JP3104239B2 - Rotating electric machine - Google Patents

Rotating electric machine

Info

Publication number
JP3104239B2
JP3104239B2 JP02108228A JP10822890A JP3104239B2 JP 3104239 B2 JP3104239 B2 JP 3104239B2 JP 02108228 A JP02108228 A JP 02108228A JP 10822890 A JP10822890 A JP 10822890A JP 3104239 B2 JP3104239 B2 JP 3104239B2
Authority
JP
Japan
Prior art keywords
phase
winding
armature
rotor
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02108228A
Other languages
Japanese (ja)
Other versions
JPH048140A (en
Inventor
草瀬  新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP02108228A priority Critical patent/JP3104239B2/en
Priority to EP91106477A priority patent/EP0454039B1/en
Priority to DE69122801T priority patent/DE69122801T2/en
Priority to US07/689,343 priority patent/US5122705A/en
Publication of JPH048140A publication Critical patent/JPH048140A/en
Application granted granted Critical
Publication of JP3104239B2 publication Critical patent/JP3104239B2/en
Priority to US10/197,833 priority patent/USRE38464E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、三相交流発電機、三相誘導電動機などの回
転電機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rotating electric machine such as a three-phase AC generator and a three-phase induction motor.

[従来の技術] 従来より、回転電機、例えば三相交流発電機において
は、三相全節集中電機子巻線をY形結線またはΔ形結線
として、これらの電機子巻線を1磁極ピッチ当り3か所
のスロットを有する電機子鉄心に三相全節集中巻きした
ものがある。
2. Description of the Related Art Conventionally, in a rotating electric machine, for example, a three-phase alternating current generator, a three-phase full-section concentrated armature winding is formed as a Y-shaped connection or a Δ-shaped connection, and these armature windings are arranged per one magnetic pole pitch. There is a three-phase full-section concentrated winding on an armature core having three slots.

[発明が解決しようとする課題] ところが、前述のような三相交流発電機においては、
仮に各相の電機子巻線x、y、zの相電流が正弦波であ
ったとしても、電機子電流に含まれる第3次高調波電流
の影響によって空隙起磁力分布が回転子座標上で著しく
変動する。このため、空隙起磁力分布が回転子の回転方
向への移動に伴って大きく歪むと同時に、空隙起磁力分
布が回転子の磁極に対して変動する。よって、固定子の
空隙起磁力分布と回転子の界磁起磁力分布との電磁力に
より騒音が発生するという課題があった。
[Problems to be solved by the invention] However, in the three-phase AC generator as described above,
Even if the phase currents of the armature windings x, y, and z of each phase are sinusoidal, the air gap magnetomotive force distribution on the rotor coordinates is affected by the third harmonic current included in the armature current. Fluctuates significantly. For this reason, the gap magnetomotive force distribution is greatly distorted as the rotor moves in the rotation direction, and at the same time, the gap magnetomotive force distribution fluctuates with respect to the rotor magnetic poles. Therefore, there is a problem that noise is generated due to the electromagnetic force between the air gap magnetomotive force distribution of the stator and the field magnetomotive force distribution of the rotor.

以下この理由を解析する。 The reason will be analyzed below.

第7図(a)は各相の電機子巻線の相電流に対し各相
の電機子巻線の巻数を掛け合わせた各相起磁力Ax、Ay、
Azの時間的な変化を示す。
FIG. 7 (a) shows each phase magnetomotive force Ax, Ay, obtained by multiplying the phase current of each phase armature winding by the number of turns of each phase armature winding.
The time change of Az is shown.

図中において時刻t2、t3は、時刻t1から電気角π/6ra
dだけ経過した時刻をt2、この時刻t2から電気角π/6rad
だけ経過した時刻をt3としたものである。
In the figure, times t2 and t3 are electrical angles π / 6ra from time t1.
t2 is the time when d has elapsed, and electrical angle π / 6rad from this time t2
The time after the elapse of the time is t3.

これらの時刻t1、時刻t2および時刻t3に関して、第7
図(b)に示す各相の電機子巻線x、y、zの配置を考
慮して各相の空隙起磁力分布を求めると第7図(c)、
(e)、(g)となる。そして、これらの各相の空隙起
磁力分布を合成した各相の合成起磁力分布は、第7図
(d)、(f)、(h)のようになる。
Regarding time t1, time t2 and time t3, the seventh
FIG. 7 (c) shows that the air gap magnetomotive force distribution of each phase is obtained in consideration of the arrangement of the armature windings x, y, z of each phase shown in FIG.
(E) and (g). Then, the resultant magnetomotive force distribution of each phase obtained by synthesizing the void magnetomotive force distribution of each phase is as shown in FIGS. 7 (d), (f) and (h).

すなわち、第7図(d)、(h)から時刻t1の合成起
磁力分布と時刻t3の合成起磁力分布とは、回転子の回転
方向への移動分(π/3相当)だけ同一の合成起磁力分布
が回転子の回転方向に移動しているのみである。ところ
が、時刻t2の合成起磁力分布に着目すると、このときの
合成起磁力分布は時刻t1、時刻t3の合成起磁力分布より
大きく異なる。
That is, from FIGS. 7 (d) and 7 (h), the combined magnetomotive force distribution at time t1 and the combined magnetomotive force distribution at time t3 are the same as the amount of movement in the rotation direction of the rotor (equivalent to π / 3). Only the magnetomotive force distribution moves in the rotation direction of the rotor. However, focusing on the composite magnetomotive force distribution at time t2, the composite magnetomotive force distribution at this time is significantly different from the composite magnetomotive force distribution at time t1 and time t3.

したがって、従来の三相交流発電機においては、回転
子座標上でみるとき、回転子の回転方向への移動に伴っ
て固定子の電機子巻線の空隙起磁力分布が回転子の磁極
の界磁起磁力分布に与える磁気作用力が変動するため、
電磁的な騒音が発生すると思われる。
Therefore, in the conventional three-phase AC generator, when viewed on the rotor coordinates, the air gap magnetomotive force distribution of the stator armature windings along with the movement of the rotor in the rotation direction causes the field of the magnetic poles of the rotor to change. Because the magnetic force applied to the magnetomotive force distribution fluctuates,
Electromagnetic noise is likely to occur.

そこで、従来より三相交流発電機においては、この電
磁的な騒音を低減するために、外側に完全防音のための
防音壁を設けたり、エアギャップを不均一化するように
回転子の磁極に凸部を設けて回転子の磁極形状を変化さ
せたり、電機子巻線の空隙起磁力分布を正弦波化するた
めに固定子側を多溝分布巻化したり、磁極または電機子
鉄心の磁気脈動力を互いに相殺すべく、磁極にねじりを
与える(スキュー)またはN磁極とS磁極との位置を半
波分ずらすなどの方法が用いられている。
Therefore, conventionally, in a three-phase AC generator, in order to reduce this electromagnetic noise, a soundproof wall for complete soundproofing is provided on the outside, or a magnetic pole of the rotor is provided so as to make the air gap uneven. Protrusions are provided to change the shape of the magnetic poles of the rotor, or the stator side is multi-groove-distributed to make the air gap magnetomotive force distribution of the armature winding sinusoidal, or magnetic pulsation of the magnetic poles or armature core In order to cancel the forces from each other, a method of giving a twist to the magnetic poles (skew) or shifting the positions of the N magnetic pole and the S magnetic pole by a half wave is used.

ところが、これらのものは、エアギャップなどの磁気
抵抗の増加等による出力性能の低下、組付時の作業能率
を低下させることによる高コスト化、または三相交流発
電機のハウジングの外側に防音壁を設けることによる製
品寸法の大型化等の課題があった。
However, these products have a problem in that the output performance is reduced due to an increase in magnetic resistance such as an air gap, the cost is increased due to a reduction in work efficiency at the time of assembly, or a soundproof wall is provided outside the three-phase AC generator housing. However, there is a problem in that the size of the product is increased due to the provision of the above.

本発明は、出力性能の低下、高コスト化および製品寸
法の大型化などを招くことなく、電磁的な騒音を防止で
きる回転電機の提供を目的とする。
An object of the present invention is to provide a rotating electric machine capable of preventing electromagnetic noise without lowering output performance, increasing costs, and increasing product dimensions.

[課題を解決するための手段] 本発明者等は、課題を解決するために、回転子の回転
方向への移動に伴って界磁起磁力分布と空隙起磁力分布
との磁気作用力が変化しないようにすることによって、
固定子が回転子に与える反作用電磁力の変動を減少させ
れば電磁的な騒音を減少できることを見出だした。
[Means for Solving the Problems] To solve the problems, the present inventors changed the magnetic action force between the field magnetomotive force distribution and the air gap magnetomotive force distribution with the movement of the rotor in the rotational direction. By not doing
It has been found that electromagnetic noise can be reduced by reducing the fluctuation of the reaction electromagnetic force applied to the rotor by the stator.

その構成は、3つの第1巻線をY形に結線したY形三
相結線回路、このY形三相結線回路に並列接続されると
ともに、前記第1巻線の巻数に対してそれぞれ1.5〜2.2
倍多い巻数とされた3つの第2巻線をΔ形に結線したΔ
形三相結線回路、および前記第1巻線と前記第2巻線と
を電気角でπ/6radだけずらして異なる複数のスロット
内に収納した固定子鉄心を有する固定子と、この固定子
と相対回転する回転子とを備えたものである。
The configuration is such that a Y-shaped three-phase connection circuit in which three first windings are connected in a Y-shape, which is connected in parallel to the Y-type three-phase connection circuit, and has 1.5 to 1.5 turns with respect to the number of turns of the first winding. 2.2
Δ in which three second windings having twice the number of turns are connected in a Δ shape
A stator having a three-phase connection circuit, and a stator core in which the first winding and the second winding are housed in different slots shifted by an electrical angle of π / 6 rad; and And a rotor that rotates relatively.

なお、第1巻線と第2巻線とを、単一の三相全波整流
回路に結線するようにしても良い。また、第2巻線を第
1巻線の巻数に対して1.5〜2.2倍多い巻線とした理由
は、それ以外の巻数の場合には、不平行循環電流が生じ
て電力損失が発生するという不都合があるので採用しな
いこととした。
Note that the first winding and the second winding may be connected to a single three-phase full-wave rectifier circuit. Also, the reason why the second winding is a winding 1.5 to 2.2 times larger than the number of windings of the first winding is that when the number of windings is other than that, a non-parallel circulating current occurs and power loss occurs. Due to inconvenience, we decided not to adopt it.

[作用] 第1巻線の巻数に対して1.5〜2.2倍多い巻数の第2巻
線を複数のスロット内に収納しているので、3つの第1
巻線にそれぞれ含まれる第3次高調波電流と3つの第2
巻線にそれぞれ含まれる第3次高調波電流とがそれぞれ
同一の位相となる。
[Operation] Since the second winding having 1.5 to 2.2 times the number of turns of the first winding is housed in the plurality of slots, three first windings are provided.
The third harmonic current and three second harmonic currents respectively contained in the windings
The third harmonic current included in each winding has the same phase.

また、第1巻線と第2巻線とが電気角でπ/6radだけ
ずらして異なる複数のスロット内に収納されているの
で、流れる電流は電気角でπ/6radだけ位相差を持って
流れる。
Also, since the first winding and the second winding are housed in different slots shifted by π / 6 rad in electrical angle, the flowing current flows with a phase difference of π / 6 rad in electrical angle. .

このため、ある時刻の合成起磁力分布とその時刻から
π/6rad分だけ経過した後の時刻の合成起磁力分布とを
比較すると、合成起磁力分布がπ/6radだけ回転子の回
転方向に同一形状で移動することとなる。
For this reason, comparing the combined magnetomotive force distribution at a certain time with the combined magnetomotive force distribution at a time after elapse of π / 6 rad from the time, the combined magnetomotive force distribution is the same in the rotation direction of the rotor by π / 6 rad. It will move in shape.

したがって、界磁起磁力分布と空隙起磁力分布との磁
気作用力は回転子の回転方向における位置に拘らず一定
値となるので大きな脈動が発生することはなくなる。こ
のため、回転子と固定子との間に大きな脈動加振力が発
生しなくなる。
Therefore, since the magnetic acting force of the field magnetomotive force distribution and the air gap magnetomotive force distribution becomes a constant value irrespective of the position in the rotation direction of the rotor, large pulsation does not occur. Therefore, a large pulsating vibration force is not generated between the rotor and the stator.

[発明の効果] 防音壁を設けたり、回転子の磁極形状を変化させた
り、多溝分布巻化したり、スキューまたは半波分のずら
しを与えるなどの方法を用いることなく、回転子と固定
子との間に大きな脈動加振力が発生しなくなるので、出
力性能の低下、高コスト化および製品寸法の大型化など
を招くことなく、電磁的な騒音を減少することができ
る。
[Effects of the Invention] The rotor and the stator are not used without providing a soundproof wall, changing the shape of the magnetic pole of the rotor, forming a multi-groove distribution winding, or providing a skew or a half-wave shift. Since no large pulsating excitation force is generated between the two, the electromagnetic noise can be reduced without lowering the output performance, increasing the cost, and increasing the size of the product.

[実施例] 本発明の回転電機を第1図ないし第6図に示す実施例
に基づき説明する。
[Embodiment] A rotary electric machine according to the present invention will be described based on an embodiment shown in Figs. 1 to 6.

第1図ないし第5図は本発明の第1実施例を示す。第
1図は自動車用三相交流発電機の電気回路図であり、第
2図は各相の電機子巻線の巻線仕様図であり、第3図は
自動車用三相交流発電機を示す図であり、第4図は回転
子の磁極を示す図である。
1 to 5 show a first embodiment of the present invention. FIG. 1 is an electric circuit diagram of a three-phase AC generator for a vehicle, FIG. 2 is a winding specification diagram of armature windings of each phase, and FIG. 3 shows a three-phase AC generator for a vehicle. FIG. 4 is a diagram showing magnetic poles of a rotor.

自動車用三相交流発電機1は、固定子2、回転子3お
よび三相全波整流回路4を備える。
The automotive three-phase AC generator 1 includes a stator 2, a rotor 3, and a three-phase full-wave rectifier circuit 4.

固定子2は、Y形三相結線回路21、Δ形三相結線回路
22および電機子鉄心23を有する。
The stator 2 includes a Y-type three-phase connection circuit 21 and a Δ-type three-phase connection circuit.
22 and an armature core 23.

Y形三相結線回路21は、3つの第1巻線としての第1
電機子酸線x1、y1、z1を起電力の位相差が互いに2π/3
となるようにY形に結線したものである。第1電機子巻
線x1の巻き始めは、第1電機子巻線y1、z1の巻き始めと
結線されている。また、第1電機子巻線x1、y1、z1の巻
数は、ほぼ同一の巻数とされている。なお、第1電機子
巻線x1、y1、z1は、電機子鉄心23のスロットに三相全節
集中巻きされている。
The Y-shaped three-phase connection circuit 21 includes three first windings as first windings.
The phase difference of the electromotive force is 2π / 3 between the armature acid wires x1, y1, and z1.
Are connected in a Y-shape such that The winding start of the first armature winding x1 is connected to the winding start of the first armature windings y1 and z1. Further, the number of turns of the first armature windings x1, y1, z1 is substantially the same. The first armature windings x1, y1, z1 are wound around the slots of the armature core 23 in a three-phase, full-section concentrated manner.

Δ形三相結線回路22は、Y形三相結線回路21に並列接
続され、3つの第2巻線としての第2電機子巻線x2、y
2、z2を起電力の位相差が互いに2π/3となるようにΔ
形に結線している。なお、第2電機子巻線x2、y2、z2
は、電機子鉄心23のスロットに三相全節集中巻きされて
いる。
The Δ-type three-phase connection circuit 22 is connected in parallel to the Y-type three-phase connection circuit 21 and includes second armature windings x2 and y as three second windings.
2, z2 is set to Δ so that the phase difference between the electromotive forces becomes 2π / 3.
It is connected to the shape. The second armature windings x2, y2, z2
Is wound around the three-phase all-section concentratedly in the slot of the armature core 23.

また、第1電機子巻線x1と第2電機子巻線x2の巻き終
わりおよび第2電機子巻線y2の巻き始めとは、1箇所に
結線されて三相線間の第1端子24を形成している。そし
て、第1電機子巻線y1と第2電機子巻線y2の巻き終わり
および第2電機子巻線z2の巻き始めとは、1箇所に結線
されて三相線間の第2端子25を形成している。さらに、
第1電機子巻線z1と第2電機子巻線z2の巻き終わりおよ
び第2電機子巻線x2の巻き始めとは、1箇所に結線され
て三相線間の第3端子26を形成している。
The end of the winding of the first armature winding x1 and the end of the winding of the second armature winding x2 and the start of the winding of the second armature winding y2 are connected at one place to form the first terminal 24 between the three-phase wires. Has formed. The end of the winding of the first armature winding y1 and the end of the winding of the second armature winding y2 and the start of the winding of the second armature winding z2 are connected at one point to form the second terminal 25 between the three-phase wires. Has formed. further,
The end of the winding of the first armature winding z1 and the end of the winding of the second armature winding z2 and the beginning of the winding of the second armature winding x2 are connected in one place to form a third terminal 26 between the three-phase wires. ing.

なお、第2電機子巻線x2、y2、z2の巻数は、第1電機
子巻線x1、y1、z1の巻数に対して 多い巻数とされ、これらはほぼ同一の巻数とされてい
る。また、第2電機子巻線x2、y2、z2の線径は、第1電
機子巻線x1、y1、z1の線径に体してほぼ とされている。このため、電機子鉄心23の各スロットに
収納される巻線の総断面積がほぼ等しくなっている。
The number of turns of the second armature windings x2, y2, and z2 is greater than the number of turns of the first armature windings x1, y1, and z1. The number of turns is large, and these are almost the same number of turns. The wire diameter of the second armature windings x2, y2, z2 is substantially equal to the wire diameter of the first armature windings x1, y1, z1. It has been. For this reason, the total cross-sectional area of the winding accommodated in each slot of the armature core 23 is substantially equal.

電機子鉄心23は、本発明の固定子鉄心であって、薄い
鉄板を重ね合わせて構成されている。この電機子鉄心23
は、回転子3と対向する内周面に2磁極ピッチ当たり12
箇所のスロットを形成している。すなわち、電機子鉄心
23は、通常の三相集中全節巻線機に対して2倍のスロッ
トを有する。なお、2磁極ピッチとは、電機子鉄心23の
内周面を磁極の数で除したもので電機角2πradに相当
する。
The armature core 23 is the stator core of the present invention, and is configured by laminating thin iron plates. This armature iron core 23
Is 12 per 2 pole pitch on the inner peripheral surface facing the rotor 3.
The slot of the location is formed. That is, the armature core
23 has twice as many slots as a conventional three-phase centralized full-section winding machine. The two magnetic pole pitch is obtained by dividing the inner peripheral surface of the armature core 23 by the number of magnetic poles, and corresponds to an armature angle of 2πrad.

これらのスロット内には、第1電機子巻線x1、y1、z1
と第2電機子巻線x2、y2、z2とが回転子3の回転方向に
向かって電気角でπ/6rad(=電気角30゜)だけずらし
て収納されている。
In these slots, the first armature windings x1, y1, z1
And the second armature windings x2, y2, z2 are housed in the rotating direction of the rotor 3 with an electrical angle shifted by π / 6 rad (= electrical angle 30 °).

回転子3は、回転軸31、界磁巻線32および界磁鉄心33
などを有する。
The rotor 3 includes a rotating shaft 31, a field winding 32, and a field iron core 33.
Etc.

回転軸31は、内燃機関に回転駆動され、界磁巻線32お
よび界磁鉄心33を伴って一体的に回転する。
The rotating shaft 31 is driven to rotate by the internal combustion engine, and integrally rotates with the field winding 32 and the field iron core 33.

界磁巻線32は、界磁鉄心33の中央で回転方向に巻装さ
れている。
The field winding 32 is wound around the center of the field iron core 33 in the rotational direction.

界磁鉄心33は、略台形状のいわゆるランデル形状を呈
し、電機子鉄心23からエアギャップ(例えば約0.35mm)
離れた位置で電機子鉄心23の内周面に対向して配設され
ている。この界磁鉄心33は、両側から中央に突出した爪
状磁極34、35を有する。界磁鉄心33は、界磁巻線32に電
流が流れると一方の爪状磁極34が全てN極となり、他方
の爪状磁極35が全てS極となる。また、一方の爪状磁極
34は、2つの他方の爪状磁極35間に配設されているの
で、界磁鉄心33の外周に12個のN極とS極とが交互に配
されることとなる。
The field core 33 has a substantially trapezoidal so-called Rundel shape, and an air gap (for example, about 0.35 mm) from the armature core 23.
The armature iron core 23 is disposed at a remote position so as to face the inner peripheral surface. The field core 33 has claw-shaped magnetic poles 34 and 35 projecting from both sides toward the center. In the field iron core 33, when a current flows through the field winding 32, all of the claw-shaped magnetic poles 34 become N poles, and all of the other claw-shaped magnetic poles 35 become S poles. Also, one claw-shaped magnetic pole
Since 34 is disposed between the two other claw-shaped magnetic poles 35, twelve N-poles and S-poles are alternately disposed on the outer periphery of the field iron core 33.

三相全波整流回路4は、6個のダイオード41〜46から
構成され、三相線間の第1端子24〜第3端子26に接続さ
れ、Y形三相結線回路21およびΔ形三相結線回路22で発
生した交流電流を直流電流に整流する。この三相全波整
流回路4の出力は、出力端子40を介して電気装置やバッ
テリに供給される。
The three-phase full-wave rectifier circuit 4 is composed of six diodes 41 to 46, connected to the first terminal 24 to the third terminal 26 between the three-phase wires, and connected to the Y-type three-phase connection circuit 21 and the Δ-type three-phase circuit. The AC current generated in the connection circuit 22 is rectified into a DC current. The output of the three-phase full-wave rectifier circuit 4 is supplied to an electric device or a battery via an output terminal 40.

本実施例の三相交流発電機1の作動を第1図ないし第
5図に基づき説明する。なお、第5図は第1電機子巻線
x1、y1、z1および第2電機子巻線x2、y2、z2の空隙起磁
力分布を示す図である。
The operation of the three-phase AC generator 1 according to the present embodiment will be described with reference to FIGS. FIG. 5 shows the first armature winding.
It is a figure which shows the air gap magnetomotive force distribution of x1, y1, z1, and 2nd armature winding x2, y2, z2.

第5図(a)は電機子巻線x1、y1、z1、x2、y2、z2の
相電流に対し電機子巻線x1、y1、z1、x2、y2、z2の巻数
を掛け合わせた各相起磁力Ax1、Ay1、Az1、Ax2、Ay2、A
z2の時間的な変化を示す。
FIG. 5 (a) shows the phase currents of the armature windings x1, y1, z1, x2, y2, z2 multiplied by the number of turns of the armature windings x1, y1, z1, x2, y2, z2. Magnetomotive force Ax1, Ay1, Az1, Ax2, Ay2, A
This shows the temporal change of z2.

第5図(a)中の時刻t1、時刻t2および時刻t3に関し
て、第5図(b)に示す電機子巻線x1、y1、z1、x2、y
2、z2の配置を考慮して各相の空隙起磁力分布を求める
と第5図(c)、(e)、(g)となる。そして、これ
らの各相の空隙起磁力分布を合成した合成起磁力分布波
形は、第5図(d)、(f)、(h)に示すように、時
刻t1、時刻t2および時刻t3において各々が同一形状の波
形となり、回転子3の磁極34、35に対して静止波の関係
となる。
Regarding time t1, time t2 and time t3 in FIG. 5 (a), the armature windings x1, y1, z1, x2, y shown in FIG. 5 (b)
When the gap magnetomotive force distribution of each phase is determined in consideration of the arrangement of z2, the results are as shown in FIGS. 5 (c), (e) and (g). Then, as shown in FIGS. 5 (d), (f) and (h), the combined magnetomotive force distribution waveforms obtained by synthesizing the air gap magnetomotive force distributions of these phases are shown at time t1, time t2 and time t3, respectively. Have the same shape, and have a stationary wave relationship with the magnetic poles 34 and 35 of the rotor 3.

すなわち、第1電機子巻線x1、y1、z1、および第2電
機子巻線x2、y2、z2の反作用系を電気角π/6rad分だけ
ずらして回転子3の磁極34、35を回転方向に回転させれ
ば、合成起磁力分布は、第5図(d)、(f)に示した
状態を常時混合合成したものになる。このため、合成起
磁力分布は、時刻t1、t2、t3のように回転子3を回転方
向に移動させた場合でも、回転子3の界磁起磁力分布が
固定子2の空隙起磁力分布に与える反作用起磁力分布波
形が変化することはなく、回転子3の回転方向への移動
に伴って随伴するのみとなる。
That is, the reaction system of the first armature windings x1, y1, z1 and the second armature windings x2, y2, z2 is shifted by an electrical angle of π / 6 rad to move the magnetic poles 34, 35 of the rotor 3 in the rotation direction. , The resultant magnetomotive force distribution is obtained by constantly mixing and synthesizing the states shown in FIGS. 5 (d) and 5 (f). For this reason, even when the rotor 3 is moved in the rotating direction as at times t1, t2, and t3, the resultant magnetomotive force distribution is such that the field magnetomotive force distribution of the rotor 3 is equal to the air gap magnetomotive force distribution of the stator 2. The applied reaction magnetomotive force distribution waveform does not change, but only accompanies the movement of the rotor 3 in the rotation direction.

したがって、界磁起磁力分布と空隙起磁力分布との磁
気作用力は、回転子3の磁極34、35の回転方向における
回転位置に拘らず一定値をとるので、スロット開口部の
僅かなスロットリプルに基づく磁気脈動力の他に大きな
脈動が発生することはない。
Accordingly, the magnetic force of the field magnetomotive force distribution and the air gap magnetomotive force distribution takes a constant value irrespective of the rotational position of the rotor 3 in the rotation direction of the magnetic poles 34 and 35, so that a slight slot ripple at the slot opening is obtained. No large pulsation is generated other than the magnetic pulsation based on the pulsation.

このため、固定子2と回転子3との間に大きな脈動加
振力が発生しなくなるので、大掛かりな防音壁や特殊工
程を要さず、出力性能の低下、高コスト化および製品寸
法の大型化などを招くことなく、電磁的な騒音を減少す
ることができる。
For this reason, a large pulsating vibration force is not generated between the stator 2 and the rotor 3, so that a large soundproof wall and a special process are not required, and the output performance is reduced, the cost is increased, and the product size is increased. Electromagnetic noise can be reduced without inducing the noise.

また、回転子3の磁極34、35表面における磁束の変動
を減少できるので、磁気抵抗が著しく軽減されることに
よって、交流発電機1の出力効率を向上することができ
る。その上、磁極34、35の発熱が減少するので、界磁巻
線の温度が低下するため、より多くの励磁力が得られる
ことによって、交流発電機1の出力効率を向上すること
ができる。
Further, since the variation of the magnetic flux on the surfaces of the magnetic poles 34 and 35 of the rotor 3 can be reduced, the magnetic resistance is remarkably reduced, so that the output efficiency of the AC generator 1 can be improved. In addition, since the heat generated by the magnetic poles 34 and 35 decreases, the temperature of the field winding decreases, so that more exciting force can be obtained, and the output efficiency of the AC generator 1 can be improved.

さらに、第1電機子巻線x1、y1、z1と第2電機子巻線
x2、y2、z2とをπ/6radだけずらしてスロット内に収納
すると、それぞれの位相が異なってくるため、出力負荷
回路としての三相全波整流回路4を2組必要となるが、
それぞれを の巻数比とするとともに、Y形結線、Δ形結線として並
列接続して三相線間の第1端子24〜第3端子26における
電圧を同じ大きさ、出力を同位相とすることによって、
不平衡循環電流の発生をなくしている。このため、1組
の三相全波整流回路4で出力を取り出すことができるの
で、低コストでコンパクトな交流発電機1となる。
Further, the first armature winding x1, y1, z1 and the second armature winding
If x2, y2, and z2 are shifted in the slot by π / 6 rad and stored in the slot, their phases will differ, so two sets of three-phase full-wave rectifier circuits 4 as output load circuits are required.
Each And by connecting in parallel as a Y-shaped connection and a Δ-shaped connection so that the voltages at the first terminal 24 to the third terminal 26 between the three-phase wires have the same magnitude and the outputs have the same phase,
The generation of unbalanced circulating current is eliminated. For this reason, the output can be taken out by one set of the three-phase full-wave rectifier circuit 4, so that the AC generator 1 is low-cost and compact.

また、第1電機子巻線x1、y1、z1の線径および第2電
機子巻線x2、y2、z2の線径については、 となるように配設されているので、同一電流密度となり
銅線利用効率の低下を招くこともない。そして、巻線×
(線径)値に比例するスロット中の総導体断面積につ
いても第1電機子巻線x1、y1、z1および第2電機子巻線
x2、y2、z2で均一となるので、スロットの空間利用率の
低下を招くこともない。
Also, regarding the wire diameter of the first armature windings x1, y1, z1 and the wire diameter of the second armature windings x2, y2, z2, Therefore, the current density is the same, and the use efficiency of the copper wire is not reduced. And winding ×
(Wire diameter) for total conductor cross-sectional area of the slot is proportional to the value even if the first armature winding x1, y1, z1 and second armature winding
Since it becomes uniform at x2, y2, and z2, the space utilization of the slot does not decrease.

第6図は本発明の第2実施例を示す。 FIG. 6 shows a second embodiment of the present invention.

この実施例は、Y形三相結線回路21の中性点27にダイ
オード47、48を接続したものであり、この中性点27から
Y形三相結線回路21の出力に含まれる第3次高調波電流
を取り出している。
In this embodiment, diodes 47 and 48 are connected to the neutral point 27 of the Y-type three-phase connection circuit 21, and the third order included in the output of the Y-type three-phase connection circuit 21 from the neutral point 27. Harmonic current is extracted.

(変形例) 本実施例では、出力負荷回路として三相全波整流回路
を用いたが、インダクションモータやヒータなどの三相
負荷、トランジスタブリッジ、ツェナーダイオードを使
用した整流回路を用いても良い。
(Modification) In the present embodiment, a three-phase full-wave rectifier circuit is used as the output load circuit. However, a rectifier circuit using a three-phase load such as an induction motor or a heater, a transistor bridge, or a Zener diode may be used.

本実施例では、本発明を三相交流発電機に用いたが、
三相誘導電動機に用いても良い。
In the present embodiment, the present invention is used for a three-phase AC generator,
It may be used for a three-phase induction motor.

本実施例では、第1電機子巻線と第2電機子巻線との
巻数比を としたが、第1電機子巻線と第2電機子巻線との巻数比
を1:1.5〜2.2としても良い。
In the present embodiment, the turns ratio of the first armature winding to the second armature winding is However, the turns ratio of the first armature winding to the second armature winding may be 1: 1.5 to 2.2.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第5図は本発明の第1実施例を示す。第1
図は自動車用三相交流発電機の電気回路図、第2図は各
相の電機子巻線の巻線仕様図、第3図は自動車用三相交
流発電機の要部を示す断面図、第4図は回転子の磁極を
示す側面図、第5図は各相の電機子巻線の空隙起磁力分
布の説明図である。 第6図は本発明の第2実施例に採用された自動車用三相
交流発電機の電気回路図である。 第7図は従来の三相交流発電機における各相の電機子巻
線の空隙起磁力分布の説明図である。 図中 1……自動車用三相交流発電機(回転電機)、2……固
定子、3……回転子、21……Y形三相結線回路、22……
Δ形三相結線回路、23……電機子鉄心(固定子鉄心)、
x1、y1、z1……第1電機子巻線(第1巻線)、x2、y2、
z2……第1電機子巻線(第2巻線)
1 to 5 show a first embodiment of the present invention. First
FIG. 2 is an electric circuit diagram of a three-phase AC generator for a vehicle, FIG. 2 is a winding specification diagram of armature windings of each phase, FIG. FIG. 4 is a side view showing the magnetic poles of the rotor, and FIG. 5 is an explanatory diagram of the air gap magnetomotive force distribution of the armature windings of each phase. FIG. 6 is an electric circuit diagram of a three-phase AC generator for a vehicle employed in a second embodiment of the present invention. FIG. 7 is an explanatory diagram of a gap magnetomotive force distribution of armature windings of each phase in a conventional three-phase AC generator. In the drawing, 1 ... a three-phase AC generator (rotary electric machine) for an automobile, 2 ... a stator, 3 ... a rotor, 21 ... a Y-type three-phase wiring circuit, 22 ...
Δ-type three-phase connection circuit, 23 ... Armature core (stator core),
x1, y1, z1... first armature winding (first winding), x2, y2,
z2: First armature winding (second winding)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)3つの第1巻線をY形に結線したY
形三相結線回路、 このY形三相結線回路に並列接続されるとともに、前記
第1巻線の巻数に対してそれぞれ1.5〜2.2倍多い巻線と
された3つの第2巻線をΔ形に結線したΔ形三相結線回
路、 および前記第1巻線と前記第2巻線とを電気角でπ/6ra
dだけずらして異なる複数のスロット内に収納した固定
子鉄心 を有する固定子と、 (b)この固定子と相対回転する回転子と を備えた回転電機。
(A) Y in which three first windings are connected in a Y-shape
A three-phase connection circuit, which is connected in parallel with the Y-type three-phase connection circuit and has three second windings each having 1.5 to 2.2 times more windings than the number of turns of the first windings, and And a Δ-type three-phase connection circuit, and the first winding and the second winding are connected by an electrical angle of π / 6ra.
A rotating electric machine comprising: a stator having a stator core accommodated in a plurality of slots shifted by d, and (b) a rotor that rotates relative to the stator.
【請求項2】前記第1巻線と前記第2巻線とは、単一の
三相全波整流回路に結線されることを特徴とする請求項
1に記載の回転電機。
2. The rotating electric machine according to claim 1, wherein said first winding and said second winding are connected to a single three-phase full-wave rectifier circuit.
JP02108228A 1990-04-24 1990-04-24 Rotating electric machine Expired - Fee Related JP3104239B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02108228A JP3104239B2 (en) 1990-04-24 1990-04-24 Rotating electric machine
EP91106477A EP0454039B1 (en) 1990-04-24 1991-04-23 Alternating current generator having a plurality of independent three-phase windings
DE69122801T DE69122801T2 (en) 1990-04-24 1991-04-23 AC generator having a plurality of independent three-phase windings
US07/689,343 US5122705A (en) 1990-04-24 1991-04-24 Alternating current generator having a plurality of independent three-phase windings
US10/197,833 USRE38464E1 (en) 1990-04-24 2002-07-19 Alternating current generator having a plurality of independent three-phase windings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02108228A JP3104239B2 (en) 1990-04-24 1990-04-24 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPH048140A JPH048140A (en) 1992-01-13
JP3104239B2 true JP3104239B2 (en) 2000-10-30

Family

ID=14479302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02108228A Expired - Fee Related JP3104239B2 (en) 1990-04-24 1990-04-24 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP3104239B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756626B2 (en) * 1992-05-15 1998-05-25 本田技研工業株式会社 Mold casting method
JP3368598B2 (en) * 1992-10-14 2003-01-20 株式会社デンソー Rotating electric machine
JP3484407B2 (en) * 2000-11-24 2004-01-06 三菱電機株式会社 AC generator for vehicles
JP3633494B2 (en) 2001-02-20 2005-03-30 株式会社デンソー Rotating electric machine
FR2861225B1 (en) * 2003-09-05 2011-03-11 Valeo Equip Electr Moteur POLYPHASE TENSIONED ELECTRIC MACHINE SUCH AS AN ALTERNATOR OR ALTERNOMETER, IN PARTICULAR FOR A MOTOR VEHICLE
WO2007088598A1 (en) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Dynamo-electric machine
WO2008044703A1 (en) * 2006-10-12 2008-04-17 Mitsubishi Electric Corporation Stator of rotating electric machine
JP4496505B2 (en) 2007-09-14 2010-07-07 株式会社デンソー Rotating electric machine
JP2010104112A (en) * 2008-10-22 2010-05-06 Jtekt Corp Electric motor and electric power steering apparatus
JP5510703B2 (en) 2009-08-21 2014-06-04 株式会社デンソー Rotating electric machine and control system thereof
JP5939006B2 (en) * 2012-04-13 2016-06-22 株式会社ジェイテクト Rotating electric machine
JP2013236455A (en) * 2012-05-08 2013-11-21 Asmo Co Ltd Stator and motor
EP2728713A1 (en) * 2012-10-31 2014-05-07 Openhydro IP Limited An electrical machine

Also Published As

Publication number Publication date
JPH048140A (en) 1992-01-13

Similar Documents

Publication Publication Date Title
EP1365495B1 (en) Automotive alternating-current dynamoelectric machine
US7915778B2 (en) Electric motor
EP0454039B1 (en) Alternating current generator having a plurality of independent three-phase windings
JP3041884B2 (en) AC generator for vehicles
JP4876661B2 (en) Electric generator for vehicle
KR101096389B1 (en) Dynamo-electric machine
US7067949B2 (en) Rotary electric machine
US6784583B2 (en) Rotary electric machine
JP3104239B2 (en) Rotating electric machine
JP2004032984A (en) Induction motor
US20120038238A1 (en) AC Generator for Vehicle
JP2008193785A (en) Three-phase rotary electric machine
JP3474824B2 (en) AC generator for vehicles
US20100219788A1 (en) High phase order AC Machine with Short Pitch Winding
JP2002315250A (en) Stator of rotating electric apparatus
JP2001327137A (en) Alternator for vehicle
JPH1198786A (en) Ac generator for vehicle
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
JP2007097247A (en) Alternator for vehicle
JPH06284615A (en) Electric rotating machine
JP2010081670A (en) Alternating current generator
JPH05344696A (en) Ac generator for vehicle
JPH04236142A (en) Ac generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees