JP3110445B2 - Capacitor - Google Patents

Capacitor

Info

Publication number
JP3110445B2
JP3110445B2 JP02202183A JP20218390A JP3110445B2 JP 3110445 B2 JP3110445 B2 JP 3110445B2 JP 02202183 A JP02202183 A JP 02202183A JP 20218390 A JP20218390 A JP 20218390A JP 3110445 B2 JP3110445 B2 JP 3110445B2
Authority
JP
Japan
Prior art keywords
capacitor
polyamic acid
film
polymer film
insulating polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02202183A
Other languages
Japanese (ja)
Other versions
JPH0487316A (en
Inventor
勇 石川
幸生 絹田
信行 久米
賢一 橋詰
秀雄 山本
功 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Panasonic Holdings Corp
Original Assignee
Japan Carlit Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP02202183A priority Critical patent/JP3110445B2/en
Publication of JPH0487316A publication Critical patent/JPH0487316A/en
Application granted granted Critical
Publication of JP3110445B2 publication Critical patent/JP3110445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気機器・電子機器の電子回路などに使用
するコンデンサに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor used for an electronic circuit of an electric device or an electronic device.

従来の技術 機器の小形・軽量化志向、高集積回路の採用による電
子回路の高密度化、あるいは自動挿入の普及などに伴
い、電子部品に対する小形化・高性能化の要望がますま
す強くなってきている。その中にあって、コンデンサも
同様に小形で高周波特性の優れた大容量コンデンサの開
発が種々試みられている。高周波特性の優れたコンデン
サには、フィルム・マイカ・セラミック等を誘電体とし
たコンデンサがあるが、1μF以上の静電容量を得よう
とすると、形状が大きくなり、価格も高くなるため、実
用上不向きである。
2. Description of the Related Art The demand for smaller and higher performance electronic components has been increasing with the trend toward smaller and lighter devices, higher density of electronic circuits by adoption of highly integrated circuits, and the spread of automatic insertion. ing. Among them, various attempts have been made to develop a large-capacity capacitor having a small size and excellent high-frequency characteristics. Capacitors with excellent high-frequency characteristics include capacitors using dielectric materials such as film, mica, ceramic, etc. However, if a capacitance of 1 μF or more is to be obtained, the shape becomes large and the price becomes high. Not suitable.

大容量コンデンサとして知られているアルミ電解コン
デンサでは高周波特性が劣るため、高周波特性の優れた
コンデンサとして固体電解質に導電性高分子を用いた固
体電解コンデンサが最近出現してきている(特開昭63−
158829号,特開昭63−173313号)。
Aluminum electrolytic capacitors, which are known as large-capacity capacitors, have inferior high-frequency characteristics. Therefore, solid electrolytic capacitors using a conductive polymer as a solid electrolyte have recently emerged as capacitors with excellent high-frequency characteristics (Japanese Patent Laid-Open No. 63-63).
158829, JP-A-63-173313).

発明が解決しようとする課題 固体電解質に導電性高分子を用いたアルミニウム固体
電解コンデンサは、小形で大容量を得るために巻回する
と、誘電体酸化皮膜が応力によりクラックが入りやすい
という欠点や、電解コンデンサ特有の有極性のため、実
装時に正負の方向を違えてはならないという欠点を有し
ていた。
Problems to be Solved by the InventionAluminum solid electrolytic capacitors using a conductive polymer for the solid electrolyte are disadvantageous in that when they are wound to obtain a small and large capacity, the dielectric oxide film is easily cracked by stress, Due to the inherent polarity of the electrolytic capacitor, there was a drawback that the positive and negative directions must not be changed during mounting.

本発明は、上記従来の問題点を解決するもので、小形
・大容量で、高周波特性の優れ無極性のコンデンサを提
供することを目的とするものである。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a small-sized, large-capacity, non-polar capacitor excellent in high-frequency characteristics.

課題を解決するための手段 この目的を達成するために本発明のコンデンサは、多
孔質化した弁金属の表面に絶縁性高分子を形成させ、更
に絶縁性高分子の弱点部に陽極酸化により誘電体酸化皮
膜を形成させた複合誘電体表面上に対極となる導電体層
を形成して構成したものである。
Means for Solving the Problems In order to achieve this object, a capacitor of the present invention has an insulating polymer formed on the surface of a porous valve metal, and a dielectric material is formed on the weak point of the insulating polymer by anodic oxidation. A conductor layer serving as a counter electrode is formed on the surface of the composite dielectric on which the body oxide film is formed.

作用 本発明にかかるコンデンサは、絶縁性高分子膜と陽極
酸化による誘電体酸化皮膜の複合誘電体を用いることに
より耐電圧が上昇し、また無極性化がはかられる。かつ
脆い無機酸化皮膜と柔軟な絶縁性高分子膜を複合化する
ことでクラックの入りにくい複合誘電体となり、高周波
特性の優れた大容量コンデンサが得られる。
Effect The capacitor according to the present invention has an increased withstand voltage and a non-polarized structure by using a composite dielectric of an insulating polymer film and a dielectric oxide film formed by anodic oxidation. By combining a brittle inorganic oxide film and a flexible insulating polymer film, a composite dielectric that is less likely to crack can be obtained, and a large-capacity capacitor having excellent high-frequency characteristics can be obtained.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

第1図は本発明のコンデンサの一実施例を示す。第1
図に示すようにポリアミック酸塩を含む溶液にポリアミ
ック酸の貧溶媒を添加して電着液として、多孔質化した
弁金属1をこの電着液に浸漬して電着を行い、ポリアミ
ック酸の薄膜7を多孔質化した弁金属1の表面に形成し
た後、陽極酸化を行うことにより、第1図aのようにポ
リアミック酸の薄膜7の弱点部分を補うように誘電体酸
化皮膜2が形成される。次にポリアミック酸の薄膜7を
加熱脱水することにより、ポリアミック酸の薄膜7がポ
リイミド化され、第1図bのように絶縁性高分子膜3が
得られる。ついで絶縁性高分子膜3の上に化学酸化重合
による導電性高分子膜4を形成し、表面を導電化する。
ついで化学酸化重合による導電性高分子膜4を陽極とし
て電解液中にて電解重合を行うと、化学酸化重合による
導電性高分子膜4の上に電解重合によって得られた強靭
な導電性高分子膜5が得られる。さらに導電材料6によ
り電極を引き出して一方の電極とし、弁金属1を他方の
電極とし、エポキシ樹脂などにより外装すると第1図の
構成のコンデンサとなる。
FIG. 1 shows an embodiment of the capacitor of the present invention. First
As shown in the figure, a poor solvent of a polyamic acid is added to a solution containing a polyamic acid salt, and as a solution for electrodeposition, the valve metal 1 having been made porous is immersed in the electrodeposition solution to perform electrodeposition. After the thin film 7 is formed on the surface of the valve metal 1 which has been made porous, anodization is performed to form the dielectric oxide film 2 so as to compensate for the weak points of the thin film 7 of polyamic acid as shown in FIG. Is done. Next, the polyamic acid thin film 7 is heated and dehydrated, whereby the polyamic acid thin film 7 is converted into a polyimide, and the insulating polymer film 3 is obtained as shown in FIG. 1B. Next, a conductive polymer film 4 is formed on the insulating polymer film 3 by chemical oxidation polymerization, and the surface is made conductive.
Next, when electrolytic polymerization is performed in an electrolytic solution using the conductive polymer film 4 formed by chemical oxidation polymerization as an anode, a tough conductive polymer obtained by electrolytic polymerization is formed on the conductive polymer film 4 formed by chemical oxidation polymerization. A film 5 is obtained. Further, when the electrodes are drawn out with the conductive material 6 to form one electrode, the valve metal 1 is used as the other electrode, and the case is covered with an epoxy resin or the like, a capacitor having the structure shown in FIG.

(実施例1) 約50倍に粗面化したアルミエッチング箔を5mm×20mm
に切断した後かしめ付けによりアルミリードを接合して
金属電極を得た。
(Example 1) 5 mm x 20 mm aluminum etching foil roughened about 50 times
Then, the aluminum lead was joined by caulking to obtain a metal electrode.

一方p−フェニレンジアミン3.3部をN,N′−ジメチル
ホルムアミド90部に溶解しピロメリット酸2無水物6.7
部を加えて室温で12時間反応させてポリアミック酸溶液
とした後、トリメチルアミン1.8部を加えて40℃で30分
間反応させて、ポリアミック酸中のカルボキシル基の半
分を中和したポリアミック酸塩溶液とした。この溶液60
部にメタノール40部を加え電着液とした。
On the other hand, 3.3 parts of p-phenylenediamine was dissolved in 90 parts of N, N'-dimethylformamide and pyromellitic dianhydride 6.7 parts was dissolved.
After adding 12 parts and reacting at room temperature for 12 hours to obtain a polyamic acid solution, 1.8 parts of trimethylamine was added and reacted at 40 ° C. for 30 minutes to obtain a polyamic acid salt solution in which half of the carboxyl groups in the polyamic acid were neutralized. did. This solution 60
To 40 parts of methanol was added to obtain an electrodeposition solution.

この電着液をステンレス容器にいれ、粗面化した金属
電極を浸漬して陽極とし、ステンレス容器を陰極とし
て、50Vの電圧を3分間印加し、該金属電極表面にポリ
アミック酸の薄膜を形成させた。
This electrodeposition liquid is placed in a stainless steel container, and the roughened metal electrode is immersed as an anode, and a voltage of 50 V is applied for 3 minutes using the stainless steel container as a cathode to form a thin film of polyamic acid on the surface of the metal electrode. Was.

次に表面にポリアミック酸の薄膜を形成させた金属電
極を10wt%のアジピン酸アンモニウム溶液中に浸漬し、
室温中で30Vの電圧を10分間印加して陽極酸化を行い、
ポリアミック酸の薄膜の弱点部分を補うように誘電体酸
化皮膜を形成させた。ついでポリアミック酸の薄膜と誘
電体酸化皮膜を形成させた金属電極を、250℃で2時間
加熱して表面にポリイミド皮膜を形成して複合誘電体を
形成した素子とした。
Next, a metal electrode having a polyamic acid thin film formed on its surface is immersed in a 10 wt% ammonium adipate solution,
Anodize by applying a voltage of 30 V for 10 minutes at room temperature,
A dielectric oxide film was formed so as to compensate for the weak points of the polyamic acid thin film. Then, the metal electrode on which the polyamic acid thin film and the dielectric oxide film were formed was heated at 250 ° C. for 2 hours to form a polyimide film on the surface, thereby obtaining an element in which a composite dielectric was formed.

この素子を2mol/、ピロール/エタノール溶液に5
分間浸漬した後、更に0.5mol/過硫酸アンモニウム水
溶液に5分間浸漬して化学酸化重合によるポリピロール
膜を形成した。更にこの素子をピロールモノマー1mol/
及び支持電解質としてパラトルエンスルホン酸テトラ
エチルアンモニウム1mol/を含むアセトニトリル溶液
中に浸漬し、化学酸化重合したポリピロール膜を陽極と
して、外部電極との間に定電流電解重合(1mA/cm2,30
分)を行い、電解重合によるポリピロール膜を形成し
た。この素子をコロイダルカーボンに浸漬し、更に銀ペ
ーストを塗布して導電性塗膜を形成し、その一部から対
極を取り出し、エポキシ樹脂により外装しコンデンサを
完成した。得られたコンデンサ特性を第1表に示す。
This element was added to a 2 mol / pyrrole / ethanol solution for 5 minutes.
After immersion for 5 minutes, it was further immersed in a 0.5 mol / aqueous ammonium persulfate solution for 5 minutes to form a polypyrrole film by chemical oxidation polymerization. In addition, this device was converted to pyrrole monomer 1 mol /
And immersed in an acetonitrile solution containing 1 mol / mol of tetraethylammonium paratoluenesulfonate as a supporting electrolyte, and using a polypyrrole film chemically oxidized and polymerized as an anode, a constant current electrolytic polymerization (1 mA / cm 2 , 30
) To form a polypyrrole film by electrolytic polymerization. This element was immersed in colloidal carbon, and a silver paste was further applied to form a conductive coating film. A counter electrode was taken out from a part of the conductive coating film and packaged with an epoxy resin to complete a capacitor. Table 1 shows the obtained capacitor characteristics.

(実施例2) 実施例1において、複合誘電体を形成した後この素子
を巻き取り、巻回素子とした以外は実施例1に準じてコ
ンデンサを完成させた。得られたコンデンサ特性を第1
表に示す。
(Example 2) A capacitor was completed in the same manner as in Example 1 except that the element was wound after forming the composite dielectric and used as a wound element. The obtained capacitor characteristics are
It is shown in the table.

(比較例1) 実施例1において、ポリイミド皮膜を形成した後の陽
極酸化膜を形成する工程を省いた以外は実施例1に準じ
てコンデンサを完成させた。得られたコンデンサ特性を
第1表に示す。
Comparative Example 1 A capacitor was completed in the same manner as in Example 1 except that the step of forming the anodic oxide film after forming the polyimide film was omitted. Table 1 shows the obtained capacitor characteristics.

(比較例2) 実施例1において、ポリイミド皮膜を形成した後この
素子を巻き取り、巻回素子とし、陽極酸化膜を形成する
工程を省いた以外は実施例1に準じてコンデンサを完成
させた。得られたコンデンサ特性を第1表に示す。
(Comparative Example 2) A capacitor was completed in the same manner as in Example 1 except that after forming the polyimide film, the element was wound up to form a wound element, and the step of forming an anodic oxide film was omitted. . Table 1 shows the obtained capacitor characteristics.

発明の効果 以上のように本発明によるコンデンサは、多孔質化し
た弁金属の表面に絶縁性高分子を形成させ、更に絶縁性
高分子膜の弱点部に陽極酸化により誘電体酸化皮膜を形
成させた複合誘電体表面上に対極となる導電体層を形成
して構成することにより、無極性,小形,大容量で高周
波特性の優れたコンデンサを実現できるものである。
Effect of the Invention As described above, the capacitor according to the present invention has an insulating polymer formed on the surface of a porous valve metal and a dielectric oxide film formed by anodic oxidation at a weak point of the insulating polymer film. By forming a conductor layer serving as a counter electrode on the composite dielectric surface, a non-polar, small-sized, large-capacity capacitor having excellent high-frequency characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図a,bは本発明のコンデンサの一構成例を示す要部
断面図である。 1……弁金属、2……誘電体酸化皮膜、3……絶縁性高
分子膜、4……化学酸化重合により得られた導電性高分
子膜、5……電解重合により得られた導電性高分子膜、
6……導電材料、7……ポリアミック酸の薄膜。
FIGS. 1a and 1b are cross-sectional views of an essential part showing one configuration example of the capacitor of the present invention. 1 ... valve metal, 2 ... dielectric oxide film, 3 ... insulating polymer film, 4 ... conductive polymer film obtained by chemical oxidation polymerization, 5 ... conductivity obtained by electrolytic polymerization Polymer membrane,
6 ... a conductive material, 7 ... a polyamic acid thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01G 4/20 H01G 4/20 9/028 9/02 331F 9/07 331H 9/00 501 (72)発明者 久米 信行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 橋詰 賢一 群馬県渋川市半田2470番地 日本カーリ ット株式会社中央研究所内 (72)発明者 山本 秀雄 群馬県渋川市半田2470番地 日本カーリ ット株式会社中央研究所内 (72)発明者 伊佐 功 群馬県渋川市半田2470番地 日本カーリ ット株式会社中央研究所内 (56)参考文献 特開 昭63−29919(JP,A) 特開 昭58−153321(JP,A) 特開 昭51−143866(JP,A) 特開 平3−203211(JP,A) 特開 平2−281609(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/04 301 H01G 4/10 H01G 4/20 H01G 9/07 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI H01G 4/20 H01G 4/20 9/028 9/02 331F 9/07 331H 9/00 501 (72) Inventor Nobuyuki Kume Osaka 1006 Kadoma, Kadoma-shi Matsushita Electric Industrial Co., Ltd. (72) Inventor Isao Isa 2470 Handa, Shibukawa-shi, Gunma Japan Central Research Institute of Carlit Co., Ltd. (56) References JP-A-63-29919 (JP, A) 58-153321 (JP, A) JP-A-51-143866 (JP, A) JP-A-3-203321 (JP, A) JP-A-2-281609 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01G 9/04 301 H01G 4/10 H01G 4/20 H01G 9/07

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質化した弁金属の表面に絶縁性高分子
を形成させ、更に絶縁性高分子膜の弱点部に陽極酸化に
より誘電体酸化皮膜を形成させた複合誘電体表面上に対
極となる導電体層を形成して構成したことを特徴とする
コンデンサ。
An insulating polymer is formed on the surface of a porous valve metal, and a dielectric oxide film is formed by anodic oxidation on a weak point of the insulating polymer film. A capacitor characterized by having a conductor layer formed thereon.
【請求項2】絶縁性高分子が、ポリアミック酸塩を含む
溶液にポリアミック酸の貧溶媒を添加して電着液として
電着を行い、ポリアミック酸の薄膜を多孔質化した弁金
属の表面上に形成した後、ポリアミック酸を加熱脱水す
ることにより形成したポリイミドである請求項(1)記
載のコンデンサ。
2. An insulating polymer, wherein a poor solvent of polyamic acid is added to a solution containing a polyamic acid salt, and electrodeposition is performed as an electrodeposition solution, thereby forming a thin film of polyamic acid on the surface of the valve metal. The capacitor according to claim 1, wherein the capacitor is a polyimide formed by heating and dehydrating a polyamic acid after the formation.
【請求項3】対極となる導電体層が、化学酸化重合によ
る導電性高分子膜と電解重合による導電性高分子膜を順
次積層して形成される請求項(1)記載のコンデンサ。
3. The capacitor according to claim 1, wherein the conductive layer serving as a counter electrode is formed by sequentially laminating a conductive polymer film formed by chemical oxidation polymerization and a conductive polymer film formed by electrolytic polymerization.
【請求項4】導電性高分子膜がポリピロールである請求
項(1)記載のコンデンサ。
4. The capacitor according to claim 1, wherein the conductive polymer film is polypyrrole.
JP02202183A 1990-07-30 1990-07-30 Capacitor Expired - Fee Related JP3110445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02202183A JP3110445B2 (en) 1990-07-30 1990-07-30 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02202183A JP3110445B2 (en) 1990-07-30 1990-07-30 Capacitor

Publications (2)

Publication Number Publication Date
JPH0487316A JPH0487316A (en) 1992-03-19
JP3110445B2 true JP3110445B2 (en) 2000-11-20

Family

ID=16453340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02202183A Expired - Fee Related JP3110445B2 (en) 1990-07-30 1990-07-30 Capacitor

Country Status (1)

Country Link
JP (1) JP3110445B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079326A (en) * 1996-09-03 1998-03-24 Matsushita Electric Ind Co Ltd Capacitor and manufacturing method thereof
TW408345B (en) 1998-04-21 2000-10-11 Matsushita Electric Ind Co Ltd Capacitor and its manufacturing method
WO2010116656A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Capacitor and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0487316A (en) 1992-03-19

Similar Documents

Publication Publication Date Title
JP3110445B2 (en) Capacitor
JP3150327B2 (en) Capacitor
JPS61240625A (en) Solid electrolytic capacitor
JP3241758B2 (en) Method for manufacturing solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JPH06112081A (en) Manufacture of capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JPH0763045B2 (en) Capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2921998B2 (en) Capacitor and manufacturing method thereof
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP3416061B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2730345B2 (en) Manufacturing method of capacitor
JP3195819B2 (en) Method for manufacturing solid electrolytic capacitor
JP3548040B2 (en) Solid electrolytic capacitors
JP2969703B2 (en) Solid electrolytic capacitors
JP3549381B2 (en) Capacitor and method of manufacturing the same
JPH06252003A (en) Manufacture of capacitor
JPH0917686A (en) Capacitor
JPH06112080A (en) Manufacture of capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JPH0521279A (en) Capacitor and its manufacture
JP2940017B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees