JPH08300040A - Straightening method of thick steel plate - Google Patents
Straightening method of thick steel plateInfo
- Publication number
- JPH08300040A JPH08300040A JP12742095A JP12742095A JPH08300040A JP H08300040 A JPH08300040 A JP H08300040A JP 12742095 A JP12742095 A JP 12742095A JP 12742095 A JP12742095 A JP 12742095A JP H08300040 A JPH08300040 A JP H08300040A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- straightening
- steel plate
- hot
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
- Straightening Metal Sheet-Like Bodies (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱間圧延された鋼板をオ
ンラインで熱間矯正する際の矯正方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for straightening hot-rolled steel sheet online.
【0002】[0002]
【従来の技術】仕上げ圧延された厚鋼板を搬送テーブル
上を搬送させて熱間矯正する際に、鋼板内に温度不均一
性があると、空冷後鋼板に残留応力が発生して形状不良
が発生することが知られている。熱間矯正時における温
度不均一性の原因としては、スラブの加熱時における加
熱不均一性、圧延時の温度不均一性、デスケーリングに
おける冷却の不均一が考えられる。2. Description of the Related Art When a thick steel sheet subjected to finish rolling is conveyed on a conveyor table and hot-corrected, if there is temperature nonuniformity in the steel sheet, residual stress occurs in the steel sheet after air cooling, resulting in defective shape. It is known to occur. Possible causes of temperature nonuniformity during hot straightening include heating nonuniformity during slab heating, temperature nonuniformity during rolling, and nonuniform cooling during descaling.
【0003】従来、これを解決するために熱間矯正時
に、温度分布を一様にすること、鋼板中央部を弱冷却す
ること、通常低温となっている鋼板の幅端部を加熱する
こと等が検討されてきた。Conventionally, in order to solve this problem, at the time of hot straightening, the temperature distribution is made uniform, the central portion of the steel sheet is weakly cooled, and the width end portion of the steel sheet which is usually at a low temperature is heated. Has been considered.
【0004】特開昭62−81217号公報には、ロー
ル矯正機入側の鋼板の板幅方向の温度分布を測定し、こ
の測定した板幅方向の温度分布の高温部と低温部との温
度差を求め、この温度差が矯正冷却後に冷却歪を生じな
い温度差であればそのまま矯正し、温度差が矯正冷却後
に冷却歪を生じる温度差であれば、その温度差が矯正冷
却後に冷却歪を生じない温度差以下になるように鋼板の
板幅方向の温度を制御した後に矯正する方法が開示され
ている。温度の制御方法は、鋼板の低温部分を加熱し、
または、高温部分を冷却することによって行われてい
る。In Japanese Patent Laid-Open No. 62-81217, the temperature distribution in the plate width direction of the steel plate on the entrance side of the roll straightening machine is measured, and the temperature of the measured temperature distribution in the plate width direction between the high temperature part and the low temperature part is measured. If the temperature difference is a temperature difference that does not cause cooling distortion after straightening cooling, it is corrected as it is.If the temperature difference is a temperature difference that causes cooling distortion after straightening cooling, the temperature difference is cooling distortion after straightening cooling. There is disclosed a method of controlling the temperature of the steel sheet in the plate width direction so as to be equal to or less than a temperature difference that does not cause the temperature difference and then correcting the temperature. The temperature control method is to heat the low temperature part of the steel plate,
Alternatively, it is performed by cooling the high temperature portion.
【0005】特開平6−7847号公報に記載された矯
正方法は厚鋼板を仕上圧延後、熱間矯正機で矯正する方
法において、熱間矯正機後方に冷却設備を設け、厚鋼板
端部を空冷、厚鋼板中央部を冷却水量として0.1m3
/m2 /分〜0.4m3 /m2 /分の弱冷却で冷却する
方法である。これは、熱間矯正後鋼板エッジ部の温度を
鋼板内部の温度より高くすることにより、空冷後の残留
応力を鋼板エッジ部では引張応力とし、耳波の発生を抑
えて、フラットな厚鋼板を製造しょうというものであ
る。The straightening method described in Japanese Patent Application Laid-Open No. 6-7847 is a method of finish rolling a thick steel plate and then straightening it with a hot straightening machine. Air cooling, thickened steel plate central part with cooling water amount of 0.1 m 3
/ M 2 / min to 0.4 m 3 / m 2 / min. This is because by making the temperature of the steel sheet edge part after hot straightening higher than the temperature inside the steel sheet, the residual stress after air cooling is made a tensile stress at the steel sheet edge part, suppressing the occurrence of seismic waves, and making a flat thick steel plate. Let's manufacture.
【0006】特開平6−285530号公報に記載され
た方法は、圧延終了後の板厚10mm以下の鋼板の幅端
部を、幅端部から少なくとも50mm、最大200mm
の範囲で鋼板全長にわたり、圧延終了から熱間矯正完了
までの過程で加熱し、鋼板の中央部温度と加熱範囲の平
均温度との温度差が所定の条件式を満足する温度に加熱
するものである。これは、鋼板幅端部を圧延終了から熱
間矯正完了までの過程で加熱することにより、鋼板幅端
部に発生する圧縮応力の軽減あるいは分布を調整して、
座屈に到らない応力分布にするものである。In the method described in Japanese Patent Laid-Open No. 6-285530, the width end of a steel plate having a thickness of 10 mm or less after rolling is at least 50 mm from the width end and 200 mm at maximum.
In the range from the end of rolling to the end of hot straightening over the entire length of the steel sheet, and the temperature difference between the center temperature of the steel sheet and the average temperature of the heating range satisfies the specified conditional expression. is there. This is to reduce or distribute the compressive stress generated at the steel plate width end by heating the steel plate width end during the process from the end of rolling to the completion of hot straightening.
The stress distribution does not cause buckling.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、このよ
うな方法では、鋼板の平坦度の向上は、ある程度図れる
が、部分的な冷却もしくは加熱を行わなければならず、
いずれも経済的ではなく、また、再矯正発生率を大幅に
低減するには到っていない。本発明の目的は、簡便な手
段によって再矯正発生率を大幅に低減することが可能な
までに矯正後の鋼板の残留応力を低減する方法を提供す
ることである。However, in such a method, although the flatness of the steel sheet can be improved to some extent, partial cooling or heating must be performed,
None of them are economical, and the incidence of re-correction has not been significantly reduced. An object of the present invention is to provide a method for reducing the residual stress of a steel sheet after straightening by a simple means so that the occurrence rate of re-straightening can be significantly reduced.
【0008】[0008]
【課題を解決するための手段】上記課題は矯正機入側に
て、鋼板面内の最高温度と最低温度から求まる平均温度
が、その鋼板の変態開始温度と変態終了温度の間にある
とき、または、変態開始温度もしくは変態終了温度にほ
ぼ等しくなるように空冷もしくは水冷してから矯正を開
始することにより達成されるとの知見に基づき下記の発
明をするに至った。[Means for Solving the Problems] The above-mentioned problems are as follows. When the average temperature obtained from the maximum temperature and the minimum temperature in the plane of the steel plate on the inlet side of the straightening machine is between the transformation start temperature and the transformation end temperature of the steel sheet, Alternatively, the invention described below has been achieved based on the finding that it can be achieved by air-cooling or water-cooling so that the temperature becomes almost equal to the transformation start temperature or the transformation end temperature and then the correction is started.
【0009】請求項1の発明は、熱間圧延終了後の厚鋼
板を熱間矯正する際に、鋼板面内の平均温度が、該鋼種
のA3 変態開始温度からA1 変態終了温度の範囲内にあ
る時点で矯正を開始することを特徴とする厚鋼板の矯正
方法を提供する。According to the first aspect of the present invention, when the thick steel sheet after hot rolling is hot-corrected, the average temperature in the plane of the steel sheet is in the range from the A 3 transformation start temperature to the A 1 transformation end temperature of the steel type. There is provided a method for straightening a thick steel plate, characterized by starting straightening at a certain point.
【0010】請求項2の発明は、熱間圧延終了後の厚鋼
板を熱間矯正する際に、鋼板面内の平均温度が、該鋼種
のA3 変態開始温度もしくはA1 変態終了温度にほぼ等
しくなった時点で矯正を開始することを特徴とする厚鋼
板の矯正方法を提供する。According to the second aspect of the invention, when the thick steel sheet after hot rolling is hot-corrected, the average temperature in the plane of the steel sheet is almost equal to the A 3 transformation start temperature or A 1 transformation end temperature of the steel type. Provided is a method for straightening thick steel plates, which is characterized by starting straightening when they are equal.
【0011】また請求項3の発明は、前記平均温度を、
最高温度と最低温度から求まる算術平均温度、鋼板面内
の線温度分布の測定結果を線積分して線の長さで除して
得られた線平均温度、若しくは鋼板面内の面温度分布の
測定結果を面積積分して全面積で除して得られた面積平
均温度の何れかとすることを特徴とする請求項1又は2
のいずれかに記載された厚鋼板の矯正方法を提供する。According to the invention of claim 3, the average temperature is
The arithmetic mean temperature obtained from the maximum temperature and the minimum temperature, the line average temperature obtained by dividing the measurement result of the line temperature distribution in the steel plate plane by the line length, or the surface temperature distribution in the steel plate plane The area average temperature obtained by integrating the measurement result and dividing the result by the total area is used as one of the areas.
There is provided a method for straightening a thick steel plate described in any one of 1.
【0012】[0012]
【作用】本発明の原理は以下のように説明することがで
きる。図1は炭素鋼をオーステナイト状態に加熱して冷
却した場合の熱膨張曲線を模式的に示したものである。
図1の縦軸は長さの変化を示し、上方は膨張、下方は収
縮を示す。横軸は温度を示す。図のA点においてA3 変
態が開始されB点においてA1 変態が終了する。The principle of the present invention can be explained as follows. FIG. 1 schematically shows a thermal expansion curve when carbon steel is heated to an austenite state and cooled.
The vertical axis of FIG. 1 represents the change in length, the upper part represents expansion and the lower part represents contraction. The horizontal axis represents temperature. The A 3 transformation starts at point A and the A 1 transformation ends at point B in the figure.
【0013】さらに、圧延後の鋼板温度がA3 変態開始
点A点の近傍になったとき、鋼板面内の最高温度をH点
とし、最低温度をF点とすると、最高温度と最低温度と
の平均温度G点がA点の近傍に来れば、H点とF点に相
当する鋼板部分の熱歪をほぼ同一にできるので、この時
点から熱間矯正を行うならば、板面全体が常温になった
ときに発生する歪、即ち残留応力を最も小さくできると
考えられる。Further, when the temperature of the steel sheet after rolling is near the A 3 transformation start point A point, if the maximum temperature in the plane of the steel sheet is H point and the minimum temperature is F point, the maximum temperature and the minimum temperature are If the average temperature G point near point A comes close to point A, the thermal strains of the steel plate portions corresponding to points H and F can be made almost the same, so if hot correction is performed from this point, the entire plate surface will be at room temperature. It is considered that the strain, which is generated when it becomes, that is, the residual stress can be minimized.
【0014】同様に圧延後の鋼板温度がA1 変態終了点
B点の近傍になったとき、鋼板面内の最高温度をE点と
し、最低温度をC点とすると、最高温度と最低温度との
平均温度D点がB点の近傍に来れば、E点とC点に相当
する鋼板部分の熱歪をほぼ同一にできるので、この時点
から熱間矯正を行うならば、板面全体が常温になったと
きに発生する歪、即ち残留応力を最も小さくできると考
えられる。Similarly, when the temperature of the steel sheet after rolling is near the A 1 transformation end point B, the maximum temperature in the plane of the steel sheet is point E, and the minimum temperature is point C. If the average temperature of point D is near the point B, the thermal strains of the steel plate portions corresponding to points E and C can be made almost the same, so if hot correction is performed from this point, the entire plate surface will be at room temperature. It is considered that the strain, which is generated when it becomes, that is, the residual stress can be minimized.
【0015】ここで、鋼板を圧延後の冷却過程において
矯正する場合は、A点はAr3 変態点であり、B点はA
r1 変態の終了点である。本発明を鋼板を再加熱して矯
正する場合にはA点はAc3 変態点であり、B点はAc
1 変態点である。When the steel sheet is straightened in the cooling process after rolling, point A is the Ar 3 transformation point and point B is A
This is the end point of the r 1 transformation. In the case where the present invention corrects the steel sheet by reheating it, the point A is the Ac 3 transformation point, and the point B is the Ac 3 transformation point.
It is one transformation point.
【0016】熱歪の観点のみからみると、平均温度がA
1 変態終了点あるいはA3 変態開始点いずれの時点で熱
間矯正を行なっても、熱間矯正後の残留応力には相違が
ないはずであるが、平均温度がA1 変態終了点になった
時点で熱間矯正を行なう方が、鋼板の平均温度が低くな
る分塑性変形の可能性が減るので望ましい。From the viewpoint of thermal strain only, the average temperature is A
It is subjected to hot straightening at any 1 transformation finish point or A 3 transformation start point time, although the residual stress after hot straightening should no difference, the average temperature reaches the A 1 transformation end point It is preferable to carry out hot straightening at that point because the possibility of plastic deformation is reduced because the average temperature of the steel sheet is lowered.
【0017】上記の平均温度としては、最高温度と最低
温度の算術平均温度((最高温度+最低温度)/2)を
用いてもよいが、鋼板面内の線温度分布の測定結果を線
積分して線の長さで除して得られた線平均温度若しくは
鋼板面内の温度を面走査型温度分布計で測定し、測定結
果を面積積分し、全面積で除して得られた面積平均温度
の方が、鋼板全体の熱歪をより小さくできるので望まし
い。As the above-mentioned average temperature, the arithmetic average temperature of the maximum temperature and the minimum temperature ((maximum temperature + minimum temperature) / 2) may be used, but the measurement result of the linear temperature distribution in the steel sheet plane is linearly integrated. Then, the line average temperature obtained by dividing by the length of the line or the temperature in the steel plate surface was measured with a surface scanning type temperature distribution meter, the area of the measurement result was integrated, and the area obtained by dividing by the total area was obtained. The average temperature is desirable because the thermal strain of the entire steel sheet can be made smaller.
【0018】以上が本発明の基本的思想であるが、より
具体的に検討するため所定の条件でシミュレーション計
算を行なった。鋼板表面にある温度差が存在する板厚2
5mmの鋼板を熱間矯正して、空冷後に発生する残留応
力と熱間矯正機入側温度分布との関係を熱弾塑性有限要
素法を用いたシミュレーションにより検討した。Although the above is the basic idea of the present invention, a simulation calculation was carried out under predetermined conditions for more specific examination. Plate thickness 2 where there is a temperature difference on the steel plate surface
A 5 mm steel plate was hot-corrected, and the relationship between the residual stress generated after air cooling and the temperature distribution on the hot-straightening machine entrance side was examined by simulation using the thermoelastic-plastic finite element method.
【0019】ここで、最高温度と最低温度との温度差を
40℃とし、冷却条件は鋼板を空冷するとした。なお、
鋼板は上下面対称に冷却されるとした。また、Ar3 変
態開始温度を750℃、Ar1 変態終了温度を700℃
と仮定した。鋼板面の温度条件が異なる7ケースについ
て計算した結果を表1に示した。Here, the temperature difference between the maximum temperature and the minimum temperature is 40 ° C., and the cooling condition is that the steel sheet is air-cooled. In addition,
The steel sheet is supposed to be cooled symmetrically in the vertical plane. Also, the Ar 3 transformation start temperature is 750 ° C and the Ar 1 transformation end temperature is 700 ° C.
I assumed. Table 1 shows the calculation results of seven cases in which the temperature conditions of the steel plate surface are different.
【0020】表における残留応力比とは、空冷後の最大
残留引張応力と最小残留圧縮応力との差を残留応力値と
し、ケース1〜7の残留応力値をケース1の残留応力値
で規格化した値である。The residual stress ratio in the table is the residual stress value which is the difference between the maximum residual tensile stress and the minimum residual compressive stress after air cooling, and the residual stress values of Cases 1 to 7 are normalized by the residual stress value of Case 1. It is the value.
【0021】表1において、ケース2、3は板面内の温
度の最高温度と最低温度の平均温度としての算術平均温
度が、A3 変態開始温度750℃にほぼ等しい場合であ
り、ケース5、6は板面内の温度の最高温度と最低温度
の算術平均温度が、A1 変態終了温度700℃にほぼ等
しい例である。鋼板面の最高温度と最低温度の平均温度
が、A3 変態開始温度またはA1 変態終了温度にほぼ等
しくなった時に矯正を開始すると残留応力が大幅に低減
することがわかる。In Table 1, Cases 2 and 3 are cases in which the arithmetic average temperature as the average temperature of the maximum temperature and the minimum temperature of the plate surface is approximately equal to the A 3 transformation start temperature of 750 ° C. No. 6 is an example in which the arithmetic average temperature of the maximum temperature and the minimum temperature of the plate surface is substantially equal to the A 1 transformation end temperature of 700 ° C. It can be seen that if the average temperature of the maximum temperature and the minimum temperature of the steel sheet surface becomes substantially equal to the A 3 transformation start temperature or the A 1 transformation end temperature, if the straightening is started, the residual stress is significantly reduced.
【0022】上記の通り、鋼板面の最高温度と最低温度
から求めた平均温度をA3 変態開始温度またはA1 変態
終了温度にほぼ等しくすることにより、図1において説
明したように、残留応力を最小にすることが計算により
証明できた。As described above, by making the average temperature obtained from the maximum temperature and the minimum temperature of the steel sheet surface approximately equal to the A 3 transformation start temperature or the A 1 transformation end temperature, the residual stress is reduced as described in FIG. It can be proved by calculation that it is minimized.
【0023】[0023]
【実施例】図2に本発明を実施する圧延ラインの概略構
成を示す。1は仕上圧延機、2は加速冷却装置、3はシ
ャワー装置、4は熱間矯正機を示す。この熱間矯正機は
ロール径が280mmφで、上側に4本、下側に5本の
ロールで構成されている。EXAMPLE FIG. 2 shows a schematic configuration of a rolling line for carrying out the present invention. 1 is a finish rolling mill, 2 is an accelerated cooling device, 3 is a shower device, and 4 is a hot straightening device. This hot straightening machine has a roll diameter of 280 mmφ and is composed of four rolls on the upper side and five rolls on the lower side.
【0024】徐冷時のA3 変態の開始温度は814℃、
A1 変態終了温度は720℃である強度が40kgfと
50kgfクラスの圧延のままの一般材を用いて、熱間
矯正機4の入り側における鋼板の温度条件を変えて、熱
間矯正を行った。ケース1〜4は、加速冷却装置2を用
いた弱冷却を行わず、空冷により熱間矯正機4まで搬送
し、所定の温度で熱間矯正した。The starting temperature of the A 3 transformation during slow cooling is 814 ° C.
The A 1 transformation end temperature is 720 ° C. Using the as-rolled general material having strength of 40 kgf and 50 kgf, the temperature condition of the steel sheet on the inlet side of the hot-rolling machine 4 was changed to perform hot-rolling. . In Cases 1 to 4, the weak cooling using the accelerated cooling device 2 was not performed, but the cases 1 to 4 were transported to the hot straightening machine 4 by air cooling and were hot straightened at a predetermined temperature.
【0025】ケース5は、矯正開始温度がA1 変態終了
温度(720℃)にほぼ等しくなるように圧延仕上温
度、加速冷却装置における冷却、通板速度を設定し、材
料試験値に影響を与えない弱冷却を行った。加速冷却装
置による弱冷却時には鋼板の幅方向端部の過冷却を防ぐ
ためエッジマスキングを行った。そして、熱間矯正機4
の入側に設置された温度計(図示せず)により目標値と
の誤差をシャワー水冷で微調整した。なお、シャワー水
冷によらず空冷によって行ってもよい。In case 5, the rolling finish temperature, the cooling in the accelerated cooling device, and the strip running speed were set so that the straightening start temperature was almost equal to the A 1 transformation end temperature (720 ° C.), and the material test value was affected. No weak cooling was done. At the time of weak cooling by the accelerated cooling device, edge masking was performed to prevent overcooling of the widthwise end of the steel sheet. And hot straightener 4
The error from the target value was finely adjusted by shower water cooling with a thermometer (not shown) installed on the inlet side of the. The shower may be cooled by air instead of water.
【0026】熱間矯正機4の入側に設置された温度計に
より、鋼板中央部の幅方向温度分布を求めて線積分し、
幅方向長さで除して得られた値を平均温度とした。いず
れの場合にも、鋼板が常温になってからレーザー距離計
を用いた平坦度計により板形状の良否を判定した。With a thermometer installed on the inlet side of the hot straightening machine 4, the temperature distribution in the width direction of the central portion of the steel sheet is obtained and subjected to line integration,
The value obtained by dividing by the length in the width direction was taken as the average temperature. In each case, the quality of the plate shape was judged by a flatness meter using a laser range finder after the steel plate reached room temperature.
【0027】結果を表2に示す。表2には、鋼板の寸
法、圧延仕上温度、鋼板の最高温度、最低温度、熱間矯
正機の入側温度を示した。ケース2は鋼板面の平均温度
として、熱間矯正機入側温度をA3 変態開始温度814
℃の近傍である822℃に設定した場合で、放冷後の板
形状は良好であった。The results are shown in Table 2. Table 2 shows the dimensions of the steel sheet, the rolling finish temperature, the maximum temperature of the steel sheet, the minimum temperature, and the inlet temperature of the hot straightening machine. Case 2 is the average temperature of the steel sheet surface, the hot straightening machine entry side temperature A 3 transformation starting temperature 814
When the temperature was set to 822 ° C., which is close to 0 ° C., the plate shape after cooling was good.
【0028】また、ケース5は鋼板面の平均温度として
熱間矯正機入側温度をA1 変態終了温度720℃の近傍
である715℃に設定した場合で、放冷後の板形状はケ
ース2よりも更に良好であった。比較例として実施した
ケース1、3、4は板形状が不良であり、再矯正が必要
であった。In case 5, the average temperature of the steel sheet surface is set to 715 ° C., which is near the A 1 transformation end temperature of 720 ° C. as the inlet temperature of the hot straightener, and the plate shape after cooling is case 2 Was even better than. In Cases 1, 3, and 4 carried out as comparative examples, the plate shape was poor, and re-correction was necessary.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【発明の効果】以上の説明から明らかなように、本発明
による矯正方法によれば、熱間矯正機入側に温度測定用
装置を設置する程度のコストで、矯正後の鋼板の残留応
力を大幅に低減できる。また、その結果、再矯正発生率
を大幅に低減できる。As is apparent from the above description, according to the straightening method of the present invention, the residual stress of the steel sheet after straightening can be measured at a cost of installing a temperature measuring device on the inlet side of the hot straightening machine. It can be greatly reduced. Further, as a result, the re-correction occurrence rate can be significantly reduced.
【図1】炭素鋼をオーステナイト相から冷却したときの
膨張曲線を模式的に表した図である。FIG. 1 is a diagram schematically showing an expansion curve when carbon steel is cooled from an austenite phase.
【図2】本発明を実施する圧延設備の概要図である。FIG. 2 is a schematic diagram of rolling equipment for carrying out the present invention.
1 仕上圧延機 2 加速冷却装置 3 シャワー装置 4 熱間矯正機 1 Finishing rolling mill 2 Acceleration cooling device 3 Shower device 4 Hot straightening machine
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮里 寿夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石岡 宗浩 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Miyazato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inoue Munehiro Ishioka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd.
Claims (3)
際に、鋼板面内の平均温度が、該鋼種のA3 変態開始温
度からA1 変態終了温度の範囲内にある時点で矯正を開
始することを特徴とする厚鋼板の矯正方法。1. A hot rolled steel plate after hot rolling is hot-corrected, when the average temperature in the steel plate surface is within the range from the A 3 transformation start temperature to the A 1 transformation end temperature of the steel type. A method for straightening thick steel plates, which comprises starting straightening.
際に、鋼板面内の平均温度が、該鋼種のA3 変態開始温
度若しくはA1 変態終了温度にほぼ等しくなった時点で
矯正を開始することを特徴とする厚鋼板の矯正方法。2. At the time of hot straightening a thick steel plate after hot rolling, when the average temperature in the steel plate surface becomes substantially equal to the A 3 transformation start temperature or A 1 transformation end temperature of the steel type. A method for straightening thick steel plates, which comprises starting straightening.
最低温度の算術平均温度、鋼板面内の線温度分布の測定
結果を線積分して線の長さで除して得られた線平均温
度、若しくは鋼板面の面温度分布の測定結果を面積積分
して全面積で除して得られた面積平均温度の何れかとす
ることを特徴とする請求項1又は2のいずれかに記載さ
れた厚鋼板の矯正方法。3. The average temperature is obtained by dividing the arithmetic mean temperature of the maximum temperature and the minimum temperature in the steel sheet surface and the measurement result of the line temperature distribution in the steel sheet surface by line integration and dividing by the length of the line. 3. The line average temperature or the area average temperature obtained by dividing the measurement result of the surface temperature distribution of the steel plate surface by the area and dividing the result by the total area. 3. For straightening thick steel plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12742095A JPH08300040A (en) | 1995-04-28 | 1995-04-28 | Straightening method of thick steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12742095A JPH08300040A (en) | 1995-04-28 | 1995-04-28 | Straightening method of thick steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08300040A true JPH08300040A (en) | 1996-11-19 |
Family
ID=14959526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12742095A Pending JPH08300040A (en) | 1995-04-28 | 1995-04-28 | Straightening method of thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08300040A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967026A3 (en) * | 1998-06-27 | 2000-07-05 | SMS Demag AG | Method for straightening steel sections |
KR100878735B1 (en) * | 2006-07-12 | 2009-01-14 | 닛토덴코 가부시키가이샤 | Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same |
JP2016120525A (en) * | 2009-09-24 | 2016-07-07 | エイティーアイ・プロパティーズ・インコーポレーテッド | Process of reducing error of flatness in alloy article |
CN114231823A (en) * | 2021-12-10 | 2022-03-25 | 福建三钢闽光股份有限公司 | Preparation method of low-residual-stress Q355B low-alloy steel plate |
US11898217B2 (en) | 2019-11-18 | 2024-02-13 | Toyota Jidosha Kabushiki Kaisha | Method for producing steel plate member |
-
1995
- 1995-04-28 JP JP12742095A patent/JPH08300040A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967026A3 (en) * | 1998-06-27 | 2000-07-05 | SMS Demag AG | Method for straightening steel sections |
KR100878735B1 (en) * | 2006-07-12 | 2009-01-14 | 닛토덴코 가부시키가이샤 | Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same |
US7557883B2 (en) | 2006-07-12 | 2009-07-07 | Nitto Denko Corporation | Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same |
JP2016120525A (en) * | 2009-09-24 | 2016-07-07 | エイティーアイ・プロパティーズ・インコーポレーテッド | Process of reducing error of flatness in alloy article |
US9822422B2 (en) | 2009-09-24 | 2017-11-21 | Ati Properties Llc | Processes for reducing flatness deviations in alloy articles |
US10260120B2 (en) | 2009-09-24 | 2019-04-16 | Ati Properties Llc | Processes for reducing flatness deviations in alloy articles |
US11898217B2 (en) | 2019-11-18 | 2024-02-13 | Toyota Jidosha Kabushiki Kaisha | Method for producing steel plate member |
CN114231823A (en) * | 2021-12-10 | 2022-03-25 | 福建三钢闽光股份有限公司 | Preparation method of low-residual-stress Q355B low-alloy steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100432682B1 (en) | Metal plate flatness controlling method and device | |
KR101453129B1 (en) | Method and equipment of flatness control in cooling a stainless steel strip | |
EP0810044A1 (en) | Method for making hot-rolled steel sheet and apparatus therefor | |
US4782683A (en) | Hot strip mill shape processor and method | |
JPH08300040A (en) | Straightening method of thick steel plate | |
JP6897609B2 (en) | Hot rolling equipment and hot-rolled steel sheet manufacturing method | |
JPH11290946A (en) | Method for straightening thick steel plate | |
JPH06254615A (en) | Manufacture of thick steel plate excellent in shape and device therefor | |
KR100368210B1 (en) | Hot rolling method for minimizing bending deformation of strip | |
JPH0615321A (en) | Shape control method in thick plate rolling | |
KR100368238B1 (en) | Temperature controlled rolling method of thick steel plate_ | |
JP2001137943A (en) | Method and device for controlling flatness of metallic sheet | |
JPH06254616A (en) | Manufacture of thick steel plate excellent in shape and device therefor | |
JP2604518B2 (en) | Steel plate straightening method | |
JP3351239B2 (en) | Hot-rolled steel strip rolling method and apparatus | |
JPS5658920A (en) | Direct hardening method of steel plate | |
JPH08323402A (en) | Manufacture of wide flange shape | |
JP2000061501A (en) | Manufacture of u-shaped steel sheet pile | |
JPH11319945A (en) | Manufacture of steel plate and its device | |
JPS62197221A (en) | Correcting method for lateral bending of metallic plate | |
JPH0351482B2 (en) | ||
JPS63248501A (en) | Method for preventing camber of h-shape steel | |
JPH0442089B2 (en) | ||
JPH0890025A (en) | Method for controlling shape of shape steel | |
JP2001321830A (en) | Method for straightening shape of steel strip with tension leveler |