straightening. Therefore, measuring the steel sheet temperature distribution immediately after hot straightening has the same meaning as measuring the residual stress at room temperature, and basically predicting the occurrence of flat defects from the temperature distribution measurement results. It is possible.

【0054】但し、既に述べたように、鋼板の一部分の
温度をスポット的に測定しただけでは平坦不良の予測の
ためには不十分であり、少なくとも鋼板の上表面全面に
おいて温度を測定する必要がある。強制冷却直後の鋼板
は、通常、板厚方向にも温度分布を有するが、強制冷却
に続く熱間矯正機への搬送ならびに熱間矯正において、
板厚方向の温度分布は上下面で平均化されるので、熱間
矯正機位置(矯正機の前または後)で温度を測定する場
合、鋼板の上表面全域で測定すれば、板幅方向および板
長さ方向の温度むらを評価する上では十分なことが多
い。
However, as described above, simply measuring the temperature of a part of the steel sheet in a spot manner is not sufficient for predicting flatness failure, and it is necessary to measure the temperature at least over the entire upper surface of the steel sheet. is there. The steel sheet immediately after the forced cooling usually has a temperature distribution also in the sheet thickness direction, but in the conveyance to the hot straightening machine following the forced cooling and the hot straightening,
Since the temperature distribution in the thickness direction is averaged on the upper and lower surfaces, if the temperature is measured at the hot straightening machine position (before or after the straightening machine), if it is measured over the entire upper surface of the steel sheet, It is often sufficient to evaluate temperature unevenness in the plate length direction.

【0055】鋼板の上表面温度を測定するに際しては、
赤外線等の放射面温度計を用いるのが得策である。面温
度計であれば、上表面全体の温度が瞬時に測定できる
が、スポット温度計を板幅方向に走査する型の温度計で
は、搬送される鋼板の板幅方向の温度分布を十分な精度
でかつ正確に測定することが困難である。なお、面温度
計の精度は、面温度計の画素点が鋼板の幅方向および長
さ方向にどの程度あるかで決まる。鋼板全体を面温度計
の視野範囲に入れる場合には、幅2〜4.5m、長さ2
0〜30mの鋼板で幅方向に約50〜130画素、長さ
方向に約300〜400画素をとることが可能であり、
鋼板上表面の温度分布データを解析して、平坦不良予測
を行う上で十分である。
When measuring the upper surface temperature of the steel sheet,
It is advisable to use a radiation surface thermometer such as an infrared ray. With a surface thermometer, the temperature of the entire upper surface can be measured instantaneously, but with a thermometer that scans a spot thermometer in the width direction, the temperature distribution of the conveyed steel sheet in the width direction is sufficiently accurate. And it is difficult to measure accurately. The accuracy of the surface thermometer is determined by the number of pixel points of the surface thermometer in the width direction and the length direction of the steel plate. When putting the whole steel plate in the field of view of the surface thermometer, the width is 2 to 4.5 m and the length is 2
It is possible to take about 50-130 pixels in the width direction and about 300-400 pixels in the length direction with a steel plate of 0-30 m,
It is sufficient to analyze the temperature distribution data on the upper surface of the steel sheet and to predict the flatness defect.

【0056】温度を測定すべき個所は、強制冷却工程に
続く熱間矯正機位置と述べたが、熱間矯正機の直前ある
いは直後のどちらでも良い。この理由は、熱間矯正は鋼
板を熱間矯正機に往復させて入出することによって行わ
れるためである。
Although the place where the temperature is to be measured is described as the position of the hot straightening machine following the forced cooling step, it may be located immediately before or immediately after the hot straightening machine. The reason for this is that hot straightening is performed by reciprocating the steel sheet into and out of the hot straightening machine.

【0057】次いで、上述の測定温度から座屈を予測す
る方法を説明する。
Next, a method of predicting buckling from the above-mentioned measured temperature will be described.

【0058】測定した鋼板の温度分布と室温での残留応
力分布とは一対一に対応する。しかし、残留応力を直接
計算するには膨大な計算処理が必要なために、鋼板の製
造ラインでオンラインで計算し座屈予測まで行うことは
非常に困難である。そこで、詳細な応力計算を行わずし
て、測定した温度分布から残留応力の分布を予測する必
要がある。
The measured temperature distribution of the steel sheet and the residual stress distribution at room temperature correspond one to one. However, direct calculation of the residual stress requires an enormous amount of calculation processing, and it is very difficult to perform online calculation and buckling prediction on a steel sheet manufacturing line. Therefore, it is necessary to predict the distribution of the residual stress from the measured temperature distribution without performing a detailed stress calculation.

【0059】鋼板の温度分布で相対的に低温な部分は残
留応力で圧縮応力となるが、相対的に低温であるか否か
を決定するために、比較の基準となる温度がまず必要で
ある。温度分布が鋼板の長さ方向に一定であるならば、
鋼板全表面の平均温度(この場合、板幅内の平均温度と
同じ)を比較の基準として使用することができ、平均温
度よりも低い箇所が圧縮応力となる。
A relatively low temperature portion of the temperature distribution of the steel sheet becomes a compressive stress due to the residual stress. However, in order to determine whether the temperature is relatively low, a reference temperature for comparison is first required. . If the temperature distribution is constant along the length of the steel sheet,
The average temperature of the entire surface of the steel sheet (in this case, the same as the average temperature within the width of the steel sheet) can be used as a reference for comparison, and a portion lower than the average temperature becomes the compressive stress.

【0060】しかし、通常、温度は鋼板の長さ方向にも
変化する。この場合、板全表面の平均温度を指標として
用いることはできない。何故ならば、例えば鋼板の先端
部の温度分布は鋼板の後端部の残留応力の発生には影響
しないためである。そこで本発明では鋼板を部分領域に
ブロック分けし、部分領域内の平均温度と鋼板各部の温
度との差から、圧縮残留応力域となる低温域を求める。
However, usually, the temperature also changes in the length direction of the steel sheet. In this case, the average temperature of the entire surface of the plate cannot be used as an index. This is because, for example, the temperature distribution at the front end of the steel sheet does not affect the generation of residual stress at the rear end of the steel sheet. Therefore, in the present invention, the steel sheet is divided into partial regions, and a low temperature region serving as a compressive residual stress region is obtained from the difference between the average temperature in the partial region and the temperature of each part of the steel plate.

【0061】次に、部分領域内における低温域の中か
ら、長さ方向に連続すると見なせる低温域を抽出する。
これは圧縮応力域が長さ方向にある程度連続して存在し
ないと平坦不良とならないためである。この段階で、連
続低温域が各部分領域において定義される。連続低温域
は通常幅方向に1個以上存在する。そこで、個々の連続
低温域について、平坦不良を発生させるほどの大きさを
持つ低温域であるか否かを調べる。この操作をすべての
部分領域について行うことにより、鋼板に平坦不良が発
生するか否かを判定することができる。
Next, a low-temperature region that can be regarded as being continuous in the length direction is extracted from the low-temperature regions in the partial region.
This is because flatness failure does not occur unless the compressive stress region exists to some extent in the length direction. At this stage, a continuous low temperature region is defined in each subregion. Usually, one or more continuous low-temperature regions exist in the width direction. Therefore, it is checked whether or not each continuous low-temperature region is a low-temperature region having a size enough to cause flatness failure. By performing this operation on all the partial regions, it is possible to determine whether or not flatness occurs in the steel sheet.

【0062】図1は、本発明方法の実施に用いた矯正制
御装置の演算・制御ブロック図である。
FIG. 1 is a calculation and control block diagram of a correction control device used for carrying out the method of the present invention.

【0063】図1に基づき、本発明の平坦不良予測手順
を以下に詳しく述べる。
Referring to FIG. 1, the procedure for predicting flat defects of the present invention will be described in detail below.

【0064】(1)鋼板を幅方向M個ならびに長さ方向
N個の格子からなる碁盤目状に等分割し、各格子点領域
上において鋼板温度を測定する(図1、S−50)。
こで、一応の目安として、Mは20〜60程度、NはM
〜3M程度とするのが適切である。
(1) The steel sheet is equally divided into a grid having M grids in the width direction and N grids in the length direction, and the steel sheet temperature is measured on each grid point area (FIG. 1, S). -50). This
Here, as a rough guide, M is about 20 to 60, and N is M
It is appropriate to set it to about 3M.

【0065】(2)この碁盤目の上に幅方向M個、長さ
方向n+1個の格子からなる部分領域(ブロック)を定
義する。この部分領域内の平均温度(以後「部分領域平
均温度」と呼ぶ)より温度の低い領域が、室温状態で圧
縮残留応力域となると見なすことができる(S−5
1)。
(2) A partial area (block) consisting of M grids in the width direction and n + 1 grids in the length direction is defined on the grid. A region having a temperature lower than the average temperature in the partial region (hereinafter referred to as “partial region average temperature”) can be regarded as a compressive residual stress region at room temperature (S-5).
1).

【0066】(3)この部分領域を長さ方向にk格子づ
つ移動させることにより、鋼板の先端から後端まで(N
−n)/k+1個の部分領域について、下記(1)、
(2)式により格子点(i,j)の温度T(i,j) と部分
領域rの部分領域平均温度TBrとの温度差(ΔT)ijr
を計算する(S−52)。ここで、一応の目安として、
nはM/10〜M/4程度の整数値、kはnの1/2〜
1/4程度の整数値とするのが適切である。
(3) By moving this partial area by k lattices in the length direction, from the front end to the rear end of the steel sheet (N
−n) / k + 1 partial areas, (1)
From equation (2), the temperature difference (ΔT) ijr between the temperature T (i, j) of the lattice point (i, j) and the average partial area temperature TBr of the partial area r.
Is calculated (S-52). Here, as a rough guide,
n is an integer value of about M / 10 to M / 4, and k is 1/2 to n.
It is appropriate to use an integer value of about 1/4.

【0067】[0067]

【数1】 (Equation 1)

【0068】(4)上記(ΔT)ijr が負である格子点
は、室温に於いて圧縮残留応力となる部分である。鋼板
の幅方向位置iにおける鋼板長さ方向の格子列(以後第
i列とよぶ)において、下記(3)式で(ΔT)ijr の
平均を求め(ΔTac)irとする。
(4) The lattice point where (ΔT) ijr is negative is a portion where a compressive residual stress occurs at room temperature. The average of (ΔT) ijr is determined by the following equation (3) in a lattice row in the length direction of the steel sheet at the position i in the width direction of the steel sheet (hereinafter referred to as the i-th row), and is defined as (ΔTac) ir.

【0069】[0069]

【数2】 (Equation 2)

【0070】(ΔTac)irが負であれば、第i列は平均
的には低温部と見なすことができるが、一部の行のみが
低温で、他の大部分が高温である場合、座屈は発生しな
いと考えられる。
If (ΔTac) ir is negative, the ith column can be considered as a low temperature part on average, but if only some rows are low temperature and most of the others are high temperature, It is believed that no bowing occurs.

【0071】そこで、第i列のj=1〜n+1におい
て、(ΔT)ijr <0である格子点の数を調べる。この
点数が、鋼板長さ方向の部分領域の格子点数(n+1)
の半数以上であり、かつ、(ΔTac)irが負であれば、
部分領域rの幅方向第i列は長さ方向に連続低温域(以
後、連続低温域と呼ぶ)であると判断する。こうして得
られた連続低温域を座屈判定の対象とする(S−5
3)。
Therefore, the number of lattice points satisfying (ΔT) ijr <0 is checked at j = 1 to n + 1 in the i-th column. This score is the number of lattice points (n + 1) in the partial area in the steel plate length direction.
Is greater than half and (ΔTac) ir is negative,
The i-th row in the width direction of the partial region r is determined to be a continuous low-temperature region (hereinafter, referred to as a continuous low-temperature region) in the length direction. The continuous low-temperature range obtained in this manner is used as a buckling determination target (S-5)
3).

【0072】図6は、熱間矯正機位置での測温結果を用
いて室温での残留応力を有限要素法により計算し、圧縮
応力域の分布を示す図および本発明方法によって連続低
温域と判定された部分を例示する図である。
FIG. 6 is a graph showing the distribution of the compressive stress region by calculating the residual stress at room temperature by the finite element method using the temperature measurement result at the position of the hot straightening machine, and the continuous low temperature region by the method of the present invention. It is a figure which illustrates the part determined.

【0073】なお、図6中の斜線部が圧縮応力域または
連続低温域を示す。
The shaded area in FIG. 6 indicates a compressive stress area or a continuous low temperature area.

【0074】幅3180mm、板厚30.5mm、長さ
27000mmの鋼板において測定した温度分布が均一
温度(室温)に到達した時の残留応力を有限要素に分割
し、熱弾性有限要素法を用いて計算した結果を図6
(a)に例示した。同じ鋼板の温度分布について、本発
明の方法において、鋼板幅方向をM=41点、長さ方向
をN=61点の格子とし、部分領域の鋼板長さ方向の格
子点数を(n+1)=8、部分領域の移動格子数をk=
2とし、図6(a)の(T部)と(B部)における部分
領域(図6(b−T)、(b−B))で連続低温域と判
定された部分の温度を図6(c−T)および(c−B)
に示した。図6に示すように、温度分布と残留応力分布
とはよく対応しているから、温度分布さえ判れば本発明
方法によって、応力計算を行わなくとも圧縮残留応力と
なる部分が精度良く判定されることがわかる。
The residual stress when the temperature distribution measured on a steel plate having a width of 3180 mm, a thickness of 30.5 mm and a length of 27000 mm reaches a uniform temperature (room temperature) is divided into finite elements, and the thermoelastic finite element method is used. Fig. 6 shows the calculated result.
(A). Regarding the temperature distribution of the same steel sheet, in the method of the present invention, a grid of M = 41 points in the steel sheet width direction and a grid of N = 61 points in the length direction is used, and the number of grid points in the steel sheet length direction of the partial region is (n + 1) = 8. , The number of moving grids in the partial area is k =
6, and the temperature of the portion determined to be the continuous low-temperature region in the partial regions ((T) and (B)) in FIG. 6A (FIG. 6 (b-T) and (b-B)) is shown in FIG. (C-T) and (c-B)
It was shown to. As shown in FIG. 6, since the temperature distribution and the residual stress distribution correspond well, if only the temperature distribution is known, the method of the present invention can accurately determine the portion that becomes the compressive residual stress without performing the stress calculation. You can see that.

【0075】(5)次の(4)式により連続低温域p内
における平均温度差(ΔTa )p を算出する。
(5) The average temperature difference (ΔTa) p in the continuous low temperature range p is calculated by the following equation (4).

【0076】[0076]

【数3】 (Equation 3)

【0077】ここでΔxは幅方向の格子間隔(Δx=W
/(M−1))である。
Here, Δx is the lattice spacing in the width direction (Δx = W
/ (M-1)).

【0078】それぞれの部分領域rにおいて得られた個
々の連続低温域pについて、つぎの(5)式に従って各
連続低温域の板幅方向重心位置gp を計算する。
For each continuous low-temperature region p obtained in each partial region r, the barycentric position gp in the sheet width direction of each continuous low-temperature region is calculated according to the following equation (5).

【0079】[0079]

【数4】 (Equation 4)

【0080】ここで、Sp 、Ep は連続低温域pの幅方
向両端の格子列の番号、Wは板幅、xi は第i格子列の
一方の幅端部からの距離である。
Here, Sp and Ep are the numbers of the lattice rows at both ends in the width direction of the continuous low temperature range p, W is the plate width, and xi is the distance from one width end of the i-th lattice row.

【0081】このように連続低温域の平均温度差と重心
位置を計算する必要がある理由は、連続低温域の平均温
度差が座屈の判定を行うための指標として極めて有効で
あることと、後述する座屈限界温度差(ΔTa )crが、
圧縮応力域の幅方向位置、すなわち連続低温域の重心位
置によって変化するためである。
The reason why it is necessary to calculate the average temperature difference and the position of the center of gravity in the continuous low temperature region is that the average temperature difference in the continuous low temperature region is extremely effective as an index for determining buckling, The buckling limit temperature difference (ΔTa) cr described later is
This is because it changes depending on the width direction position of the compressive stress region, that is, the position of the center of gravity of the continuous low temperature region.

【0082】連続低温域が幅方向に複数個(pn 個)存
在する場合、各連続低温域の重心位置gp (p=1〜p
n )から、幅方向に分布する全ての連続低温域の平均重
心位置Gを(6)式で算出しておく。
When a plurality (pn) of continuous low-temperature areas exist in the width direction, the center of gravity gp (p = 1 to p
From (n), the average center of gravity position G of all the continuous low-temperature regions distributed in the width direction is calculated by equation (6).

【0083】[0083]

【数5】 (Equation 5)

【0084】(6)座屈限界温度差(ΔTa )crは次の
ように定められる。
(6) The buckling limit temperature difference (ΔTa) cr is determined as follows.

【0085】着目する連続低温域の平均温度差を(ΔT
a )p とする。この連続低温域において室温状態で生じ
る圧縮残留応力をσ、座屈が生じる限界圧縮応力をσcr
と表すと、次の(7)、(8)式となる。
The average temperature difference in the continuous low temperature range of interest is (ΔT
a) Let p. Σ is the compressive residual stress generated at room temperature in this continuous low temperature range, and σcr is the critical compressive stress at which buckling occurs.
, The following equations (7) and (8) are obtained.

【0086】 σ ∝ (ΔTa )p ・・・(7) σcr∝∝(ΔTa )cr ・・・(8) 圧縮応力域が幅方向に1個の場合の臨界座屈応力は、本
発明者らが理論解析を行った結果、次の(9)式で表さ
れる。
Σ∝ (ΔTa) p (7) σcr∝∝ (ΔTa) cr (8) The critical buckling stress when the compressive stress region is one in the width direction is determined by the present inventors. As a result of conducting a theoretical analysis, is expressed by the following equation (9).

【0087】[0087]

【数6】 (Equation 6)

【0088】ここで、Eは鋼板の縦弾性係数、νはポア
ソン比、tは板厚、Bは圧縮応力域の幅であり、K
(g)は圧縮応力域の重心位置gで定義する(10)式
の関数である。
Here, E is the longitudinal modulus of elasticity of the steel sheet, ν is the Poisson's ratio, t is the sheet thickness, B is the width of the compressive stress region,
(G) is a function of the equation (10) defined by the center of gravity g of the compressive stress region.

【0089】[0089]

【数7】 (Equation 7)

【0090】ここで、G’は板幅中央部を起点とした圧
縮応力重心位置である。
Here, G 'is the position of the center of gravity of the compressive stress starting from the center of the plate width.

【0091】また、前述のように圧縮応力域の幅Bおよ
び圧縮応力域の重心位置gは、連続低温域の幅Bp およ
び連続低温域の重心位置gp と考えることができる。
As described above, the width B of the compressive stress region and the center of gravity g of the compressive stress region can be considered as the width Bp of the continuous low temperature region and the center of gravity gp of the continuous low temperature region.

【0092】従って、(8)式と(9)式および(1
0)式から次の(11)式を得る。
Therefore, equations (8), (9) and (1)
The following equation (11) is obtained from the equation (0).

【0093】 (ΔTa )cr=c・K(gp )・t2 /(Bp ・W) ・・・(11) ここで、cは材料定数を表す係数であり、前記(11)
式が連続低温域が幅方向に1個の場合に使用することが
できることは明らかである(S−54)。
(ΔTa) cr = c · K (gp) · t 2 / (Bp · W) (11) where c is a coefficient representing a material constant.
It is clear that the equation can be used when the continuous low temperature region is one in the width direction (S-54).

【0094】このようにして得た連続低温域の平均温度
差(ΔTa )p を、その低温域の位置と幅によって定ま
る座屈限界温度差(ΔTa )crと比較することによっ
て、次の(A)式が成り立つ場合には、矯正後の自然放
冷過程において座屈が生じることを予測することができ
る。
By comparing the average temperature difference (ΔTa) p in the continuous low temperature region obtained in this way with the buckling limit temperature difference (ΔTa) cr determined by the position and width of the low temperature region, the following (A) If the formula is satisfied, it can be predicted that buckling will occur in the natural cooling process after the correction.

【0095】 (ΔTa )p >(ΔTa )cr ・・・(A) 通常、連続低温域は幅方向に1個以上分布することが多
く、座屈限界温度差(ΔTa )crの決定には、さらに次
に述べる工夫が必要になる。
(ΔTa) p> (ΔTa) cr (A) Usually, one or more continuous low-temperature regions are often distributed in the width direction. To determine the buckling limit temperature difference (ΔTa) cr, Further, the following measures are required.

【0096】連続低温域が幅方向に単数の場合は、
(11)式を適用する。
When the continuous low temperature region is singular in the width direction,
Apply equation (11).

【0097】連続低温域が幅方向に複数の場合は、平
均重心Gの両側の連続低温域の重心gp (p=1,2)
を用いて座屈限界を定義する。
When there are a plurality of continuous low-temperature regions in the width direction, the center of gravity gp (p = 1, 2) of the continuous low-temperature region on both sides of the average gravity center G
Is used to define the buckling limit.

【0098】(a)Gの両隣の連続低温域が次の(1
2)式を満足する場合は、隣り合う圧縮応力域の間隔が
狭いために、座屈係数K(gp )は(10)式で表した
ものと極めて近くなる。
(A) The continuous low-temperature region on both sides of G is the following (1)
When the expression (2) is satisfied, the buckling coefficient K (gp) becomes extremely close to that expressed by the expression (10) because the interval between adjacent compressive stress regions is narrow.

【0099】 |G−gp |/W≦0.1 ・・・(12) よってこの場合は、1圧縮応力域、すなわち単数の連続
低温域の場合として、(11)式で座屈限界温度差値を
与えることが可能である。ただし、(10)式におい
て、gp にはGを、Bp にはGの両側の連続低温域の幅
の和ΣBp を用いる。
| G−gp | /W≦0.1 (12) Therefore, in this case, assuming that one compressive stress region, that is, a single continuous low-temperature region, the buckling limit temperature difference is obtained by Expression (11). It is possible to give a value. However, in equation (10), G is used for gp, and the sum ΣBp of the widths of the continuous low-temperature regions on both sides of G is used for Bp.

【0100】(b)Gの両隣の連続低温域が(12)式
を満足しない場合には、単数圧縮応力域として扱うこと
はできず、さらに以下の場合分けを行う。
(B) If the continuous low-temperature region on both sides of G does not satisfy the expression (12), it cannot be treated as a single compressive stress region, and the following cases are further classified.

【0101】(イ)平均重心Gについて、0.45 ≦
G/W ≦ 0.55が成り立つ場合は、連続低温域
はモーメント的に幅対称に分布すると見なすことができ
る。
(A) For the average center of gravity G, 0.45 ≦
When G / W ≦ 0.55 holds, it can be considered that the continuous low-temperature region is distributed moment-wise symmetrically.

【0102】図7は、幅中央部に全体重心Gが位置する
2圧縮応力域の場合の、座屈係数K(gp )と、個々の
圧縮応力域の位置との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the buckling coefficient K (gp) and the position of each compressive stress region in the case of two compressive stress regions where the overall center of gravity G is located at the center of the width.

【0103】この場合、前記(11)式の座屈係数K
(gp )には、図7に示した次の(13)式および(1
4)式の関数を使用する。
In this case, the buckling coefficient K in the equation (11) is obtained.
(Gp) includes the following equation (13) shown in FIG.
4) Use the function of equation.

【0104】 0 ≦ gp /W≦ 0.25 : K(gp )=0.24・exp(12.88gp /W)・・・(13) 0.25 ≦gp /W≦ 0.4 : K(gp )=50・exp(−8.57gp /W) ・・・(14) ただし、(11)式においてBp には、それぞれの連続
低温域の幅の和を用いる。
[0104] 0 ≦ gp / W ≦ 0.25: K (g p) = 0.24 · exp (12.88gp / W) ··· (13) 0.25 ≦ gp / W ≦ 0.4: K (Gp) = 50.exp (-8.57 gp / W) (14) In Equation (11), the sum of the widths of the respective continuous low-temperature regions is used as Bp.

【0105】(ロ)全体重心について0.45 ≦ G
/W ≦ 0.55が成り立たない場合は、個々の連続
低温域について、(11)式を用い、その小さい方を選
択する。
(B) 0.45 ≦ G for the whole center of gravity
If /W≦0.55 does not hold, the smaller one is selected for each continuous low-temperature range using equation (11).

【0106】なお、前記(11)式の係数cは上記に述
べた方法を種々の鋼板について適用し、平坦不良の発生
実績が最も良く説明できるように回帰分析して、以下の
(15)式のように定めた。
The coefficient c in the above equation (11) is obtained by applying the above-mentioned method to various steel sheets and performing regression analysis so that the actual occurrence of flat defects can be best explained. It was decided as follows.

【0107】 c=190・(490−TBr) TBr<420℃ , c=13300 TBr≧420℃ ・・・(15) 上述のように前記(A)式に基づき、製品鋼板の平坦形
状の良否判定が行われ、その後の工程で必要に応じて、
再矯正(熱間、冷間)、精製、分割および品質格づけ等
の対処がなされる。
C = 190 · (490−TBr) TBr <420 ° C., c = 13300 TBr ≧ 420 ° C. (15) As described above, the quality of the flat shape of the product steel sheet is determined based on the above equation (A). Is performed, and as necessary in the subsequent steps,
Measures such as re-straightening (hot and cold), refining, splitting and quality grading are taken.

【0108】これら前記判定後の処理の内、座屈発生が
予測された鋼板に対し、引き続き再矯正処置を講ずるこ
とが最善の策である。
[0108] Among the processes after the above-mentioned judgment, the best measure is to continuously perform a re-correction treatment on the steel plate in which buckling is predicted to occur.

【0109】次いで、同じく図1に基づき上記(A)式
により座屈発生が予測された鋼板への対処につき説明す
る(図1、S−55)。
Next, a method for dealing with a steel sheet in which buckling is predicted by the above equation (A) will be described with reference to FIG. 1 (FIG. 1, S-55).

【0110】鋼板が熱間矯正された後、自然放冷にある
過程で、座屈の発生が予測された連続低温域において、
その平均温度差(Ta )p'が次の(B)式を満たす範囲
内で再び矯正する理由を述べる。
After the steel sheet has been hot-straightened, in the process of allowing it to cool naturally, in a continuous low-temperature region where buckling is predicted to occur,
The reason for correcting again within the range where the average temperature difference (Ta) p 'satisfies the following equation (B) will be described.

【0111】 (ΔTa )p −(ΔTa )cr<(ΔTa )p'<(ΔTa )cr・・・(B) 図8は、再矯正を行うべき連続低温域の平均温度差の範
囲を説明するための図である。
(ΔTa) p− (ΔTa) cr <(ΔTa) p ′ <(ΔTa) cr (B) FIG. 8 illustrates the range of the average temperature difference in the continuous low-temperature region in which re-correction is to be performed. FIG.

【0112】(1)まず、下限値(ΔTa )p −(ΔT
a )crは次の要件から定めた。
(1) First, the lower limit (ΔTa) p− (ΔT
a) cr is determined from the following requirements.

【0113】鋼板が自然放冷されてその温度が低下する
段階で、熱間矯正直後に生じていた温度差(ΔTa )p
も徐々に減少する。この自然放冷過程の途中での連続低
温域の平均温度差を(ΔTa )p'とすると、図8(a)
に示すように、(ΔTa )p'の減少に伴って熱応力が増
加し、室温(R.T.)では熱応力σ* を生じる。このσ*
が臨界座屈応力σcrを越える場合、この鋼板には座屈が
生じることになる。
At the stage where the temperature of the steel sheet is naturally cooled and lowered, the temperature difference (ΔTa) p generated immediately after the hot straightening.
Also gradually decreases. Assuming that the average temperature difference in the continuous low-temperature region during the natural cooling process is (ΔTa) p ′, FIG.
As shown in (2), the thermal stress increases as (ΔTa) p ′ decreases, and a thermal stress σ * occurs at room temperature (RT). This σ *
If the stress exceeds the critical buckling stress σcr, the steel plate will buckle.

【0114】一方、R.T.で応力σcrを生じる平均温度差
は既に導いた(ΔTa )crである。
On the other hand, the average temperature difference at which the stress σcr at RT is (ΔTa) cr has already been derived.

【0115】そこで、図8(a)のσ* −(ΔTa )p'
線図上において、応力がσcrに到達するときの平均温度
差TL は、ΔTL =(ΔTa )p −(ΔTa )crとな
る。 鋼板に座屈が一旦生じてしまうと、鋼板の搬送や
再矯正が困難となるので、座屈を生じさせないようにΔ
TL 以上の温度域で再矯正を行うことが好ましく、ΔT
Lが(B)式で定義した再矯正を行う平均温度差の下限
値となる。
Therefore, σ * − (ΔTa) p ′ shown in FIG.
On the diagram, the average temperature difference TL when the stress reaches σcr is ΔTL = (ΔTa) p-(ΔTa) cr. Once buckling occurs in the steel sheet, it becomes difficult to transport and re-correct the steel sheet.
It is preferable to perform re-correction in a temperature range of TL or higher, and ΔT
L is the lower limit value of the average temperature difference for performing the re-correction defined by the formula (B).

【0116】(2)一方、上限値は次の要件によって定
めた。
(2) On the other hand, the upper limit was determined according to the following requirements.

【0117】再矯正を行って鋼板の内部応力を解放した
としても、その時点で連続低温域の平均温度差が(ΔT
a )crを越えると、再び自然放冷を繰り返す段階で座屈
が生じることになるので、再矯正を行うときの(ΔTa
)p'の上限ΔTU は(ΔTa)crであることが必要であ
る。
Even if the internal stress of the steel sheet is released by performing re-correction, the average temperature difference in the continuous low-temperature region at that point is (ΔT
a) If the value exceeds cr, buckling will occur at the stage where the natural cooling is repeated again.
) The upper limit ΔTU of p ′ needs to be (ΔTa) cr.

【0118】さて、上記のように再矯正を行うタイミン
グは座屈の発生機構から、連続低温域の平均温度差の値
に基づいて行われるべきであるが、自然放冷過程の途中
において、鋼板の温度分布を常時測定することは非常に
煩雑である。自然放冷過程における連続低温域の平均温
度差と鋼板温度との間にはほぼ完全な線形関係が成り立
つので、実際の運用においては、図8(b)に模式的に
示すように連続低温域の平均温度TAVE が、下記の(1
6)式に示すTL 〜TU の範囲で再矯正を行えば良い
(図1、S−56)。
Now, the timing of performing the re-correction as described above should be based on the value of the average temperature difference in the continuous low-temperature region due to the mechanism of buckling. It is very troublesome to constantly measure the temperature distribution of the sample. Since an almost perfect linear relationship is established between the average temperature difference in the continuous low-temperature region and the steel plate temperature in the natural cooling process, in the actual operation, as shown schematically in FIG. The average temperature TAVE of the following (1)
The re-correction may be performed in the range of TL to TU shown in equation (6) (FIG. 1, S-56).

【0119】 TL =△TL ・{(TAVE −R.T.)/(△Ta )p }+R.T. , TU =△TU ・{(TAVE −R.T.)/(△Ta )p }+R.T.・・・(16) 連続低温域の平均温度差(ΔTa )p が非常に大きい場
合、一回だけの再矯正では座屈の発生が防止できない場
合もある。この場合は図8(c)に示すように、平均温
度差の減少量が(ΔTa )cr以下である温度域R1、例
えば温度TR1で一旦再矯正を行い、TR1における平均温
度差(ΔTa )p'R1にて、(B)式の(ΔTa )p を置
き換えることによって、(B)式から再度決定される温
度域R2の範囲において再々度の矯正を行えばよい(図
1、S−57)。
TL = △ TL · {(TAVE−RT) / (△ Ta) p} + R.T., TU = △ TU · {(TAVE−RT) / (△ Ta) p} + R.T. (16) When the average temperature difference (ΔTa) p in the continuous low-temperature region is extremely large, occurrence of buckling may not be prevented by re-correction only once. In this case, as shown in FIG. 8C, re-correction is performed once in a temperature range R1 in which the amount of decrease in the average temperature difference is equal to or less than (ΔTa) cr, for example, the temperature TR1, and the average temperature difference (ΔTa) p in TR1 is obtained. By replacing (ΔTa) p in equation (B) with 'R1, correction can be performed again in the temperature range R2 determined again from equation (B) (FIG. 1, S-57). .

【0120】また、上記の方法では再矯正を鋼板温度に
基づいて行うが、この時の鋼板温度は毎回測定する必要
はなく、例えば次の(C)式を用いて推定すれば十分で
ある。
In the above method, re-correction is performed based on the temperature of the steel sheet. However, the temperature of the steel sheet at this time does not need to be measured every time, and it is sufficient to estimate the temperature using, for example, the following equation (C).

【0121】 θ(t)=θf +(θ0 −θf )・exp(−mt), m=2α/(c・γ・h) ・・・(C) 但し、ここでθ(t)は鋼板の温度、θf は外部の雰囲
気温度、θ0 は自然放冷開始時すなわち熱間矯正終了直
後の着目する連続低温域の温度、cは鋼板材料の比熱、
γは鋼板材料の比重、hは板厚であり、αは自然放冷に
おける熱伝達係数である。 αの値は鋼板の温度を測定
し、上記(C)式による温度θ(t)と測温結果との差
が最小になるように定めることが必要である。
Θ (t) = θf + (θ0−θf) · exp (−mt), m = 2α / (c · γ · h) (C) where θ (t) is Temperature, θf is the temperature of the external atmosphere, θ0 is the temperature of the continuous low-temperature region of interest immediately after the start of natural cooling, that is, immediately after the completion of hot straightening, c is the specific heat of the steel
γ is the specific gravity of the steel sheet material, h is the plate thickness, and α is the heat transfer coefficient in natural cooling. It is necessary to determine the value of α such that the temperature of the steel sheet is measured and the difference between the temperature θ (t) according to the above equation (C) and the temperature measurement result is minimized.

【0122】このように定めたαを用いれば、上記
(C)式から、鋼板温度が所定の温度に低下するまでの
自然放冷時間を逆算することができ、TL とTU に対応
する時間で定められる時間内において再矯正を行えば、
座屈の発生を防止することができる。
By using α thus determined, the natural cooling time until the steel sheet temperature decreases to the predetermined temperature can be calculated back from the above equation (C), and the time corresponding to TL and TU can be calculated. If re-correction is performed within the set time,
Buckling can be prevented.

【0123】[0123]

【実施例】前述の従来技術の追加試験を行った強制冷却
鋼板、すなわち、熱間圧延後766℃〜786℃の温度
から速度38m/min〜56m/minで搬送しつ
つ、鋼板の上面を複数個のスリットノズルから流下させ
るラミナ水膜により、鋼板下面を複数個の水スプレによ
り、452℃〜520℃の範囲にまで強制冷却した、幅
2200mm、板厚30.7mm、長さ19000mm
の鋼板16枚と、幅3180mm、板厚30.5mm、
長さ27000mmの鋼板20枚について、強制冷却装
置に続く熱間矯正機位置で鋼板の上面全域の温度を面温
度計で測定し、本発明の方法を用いて、室温での平坦不
良を予測した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A forced-cooled steel sheet subjected to the above-mentioned additional test of the prior art, that is, a plurality of upper surfaces of a steel sheet were conveyed from a temperature of 766 ° C. to 786 ° C. at a speed of 38 m / min to 56 m / min after hot rolling. The lower surface of the steel plate was forcibly cooled to a range of 452 ° C. to 520 ° C. by a plurality of water sprays by a lamina water film flowing down from the slit nozzles, width 2200 mm, plate thickness 30.7 mm, length 19000 mm
16 sheets of steel, width 3180mm, thickness 30.5mm,
For 20 sheets of 27000 mm length, the temperature of the entire upper surface of the sheet was measured by a surface thermometer at the position of the hot straightening machine following the forced cooling device, and the flatness at room temperature was predicted using the method of the present invention. .

【0124】この実施例では、前述の図2に示す構成の
強制冷却鋼板圧延装置を用いて温度測定と比較演算を行
った。すなわち、熱間矯正機4の手前に設けた面温度計
5Uにより鋼板の上面温度を計測した。面温度計5Uに
よる測温結果は面温度計から一旦、面温度計での測定サ
ンプリングのタイミングを制御するパーソナルコンピュ
ータ6Uに転送し、その後直ちに、比較演算を行う矯正
制御装置9であるエンジニアリングワークステーション
(以後EWSと記述)に通信ネットワーク(イーサネッ
ト)を経由して転送した。
In this embodiment, the temperature measurement and the comparison operation were performed using the above-described forced cooling steel plate rolling apparatus having the configuration shown in FIG. That is, the upper surface temperature of the steel plate was measured by the surface thermometer 5U provided in front of the hot straightening machine 4. The result of the temperature measurement by the surface thermometer 5U is temporarily transferred from the surface thermometer to the personal computer 6U for controlling the timing of measurement sampling by the surface thermometer, and immediately thereafter, the engineering workstation which is the correction control device 9 which performs the comparison operation. (Hereinafter referred to as EWS) via a communication network (Ethernet).

【0125】面温度計の解像度は、鋼板幅方向に約80
画素、鋼板長さ方向に約300画素であったが、測温デ
ータを記憶するEWS磁気ディスク容量の制約から、鋼
板幅方向に41点、長さ方向に61点の温度データのみ
を保存することにし、これらの測温データを用いた。た
だし、鋼板の4周は鋼板のエッジの検出を厳密に行うこ
とが困難なため、エッジに相当する格子列および格子行
を鋼板左右ならびに前後で1格子列ならびに1格子行づ
つ削除し、平坦不良の予測には幅方向39格子列、長さ
方向59格子行を用いた。部分領域長さは、鋼板の幅と
ほぼ等しく与えた。すなわち、部分領域を構成する格子
列数はどちらの鋼板においても8とした。よって、幅2
200mmの鋼板の場合の部分領域長は2217mm、
幅3180mmの鋼板の場合の部分領域長は3150m
mである。
The resolution of the surface thermometer is approximately 80 in the width direction of the steel sheet.
Pixels: Approximately 300 pixels in the length direction of the steel plate. However, due to the limitation of the EWS magnetic disk capacity for storing temperature measurement data, only 41 points in the width direction of the steel plate and 61 points in the length direction need to be stored. These temperature measurement data were used. However, since it is difficult to detect the edges of the steel plate strictly in the four laps of the steel plate, the grid rows and grid rows corresponding to the edges are deleted by one grid row and one grid row on the left, right, front and rear of the steel plate. For the prediction, 39 grid columns in the width direction and 59 grid rows in the length direction were used. The partial area length was given approximately equal to the width of the steel sheet. That is, the number of grid rows constituting the partial region was set to 8 in both steel plates. Therefore, width 2
The partial area length for a 200 mm steel plate is 2217 mm,
The partial area length for a steel plate with a width of 3180 mm is 3150 m
m.

【0126】k=2として、この部分領域を鋼板の長さ
方向に2格子列おきに移動させ、一枚の鋼板について全
26個のブロックについて、それぞれの連続低温域とそ
の平均温度差を演算し、連続低温域の形態に対応する座
屈限界温度差を演算して、平均温度差と比較することに
よって平坦不良の発生を予測した。このようにして得ら
れた平均温度差について、座屈限界温度差を越えて座屈
限界温度差との差が最も大きいもの、あるいは、どの部
分領域においても平均温度差が座屈限界温度差を越えな
い場合には、座屈限界温度差に最も近い平均温度差の値
を抽出した。
Assuming that k = 2, this partial area is moved in every two lattice rows in the length direction of the steel sheet, and the continuous low-temperature area and the average temperature difference are calculated for all 26 blocks for one steel sheet. Then, the buckling limit temperature difference corresponding to the form of the continuous low-temperature region was calculated, and the occurrence of the flatness failure was predicted by comparing with the average temperature difference. The average temperature difference obtained in this way exceeds the buckling limit temperature difference and has the largest difference with the buckling limit temperature difference, or the average temperature difference in any partial region indicates the buckling limit temperature difference. If not exceeded, the value of the average temperature difference closest to the buckling limit temperature difference was extracted.

【0127】図9は、この実施例の測定および演算結果
を連続低温域の平均温度差(△Ta)p と座屈限界温度
差(△Ta )crとの関係で示した図である。ここで平坦
形状に不良が生じたものについては平均温度差のマーク
を黒く塗りつぶして示した。
FIG. 9 is a diagram showing the measurement and calculation results of this embodiment in the relationship between the average temperature difference (ΔTa) p in the continuous low temperature region and the buckling limit temperature difference (ΔTa) cr. Here, the mark of the average temperature difference is indicated by blacking out the mark where the flat shape has a defect.

【0128】図9からわかるように、前記(A)式が成
立する領域、すなわち本発明方法で述べた平均温度差
(ΔTa )p が座屈限界温度差(ΔTa )crを越える領
域と、平坦不良の発生実績とはよく一致しており、本発
明の方法が平坦不良の発生予測ならびに平坦形状の良否
判定に有効であることが確認された。
As can be seen from FIG. 9, the region where the above equation (A) is satisfied, that is, the region where the average temperature difference (ΔTa) p exceeds the buckling limit temperature difference (ΔTa) cr described in the method of the present invention, This is in good agreement with the record of occurrence of defects, and it was confirmed that the method of the present invention is effective for predicting the occurrence of flat defects and determining the quality of flat shapes.

【0129】次に、上記実施例と同様の条件で強制冷却
した鋼板について、本発明方法によって座屈が発生する
と予測された場合には、(B)式に従って再矯正ならび
に再々矯正を行った。その結果をそれぞれ下記の表1お
よび表2に示す。
Next, when it was predicted that buckling would occur by the method of the present invention, the steel sheet which was forcibly cooled under the same conditions as in the above example was re-rectified and re-rectified according to the formula (B). The results are shown in Tables 1 and 2 below.

【0130】表1は、熱間矯正後の自然放冷過程におい
て、本発明方法により再矯正を行った場合の鋼板平坦度
を示す実施例およびその比較例である。
Table 1 shows Examples showing the flatness of a steel sheet when re-correction is performed by the method of the present invention in a natural cooling process after hot correction, and Comparative Examples thereof.

【0131】また表2は、熱間矯正後の自然放冷過程に
おいて、本発明方法に従って再矯正とさらにその後の再
々矯正が必要であった場合の実施例である。
Table 2 shows an example in which in the natural cooling process after hot straightening, re-correction according to the method of the present invention and further subsequent re-correction were necessary.

【0132】[0132]

【表1】 [Table 1]

【0133】[0133]

【表2】 [Table 2]

【0134】再矯正を行わない場合には、前記図9に示
したように平坦不良が発生する温度差条件を有する鋼板
においても、本発明方法の範囲内で再矯正または再々矯
正を実施することにより、座屈の発生を完全に防止する
ことが可能であることが確認された。
In the case where re-correction is not performed, re-correction or re-re-correction should be performed within the scope of the method of the present invention even for a steel sheet having a temperature difference condition in which flatness occurs as shown in FIG. As a result, it was confirmed that buckling can be completely prevented.

【0135】[0135]

【発明の効果】本発明方法によると、鋼板の製造過程に
おいて、強制冷却に続く熱間矯正の段階で、室温状態の
平坦不良の発生を未然に予測し、鋼板の平坦形状の良否
判定をすることが可能となる。さらに、平坦不良が発生
する前に平坦不良発生予測材のみを再度熱間矯正行うこ
とによって、平坦不良の発生を効率よく防止することが
可能となる。
According to the method of the present invention, in the manufacturing process of a steel sheet, at the stage of hot straightening following forced cooling, the occurrence of flatness failure at room temperature is predicted beforehand, and the quality of the flat shape of the steel sheet is determined. It becomes possible. Further, by performing the hot straightening again only on the material for predicting the occurrence of the flat defect before the occurrence of the flat defect, it is possible to efficiently prevent the occurrence of the flat defect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施に用いた矯正制御装置の演算
・制御ブロック図である。
FIG. 1 is a calculation and control block diagram of a correction control device used for implementing a method of the present invention.

【図2】本発明方法を実施した強制冷却鋼板製造装置の
圧延機以降の構成図である。
FIG. 2 is a configuration diagram after a rolling mill of a forced cooling steel sheet manufacturing apparatus in which the method of the present invention is performed.

【図3】熱鋼板を強制冷却したに熱間矯正機位置にて測
定した、鋼板幅端部と幅中央部との最大温度差と、平坦
不良発生実績との対応を示す図である。
FIG. 3 is a diagram showing a correspondence between a maximum temperature difference between a width end portion and a width center portion of a steel sheet measured at a position of a hot straightening machine after a hot steel sheet is forcibly cooled and a flat defect occurrence record.

【図4】図3で示した鋼板の温度測定データについて、
幅端部と幅中央部との温度差を鋼板長さ方向に平均した
ものと平坦不良発生実績との関係を示す図である。
FIG. 4 shows the temperature measurement data of the steel sheet shown in FIG.
It is a figure which shows the relationship between what averaged the temperature difference of the width end part and the width center part in the steel plate length direction, and the flat defect occurrence result.

【図5】鋼板の幅方向最大温度差と平坦不良発生実績と
の関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between a maximum temperature difference in a width direction of a steel sheet and a record of occurrence of flat defect.

【図6】熱間矯正機位置での測温結果を用いて室温での
残留応力を有限要素法により計算し、圧縮応力域の分布
を示す図および本発明の方法によって連続低温域と判定
された部分を例示する図である。
FIG. 6 is a diagram showing the distribution of the compressive stress region calculated by the finite element method based on the residual stress at room temperature using the temperature measurement result at the position of the hot straightening machine, and it is determined that the region is a continuous low temperature region by the method of the present invention. FIG.

【図7】幅中央部に全体重心Gが位置する2圧縮応力域
の場合の、座屈係数K(gp )と、個々の圧縮応力域の
位置との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the buckling coefficient K (gp) and the position of each compressive stress region in the case of two compressive stress regions where the overall center of gravity G is located at the center of the width.

【図8】再矯正を行うべき連続低温域の平均温度差の範
囲を説明するための図である。
FIG. 8 is a diagram for explaining a range of an average temperature difference in a continuous low-temperature region in which re-correction is to be performed.

【図9】本発明実施例の測定および演算結果を連続低温
域の平均温度差(△Ta )p と座屈限界温度差(△Ta
)crとの関係で示した図である。
FIG. 9 shows the results of measurement and calculation of the embodiment of the present invention, in which the average temperature difference (ΔTa) p and the buckling limit temperature difference (ΔTa) in the continuous low temperature range are obtained.
FIG.

【図10】強制冷却によって生じる鋼板の温度分布を例
示する図である。
FIG. 10 is a diagram illustrating a temperature distribution of a steel sheet generated by forced cooling.

【符号の説明】[Explanation of symbols]

1 鋼板 2 圧延機(ロールスタンド) 3 強制冷却装置 4 熱間矯正機 5および7 面温度計(赤外線放射面温度計) 6および8 温度計測制御装置(パーソナルコンピュ
ータ) 9 矯正制御装置(エンジニアリング・ワークステー
ション)。
REFERENCE SIGNS LIST 1 steel plate 2 rolling mill (roll stand) 3 forced cooling device 4 hot straightening machine 5 and 7 surface thermometer (infrared radiation surface thermometer) 6 and 8 temperature measurement control device (personal computer) 9 straightening control device (engineering work) station).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/52,9/56 C21D 9/573,11/00 B21B 37/00,45/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/52, 9/56 C21D 9/573, 11/00 B21B 37/00, 45/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱鋼板を強制冷却した後に熱間矯正し、そ
の後に自然放冷する鋼板の製造過程において、熱間矯正
終了後の鋼板の表面全体の温度分布を測定し、この測定
温度分布上で鋼板幅の1/2から2倍の長さと鋼板幅と
同じ幅を有する部分領域rを鋼板の長さ方向に移動させ
つつ形成し、これらの部分領域r内の平均温度TBrと鋼
板各部の温度とを比較演算し、部分領域内において鋼板
の長さ方向に鋼板温度が平均温度TBrよりも連続して低
い全ての連続低温域pを検出し、前記連続低温域の幅と
幅方向の位置から定義する座屈限界温度差(ΔTa )cr
と連続低温域p内の鋼板温度と部分領域平均温度TBrと
の差の平均値(ΔTa )pとを演算し、下記(A)式に
基づき製品鋼板の平坦形状の良否を判定することを特徴
とする鋼板の製造方法。 (ΔTa )p >(ΔTa )cr ・・・(A)
In a manufacturing process of a steel sheet in which a hot steel sheet is forcibly cooled, hot-straightened and then naturally cooled, a temperature distribution of the entire surface of the steel sheet after the completion of the hot straightening is measured, and the measured temperature distribution is measured. A partial region r having a length equal to 1/2 to twice the width of the steel plate and the same width as the steel plate width is formed while being moved in the longitudinal direction of the steel plate, and the average temperature TBr in these partial regions r and each part of the steel plate are formed. And in the partial area, in the length direction of the steel sheet, detects all the continuous low-temperature areas p in which the steel sheet temperature is continuously lower than the average temperature TBr, and detects the width of the continuous low-temperature area and the width in the width direction. Buckling limit temperature difference (ΔTa) cr defined from position
And the average value (ΔTa) p of the difference between the steel sheet temperature in the continuous low temperature range p and the partial area average temperature TBr, and judge the quality of the flat shape of the product steel sheet based on the following equation (A). Manufacturing method of steel sheet. (ΔTa) p> (ΔTa) cr (A)
【請求項2】請求項1に記載の鋼板の製造方法におい
て、前記(A)式が成り立つ場合には、自然放冷過程に
おける前記連続低温域pでの平均温度差(ΔTa )p'を
演算し、この(ΔTa )p'の値が、下記(B)式で示す
範囲内にある間に再度矯正を行うことを特徴とする鋼板
の製造方法。 (ΔTa )p −(ΔTa )cr<(ΔTa )p'<(ΔTa )cr・・・(B)
2. In the method for manufacturing a steel sheet according to claim 1, when the formula (A) is satisfied, an average temperature difference (ΔTa) p ′ in the continuous low-temperature region p in the natural cooling process is calculated. A method for producing a steel sheet, wherein the straightening is performed again while the value of (ΔTa) p ′ is within the range shown by the following equation (B). (ΔTa) p− (ΔTa) cr <(ΔTa) p ′ <(ΔTa) cr (B)
JP07301843A 1995-11-21 1995-11-21 Steel plate manufacturing method Expired - Fee Related JP3114593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07301843A JP3114593B2 (en) 1995-11-21 1995-11-21 Steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07301843A JP3114593B2 (en) 1995-11-21 1995-11-21 Steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JPH09143574A JPH09143574A (en) 1997-06-03
JP3114593B2 true JP3114593B2 (en) 2000-12-04

Family

ID=17901834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07301843A Expired - Fee Related JP3114593B2 (en) 1995-11-21 1995-11-21 Steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP3114593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449455B2 (en) * 2001-10-10 2010-04-14 Jfeスチール株式会社 Steel plate manufacturing method
CN109097553B (en) * 2018-06-28 2020-06-12 首钢京唐钢铁联合有限责任公司 IF steel bulge defect control method

Also Published As

Publication number Publication date
JPH09143574A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
EP2119513B1 (en) Metal-band hot-rolling method and apparatus using near infrared camera
KR100432682B1 (en) Metal plate flatness controlling method and device
JPS6347775B2 (en)
JP4523010B2 (en) Steel plate manufacturing method
CN114888094B (en) Rolling plate shape compensation method based on residual stress prediction in cooling process
JP3114593B2 (en) Steel plate manufacturing method
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP4269394B2 (en) Steel plate shape prediction method
JPH105868A (en) Method for controlling shape of control-cooled steel plate
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP4018572B2 (en) Manufacturing method of steel sheet with small variation in yield stress and residual stress
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP4525037B2 (en) Roller straightening method for steel sheet
JP2003311326A (en) Steel plate manufacturing method
JP4710237B2 (en) Method for predicting deformation of thick steel plate and method for manufacturing the same
JP4010301B2 (en) Hot rolled steel sheet production line and method
WO2020162004A1 (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JPH0689411B2 (en) Flatness of hot rolled steel sheet Cooling method to prevent shape defects
JPH0890046A (en) Cooling method of hot steel plate
JPH08300040A (en) Straightening method of thick steel plate
JP3518504B2 (en) How to set cooling conditions for steel sheets
JP3994965B2 (en) Steel plate manufacturing method
JP3839753B2 (en) Steel plate evaluation method
JP3239761B2 (en) Method of estimating stripped camber and method of manufacturing steel sheet with less stripped camber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees