WO2008044703A1 - Stator of rotating electric machine - Google Patents

Stator of rotating electric machine Download PDF

Info

Publication number
WO2008044703A1
WO2008044703A1 PCT/JP2007/069743 JP2007069743W WO2008044703A1 WO 2008044703 A1 WO2008044703 A1 WO 2008044703A1 JP 2007069743 W JP2007069743 W JP 2007069743W WO 2008044703 A1 WO2008044703 A1 WO 2008044703A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
stator
portions
winding
cross
Prior art date
Application number
PCT/JP2007/069743
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Yoshizawa
Masaya Inoue
Haruyuki Kometani
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008538739A priority Critical patent/JPWO2008044703A1/en
Publication of WO2008044703A1 publication Critical patent/WO2008044703A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots

Definitions

  • the present invention relates to a stator of a rotating electrical machine such as a vehicular AC generator, and more particularly to a slot shape of a stator core.
  • a vehicular AC generator which is a type of vehicular rotating electrical machine, is driven by the rotational torque of an engine being transmitted from a crank shaft to a pulley via a belt.
  • it is desired to improve the output and increase the efficiency of the generator.
  • it is necessary to reduce the resistance of the stator winding with a large loss.
  • it is necessary to increase the cross-sectional area of the slot that houses the strands of the stator winding.
  • a means for increasing the cross-sectional area of the slot is to increase the slot depth in the radial direction or to increase the width of the slot in the circumferential direction.
  • the slots are arranged in the circumferential direction with the depth direction aligned with the radial direction. It becomes a fan shape that gradually widens outward in the direction. For this reason, the magnetic flux density decreases as it goes to the outer periphery of the teeth where the magnetic flux density is high near the inner periphery of the teeth, resulting in an unbalance of the magnetic flux density, and the magnetic flux density design cannot be optimized.
  • the parallel teeth shape causes a serious problem.
  • a large current exceeding 100A flows at a voltage as low as 12 to 14V, so that the strands become as thick as ⁇ ;
  • the slot width is also about the same as the wire thickness.
  • the design of a bundle of strands as in the industrial machine is not realized. Therefore, it becomes difficult to wind a wire consisting of a thick continuous wire around the slot, and the space factor cannot be increased.
  • each conductor segment is formed in a different cross-sectional shape so that the cross-sectional shape of the entire conductor segment aligned in a row matches the fan-shaped cross-sectional shape of the slot, and the space factor is increased. (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-159460
  • the slot accommodating portions which are usually a part of 4 to 8 conductors, are arranged in a row in the radial direction in the slot.
  • the present invention has been made to solve such a problem.
  • a slot portion having a rectangular cross section is continuously provided so that the circumferential width is increased stepwise outward in the radial direction.
  • the slot cross-sectional area of each slot can be secured, and the slot storage section corresponding to each slot can be stored to reduce the types of conductors with different cross-sectional areas, thereby reducing the number of parts and simplifying the production process. It aims at obtaining the stator of a rotary electric machine.
  • a stator of a rotating electrical machine includes a cylindrical stator core in which slots are arranged at a predetermined pitch in the circumferential direction with openings facing the inner periphery, and a plurality of conductors are part of the conductor. And a stator winding comprising a plurality of windings wound around the stator core with a certain slot storage portion being housed in the slot.
  • the slot has a shape having a plurality of steps in which a plurality of slot portions each having a rectangular cross section are continuously provided in the radial direction, and the circumferential width of each of the slot portions is increased stepwise outward in the radial direction.
  • each of the slot portions an even number of the slot storage portions are stored in a line in the radial direction.
  • the circumferential width of the slot accommodating portion corresponds to the circumferential width of the slot portion in which the slot accommodating is accommodated, and the radial length of the slot accommodating portion is the slot portion in which the slot accommodating portion is accommodated. Corresponds to a length obtained by dividing the radial length by the number of the slot accommodating portions accommodated in the slot portion.
  • the circumferential width of the slot is formed in a shape having a plurality of steps that increase stepwise outward in the radial direction, the parallel slot having a constant circumferential width in the radial direction is formed. Compared with a slot having a shape, a large slot cross-sectional area can be secured.
  • the circumferential width of the slot accommodating portion corresponds to the circumferential width of the slot accommodating the slot accommodating portion, and the radial length of the slot accommodating portion is the diameter of the slot accommodating the slot accommodating portion.
  • the type of conductor with a different cross-sectional area is the number of slots The number of parts can be reduced and the production process is simplified.
  • FIG. 1 is a cross-sectional view schematically showing an automotive alternator mounted with a stator according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a stator of the automotive alternator according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a relevant part for explaining the configuration of the stator of the automotive alternator according to Embodiment 1 of the present invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part for explaining the configuration of the stator core of the automotive alternator according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between a parameter k that defines the slot position of the slot in the stator core of the automotive alternator according to Embodiment 1 of the present invention and the slot cross-sectional area.
  • FIG. 6 is a side view showing a spring assembly constituting the stator winding of the automotive alternator according to Embodiment 1 of the present invention.
  • FIG. 7 is a process diagram illustrating a method for manufacturing the stator of the automotive alternator according to Embodiment 1 of the present invention.
  • FIG. 8 is a connection diagram of a three-phase AC winding constituting a stator winding in a stator of a vehicle AC generator according to Embodiment 2 of the present invention.
  • FIG. 9 is an enlarged cross-sectional view of a main part for explaining the configuration of the stator of the automotive alternator according to Embodiment 3 of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an automotive alternator on which a stator according to Embodiment 1 of the present invention is mounted
  • FIG. 2 shows an automotive alternator according to Embodiment 1 of the present invention
  • FIG. 3 is a perspective view showing a stator
  • FIG. 3 is an enlarged cross-sectional view of a main part illustrating the configuration of the stator of the vehicle alternator according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram according to Embodiment 1 of the present invention. It is a principal part expanded sectional view explaining the structure of the stator core of the alternating current generator for vehicles. In FIG. 2, for convenience of explanation, the conductor joints are omitted.
  • the vehicle alternator 1 includes a case 4 composed of a substantially bowl-shaped aluminum front bracket 2 and a rear bracket 3, and a shaft 5 that is connected to the case 4 via a bearing.
  • the rotor 6 rotatably supported in the case 4, the pulley 9 fixed to the end of the shaft 5 extending to the front side of the case 4, and the axial direction of the rotor 6
  • the fan 10 fixed to both end faces of the rotor, the stator 20 having a fixed gap with respect to the rotor 6, surrounding the outer periphery of the rotor 6, and fixed to the case 4, and the rear side of the shaft 5
  • a pair of slip rings 11 that supply current to the rotor 6, and a pair of brushes 12 that are disposed in the case 4 so as to slide on the slip rings 11.
  • a rectifier 13 that rectifies alternating current into direct current
  • a voltage regulator 14 that adjusts the magnitude of the alternating voltage generated by the stator 20, and the like are disposed in the case
  • the rotor 6 includes a field coil 7 that generates a magnetic flux when an excitation current is passed, a pole core 8 that is provided so as to cover the field coil 7, and a magnetic pole is formed by the magnetic flux, and a shaft 5. And.
  • the pole core 8 is fixed to a shaft 5 penetrating at the axial center position.
  • the stator 20 is wound around a cylindrical stator core 21 and the stator core 21, and a stator winding in which an alternating current is generated by a change in magnetic flux from the field coil 7 as the rotor 6 rotates. Line 25.
  • the stator core 21 is arranged in an annular core back 22 and a predetermined pitch in the circumferential direction on the inner peripheral side of the core back 22 and extends radially inward from the inner peripheral side of the core back 22 respectively.
  • a plurality of teeth 23 are provided, and a plurality of slots 24 that are open to the inner peripheral side are formed by the core back 22 and the adjacent teeth 23.
  • Each tooth 23 has a fan shape having an inner circumferential side circumferential width X and an outer circumferential side circumferential width X.
  • each slot 24 has a first slot portion 24a on the inner circumferential side having a parallel slot shape having a circumferential width a and a parallel slot shape having a circumferential width b, and the outer circumferential side from the first slot portion 24a. It is formed in a two-stage shape comprising a second slot portion 24b provided continuously to the!
  • each slot 24 continuous conductor wires 31A and 31B as four conductors constituting the stator winding 25 are accommodated in a line in the radial direction.
  • the first slot portion 24a accommodates a slot accommodating portion 32a that is a part of the first continuous conductor wire 31A formed in two rectangular cross sections, and the second slot portion 24b includes two slots.
  • the number of slots is ns
  • the radius of the inner periphery and the outer periphery of the first slot portion 24a is r, r,
  • the magnetic flux density decreases toward the outer periphery of the tooth where the magnetic flux density increases near the inner periphery of the tooth.
  • the amount of magnetic flux passing through the teeth is determined by the circumferential width on the inner peripheral side of the teeth. Therefore, the circumferential width on the inner circumference side of the teeth is determined so that a desired power generation amount can be obtained.
  • the circumferential width on the inner circumference side of this tooth is X.
  • the mouthpiece has a flat fi slot shape.
  • the slot has a fan-shaped slot shape.
  • this tooth 23 has an imbalance at the radial position of the magnetic flux density.
  • the amount of magnetic flux equivalent to that of the teeth constituting the above-described parallel slot shape and the teeth constituting the fan-like slot shape is allowed to be minimized.
  • the slot cross-sectional area of the slot 24 can be larger than the slot cross-sectional area of the parallel slot shape, and can approach the slot cross-sectional area of the fan-shaped slot shape.
  • the slot 24 is composed of first and second slot portions 24a and 24b having a rectangular cross section
  • the slot accommodating portions 32a and 32b of the first and second continuous conductor wires 31A and 31B to be accommodated are provided. It is easy to form a rectangular cross section that matches the cross sectional shape of the first and second slot portions 24a and 24b. That is, the circumferential width of the slot housing portion 32a is made to correspond to the circumferential width of the first slot portion 24a, and the radial length is divided by the number of housings (here, 2) the radial length of the first slot portion 24a.
  • the cross-sectional shape of the slot accommodating portion 32a is formed so as to correspond to the length.
  • the circumferential width of the slot accommodating portion 32b is made to correspond to the circumferential width of the second slot portion 24b, and the radial length is set to the second length.
  • the cross-sectional shape of the slot accommodating portion 32b is formed so as to correspond to the length obtained by dividing the radial length of the slot portion 24b by the number of accommodating portions (here, 2). Therefore, useless space between the slot 24 and the slot accommodating portions 32a and 32b of the first and second continuous conductor wires 31A and 31B can be reduced, and the space factor can be increased.
  • the first slot portion 24a stores the slot storage portions 32a of the two first continuous conductor wires 31A having the same cross-sectional shape
  • the second slot portion 24b includes two slots having the same cross-sectional shape.
  • the slot portion 32b of the second continuous conductor wire 31B is accommodated. Therefore, since the four-turn stator winding 25 can be manufactured using the two types of first and second continuous conductor wires 31A and 31B, the number of parts can be reduced and the production process can be simplified.
  • the cross-sectional area of the slot 24 can be increased without sacrificing productivity. Is possible. Therefore, copper loss generated in the stator winding 25 is reduced, and a highly efficient vehicle alternator is realized, which can contribute to improvement of vehicle fuel efficiency.
  • stator winding 25 is cooled by the rotation of the fan 10 fixed to the rotor 6. Since the copper loss generated in the stator winding 25 can be reduced, the air volume for cooling the stator winding 25 can be reduced, and the small size fan 10 can be used. As a result, noise caused by fan 10 can be reduced.
  • the cross-sectional area of the slot 24 can be increased while minimizing the imbalance of the core magnetic flux density at the radial position. Therefore, even if the diameter of the rotor 6 is reduced, the cross-sectional area of the first and second continuous conductor wires 31A, 31B can be increased and the winding resistance of the stator winding 25 can be reduced. A reduction in output caused by reducing the diameter can be suppressed, and a vehicle AC generator with low noise and a long belt life can be realized.
  • the slot S can be adjusted with the force S.
  • the parameter k that defines the step position is the ratio of the slot depth (radial length) of the first slot portion 24a to the slot depth (radial length) of the slot 24, and is expressed by the following equation.
  • r 2 is expressed by the following equation from the above equation.
  • stator 20 Next, a method for manufacturing the stator 20 will be described.
  • first and second winding assemblies 30A and 30B shown in FIG. 6 are prepared.
  • the first winding assembly 30A shown in FIG. 6 (a) is produced, for example, by continuously supplying twelve continuous conductor wires 31A to a winding forming apparatus (not shown) at the same time. Then, the twelve continuous conductor wires 31A are collectively bent and formed by the winding forming device in a state of being arranged at a 1-slot pitch.
  • This first winding assembly 30A is arranged in a number of slots at a pitch of 1 slot with a pair of linear slot accommodating portions 32a adjacent to each other in the direction orthogonal to the middle sheet surface of FIG. The end portions of the slot accommodating portion 32a apart from the slot are connected by a turn portion 33a.
  • the continuous conductor wire 31A is made of an insulation-covered copper wire, and has a side having a length substantially equal to the circumferential width of the first slot portion 24a and the radial length of the first slot portion 24a. It is made into a rectangular cross-section consisting of sides with a length approximately equal to the length divided by.
  • the second winding assembly 30B shown in (b) of Fig. 6 is produced by simultaneously and continuously supplying twelve continuous conductor wires 31B to the winding forming apparatus. Then, the twelve continuous conductor wires 31B are collectively bent and formed by a winding forming apparatus in a state of being arranged at a one-slot pitch.
  • This second winding assembly 30B is arranged by the number of slots at a 1-slot pitch of the linear slot accommodating portion 32b adjacent in the direction orthogonal to the (b) middle page of FIG. 6 and separated by 6 slots. Further, the end portions of the slot storage portion 32b are connected by a turn portion 33b.
  • the continuous conductor wire 31B is made of an insulation-covered copper wire, and has a side having a length substantially equal to the circumferential width of the second slot portion 24b and a radial length of the second slot portion 24b of 2. It is made into a rectangular cross-section consisting of sides with a length approximately equal to the length divided by.
  • the magnetic steel plate is press-molded to produce a belt-like magnetic plate having a teeth portion, a slot portion, and a core back portion. Then, the teeth portion, the slot portion, and the core back portion are overlapped and a predetermined number of magnetic plates are laminated and integrated to produce a rectangular parallelepiped laminated core 35. As shown in FIG. 7 (a), the laminated iron cores 35 are arranged at a predetermined pitch in the length direction of the core back 35a and the core back 35a, and each of the teeth extends from the core back 35a to one side. 35b, and a slot 35c including a core back 35a and an adjacent tooth 35b.
  • the first and second winding assemblies 30A and 30B are laminated, and the laminated core 35 is bent toward the core back 35a to expand the opening of the slot 35c. Then, the slot storage portions 32a and 32b are inserted into the slots 35c. Thereafter, as shown in FIG. 7 (c), bending of the laminated core 35 toward the core back 35a is stopped, and the first and second winding assemblies 30A, 30B are mounted on the laminated core 35.
  • the laminated iron core 35 is bent into a cylindrical shape, both end faces of the bent laminated iron core 35 are butted, and the butted portions are welded to produce a cylindrical stator core 21.
  • the first winding assembly 30A is wound around the first slot portion 24a of each slot 24, and the second winding assembly 30B is wound around the second slot portion 24b of each slot 24.
  • four slot storage portions 32a and 32b are stored in a line in the radial direction.
  • the end portions 31a and 31b of the continuous conductor wires 31A and 31B are joined together, and further, the respective windings are connected using the conductor end portion 34, so that a stator winding 25 composed of a desired three-phase AC winding is manufactured.
  • the stator 20 shown in FIG. 2 is obtained.
  • Each winding composed of the continuous conductor wire 31A wound around the first slot portion 24a is folded back outside the slot on the end face side of the stator core 21, and the first slot every six slots.
  • the inner layer and the outer layer are alternately wound in the slot depth direction.
  • each winding composed of the continuous conductor wire 31B wound around the second slot portion 24b is folded back outside the slot on the end face side of the stator core 21, and the second slot portion every six slots.
  • Slot in 24b The inner layer and the outer layer are wound alternately in the depth direction.
  • stator winding 25 is manufactured using the continuous conductor wires 31A and 31B, compared with the case where the U-shaped conductor segment is used, the number of joints is remarkably reduced, and the stator winding 25 is formed. 20 productivity can be improved.
  • first and second winding assemblies 30A and 30B are manufactured using a predetermined number of continuous conductor wires 31A and 31B, and the first and second winding assemblies 30A and 30B are stacked to form a rectangular parallelepiped laminated core 3 Since it is attached to 5, it is measured by simply winding the thick continuous conductor wires 31A and 31B around the slot 24.
  • first and second winding assemblies 30A and 30B are mounted on the rectangular parallelepiped laminated core 35, the laminated core 35 is bent toward the core back 35a, and the opening of the slot 35c is expanded.
  • the first and second winding assemblies 30A and 30B can be easily attached to the laminated core 35, and the occurrence of damage to the insulating coating of the continuous conductor wires 31A and 31B during the attachment is suppressed.
  • the number of slots is formed at a ratio of 2 per pole per phase, and V, the stator core is described as! /, And the force is the number of slots. Is not limited to the stator core formed at a rate of 2 per phase per pole.
  • the number of slots may be a stator core formed at a rate of 1 per phase per pole. Good.
  • the first and second winding assemblies 30A and 30B are manufactured using six continuous conductor wires 31A and 31B, respectively.
  • each phase winding of the force stator winding described as being composed of windings of each phase winding force turn of the stator winding has 4 turns.
  • each phase winding may be composed of 8 turns.
  • the two second winding assemblies 30B are overlapped and stored in the second slot portion 24b of each slot 24, and the two first winding assemblies 30A are overlapped in the first slot portion 24a of each slot 24. Just store it.
  • three second winding assemblies 30B are stacked and stored in the second slot portion 24b of each slot 24, and one first winding assembly 30A is stacked and placed in the first slot portion 24a of each slot 24. May be stored. In this way, an 8-turn stator winding can be produced using two types of continuous conductor wires 31A and 31B.
  • the first and second slot portions 24a, 24b of the present application that is, the slot portions of each stage, Slot storage parts for an even number of continuous conductor wires are stored in a line. Further, the number of slot storage portions stored in the slot portions of each stage is not necessarily the same.
  • the force S is assumed to use the first and second continuous conductor wires 31A and 31B prepared in advance in a rectangular cross section, and the cross section of the continuous conductor wire is not limited to the rectangular cross section.
  • the cross section may be circular.
  • a first winding assembly is produced using a continuous conductor wire having a circular cross section having a cross sectional area obtained by dividing the cross sectional area of the first slot portion 24a by the number of stored parts, and a press jig or the like is used.
  • slot storage part is molded into a rectangular cross section
  • a second winding assembly is manufactured using a continuous circular conductor wire having a cross-sectional area obtained by dividing the cross-sectional area of the second slot portion 24b by the number of housings, and a press jig or the like is prepared.
  • the slot storage part may be formed into a rectangular cross-section using this method.
  • the three-phase AC winding of the stator winding 25A is configured by ⁇ mixed connection.
  • the winding 36 composed of the first continuous conductor wire 31A accommodated in the first slot portion 24a is ⁇ -connected and accommodated in the second slot portion 24b having a larger cross-sectional area than the first slot portion 24a.
  • Winding 37 consisting of the second continuous conductor wire 31B is Y-connected.
  • a current value (peak value) that is three times the current value flowing in the ⁇ connection portion flows in the Y connection portion.
  • the number of conductors accommodated in the first and second slot portions 24a and 24b is equal, and the slot sectional area of the second slot portion 24b is greater than the slot sectional area of the first slot portion 24a. It is getting bigger. Since the winding 37 composed of the second continuous conductor wire 31B housed in the second slot portion 24b having a large slot cross-sectional area is Y-connected, the Y-connection portion constituting the Y-connection portion through which a large current flows is formed.
  • the resistance of the continuous conductor wire 31B is reduced, and the increase in the amount of heat generated at the Y connection is suppressed.
  • the surface area of the second continuous conductor wire 31B is increased, the heat generated in the Y connection portion is effectively dissipated to the cooling wind from the turn portion 33b of the second continuous conductor wire 31B, and an excessive temperature is generated in the Y connection portion. The rise is suppressed.
  • the winding 36 composed of the first continuous conductor wire 31 A is ⁇ -connected
  • the winding 37 composed of the second continuous conductor wire 31B stored in the second slot 24b is Y-connected. Also good. In this case, the current value flowing through the ⁇ connection portion and the current value flowing through the Y connection portion can be balanced.
  • the second continuous conductor wire 31B accommodated in the second slot portion 24b has a sectional area of the second slot portion 24b larger than the sectional area of the first slot portion 24a.
  • Force for connecting Y of the windings 37 to be configured The first continuous conductor wire 31A accommodated in the first slot portion 24a by making the cross-sectional area of the first slot portion 24a larger than the cross-sectional area of the second slot portion 24b You can Y-wind winding 36, which consists of!
  • Winding 36 composed of 31A may be Y-connected and winding 37 composed of second continuous conductor wire 31B housed in second slot 24b may be ⁇ -connected! /.
  • the number of the slot accommodating portions of the conductor wires accommodated in the two slot portions is equal, and when the slot sectional area is large, the conductor portions are accommodated in the slot portion! /
  • the winding composed of the conductor wire is Y-connected, and the slot cross-sectional area is small! /
  • the winding composed of the conductor wire accommodated in the slot is ⁇ -connected.
  • the resistance value of the Y-connected winding is smaller than the resistance value of the ⁇ -connected winding.
  • the number of the slot accommodating portions accommodated in the two slot portions is not necessarily the same. That is, the number of slot storage portions of the conductor wire stored in one slot portion is less than or equal to the number of slot storage portions of the conductor wire stored in the other slot portion, and is stored in one slot portion. If the conductor cross-sectional area of the slot storage section is larger than the conductor cross-section area of the slot storage section stored in the other slot section, the winding composed of the conductor wires stored in one slot section! Y-connect the wire, and ⁇ -connect the winding made up of the conductor wire stored in the other slot! In this case! /, Even so, the resistance value of the Y-connected winding is smaller than the resistance value of the ⁇ -connected winding, and an increase in the amount of heat generated in the ⁇ -connected portion is suppressed.
  • the teeth 26 are formed in a three-stage shape from the fan-shaped first, second, and third teeth portions 26a, 26b, and 26c, respectively, and the slots 27 are first, second, and third slot portions 27a, 27a, 27b and 27c are continuously provided in the radial direction, and the circumferential width is formed in a three-stage shape in which the circumferential width increases stepwise outward in the radial direction.
  • the first, second, and third slot portions 27a, 27b, 27c collect two HOa, 41a, 42a forces in the slot yarn collection of the continuous conductor springs 40, 41, 42 as conductors having different cross-sectional areas. It is done in the thread.
  • the slot 27 is formed in a three-stage shape including the first, second and third slot portions 27a, 27b and 27c having a rectangular cross section, the two-stage shape is provided. Compared with the slot, the force S is used to bring the slot cross-sectional area closer to the fan-shaped slot cross-sectional area.
  • first, second and third slot portions 27a, 27b, and 27c have slot collecting inner collars 40a, 41a, and 42a having two cross-sectional areas 40a, 41a, and 42a. Therefore, a 6-turn stator winding can be configured using three types of continuous conductor wires 40, 41 and 42, the number of parts can be reduced, and the production process can be simplified.
  • the force slot that forms the slot in a three-stage shape may be formed in a four-stage or more shape.
  • the force s for producing the stator winding using the continuous conductor wire, and the stator using the U-shaped conductor segment instead of the continuous conductor wire Windings may be made.
  • the conductor segment is inserted into each slot pair a predetermined number of slots away from one end of the cylindrical stator core, and the open ends of the conductor segments extending to the other end of the stator core are joined together.
  • a stator winding comprising a plurality of windings wound so as to alternately take the inner layer and the outer layer in the slot depth direction within the slot portion of each stage for each predetermined number of slots. Produced.
  • the present invention is not limited to a vehicle alternator, and includes a vehicle motor, a vehicle generator motor, and the like. Even when applied to the stator of a rotating electric machine, the same effect is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Provided is a stator of a rotating electric machine, which can retain a predetermined slot sectional area to reduce the kinds of conductors of different sectional areas thereby to reduce the number of parts and to simplify the manufacturing steps. A slot (24) has first and second slot portions (24a and 24b) formed individually into rectangular sections and contiguously in radial directions such that their circumferential widths are formed into two-step shapes made wider stepwise outward of the radial direction. In the first and second slot portions (24a and 24b), slot housing portions of two continuous conductor lines (31A and 31B) are juxtaposed radially in one row. The slot housing portions of the continuous conductor lines (31A and 31B) have their circumferential widths corresponding to the circumferential widths of the first and second slot portions (24a and 24b) for housing the slot housing portions. The slot housing portions of the continuous conductor lines (31A and 31B) have their radial lengths corresponding to the lengths, which are calculated by dividing the radial lengths of the first and second slot portions (24a and 24b) for housing the slot housing portions, by the number of the slot housing portions housed.

Description

明 細 書  Specification
回転電機の固定子  Rotating electric machine stator
技術分野  Technical field
[0001] この発明は、車両用交流発電機などの回転電機の固定子に関し、特に固定子鉄 心のスロット形状に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a stator of a rotating electrical machine such as a vehicular AC generator, and more particularly to a slot shape of a stator core.
背景技術  Background art
[0002] 車両用回転電機の一種である車両用交流発電機は、エンジンの回転トルクがクラ ンク軸からベルトを介してプーリに伝達されて駆動される。そして、近年、車両の装置 の電動化に伴い、発電機の出力向上、高効率化が望まれている。この出力向上およ び高効率化には、損失の大きい固定子巻線の抵抗を低減することが必要となる。 固定子巻線の抵抗を低減させるには、固定子巻線の素線を納めるスロットの断面 積を拡大することが必要となる。そして、スロットの断面積を拡大する手立ては、径方 向のスロット深さを拡大すること、もしくは周方向のスロットの幅を拡大することである。  [0002] A vehicular AC generator, which is a type of vehicular rotating electrical machine, is driven by the rotational torque of an engine being transmitted from a crank shaft to a pulley via a belt. In recent years, with the electrification of vehicle devices, it is desired to improve the output and increase the efficiency of the generator. In order to improve the output and increase the efficiency, it is necessary to reduce the resistance of the stator winding with a large loss. In order to reduce the resistance of the stator winding, it is necessary to increase the cross-sectional area of the slot that houses the strands of the stator winding. A means for increasing the cross-sectional area of the slot is to increase the slot depth in the radial direction or to increase the width of the slot in the circumferential direction.
[0003] しかし、スロットの幅を拡大することは、磁気回路であるティースの幅を狭くすること になる。そして、ティースの幅が狭くなると、ティースを通過する磁束密度が上がり、磁 気飽和により発電量が低下してしまう。  [0003] However, increasing the width of the slot reduces the width of the teeth that are magnetic circuits. And if the width | variety of a tooth | gear becomes narrow, the magnetic flux density which passes a tooth | gear will go up and the electric power generation amount will fall by magnetic saturation.
一方、スロットの幅を一定(平行スロット形状)としてスロットの深さを深くすると、スロ ットはその深さ方向を径方向に一致させて周方向に配列されているので、ティースの 幅が径方向外方に徐々に広くなる扇形となる。そのため、ティースの内周付近では磁 束密度が高ぐティースの外周に行くほど磁束密度が低くなり、磁束密度のアンバラ ンスを生じ、磁束密度設計を最適化できない。  On the other hand, when the slot width is constant (parallel slot shape) and the slot depth is increased, the slots are arranged in the circumferential direction with the depth direction aligned with the radial direction. It becomes a fan shape that gradually widens outward in the direction. For this reason, the magnetic flux density decreases as it goes to the outer periphery of the teeth where the magnetic flux density is high near the inner periphery of the teeth, resulting in an unbalance of the magnetic flux density, and the magnetic flux density design cannot be optimized.
[0004] このこと力、ら、ティースの幅を一定(平行ティース形状)としてスロットの深さを深くす ることが有効となる。この場合、スロットの幅が径方向外方に徐々に広くなる扇形とな こうすることは、産業機のように、百〜数百 Vの回転電機では、さしたる障害とはなら ない。つまり、産業機では、電流自体がそれほど大きくなぐ巻き数が多いことから、 素線自体が細ぐこれを束ねてコイルとしている。そこで、スロットの形状が変化しても 、束状の素線がスロット形状にならって適当に配置され、スロットの断面積に対する素 線の占める割合である占積率を大きくできる。 [0004] It is effective to increase the slot depth by keeping the teeth width constant (parallel teeth shape). In this case, it becomes a fan-shaped obstacle for a rotating electric machine of 100 to several hundreds V like an industrial machine, in which the slot width is gradually increased outward in the radial direction. In other words, in industrial machines, the current itself is so large that the number of windings is large, so the wires themselves are bundled together to form a coil. So even if the slot shape changes The bundle-like wires are appropriately arranged in the shape of a slot, and the space factor, which is the ratio of the wires to the cross-sectional area of the slot, can be increased.
[0005] しかし、車両用交流発電機では、平行ティース形状とすることは大きな不具合を生 じる。つまり、車両用交流発電機では、 12〜; 14Vという低電圧で 100Aを超える大電 流を流すので、素線は φ;!〜 2mmと太くなる。また、スロットの幅も、素線の太さと同 程度となる。さらに、最良生産を前提とするため、産業機のように素線の束という設計 が成立しない。そこで、太い連続線からなる素線をスロットに巻装し難くなり、占積率 を大きくできない。 [0005] However, in the AC generator for a vehicle, the parallel teeth shape causes a serious problem. In other words, in an AC generator for vehicles, a large current exceeding 100A flows at a voltage as low as 12 to 14V, so that the strands become as thick as φ; The slot width is also about the same as the wire thickness. Furthermore, because it is premised on the best production, the design of a bundle of strands as in the industrial machine is not realized. Therefore, it becomes difficult to wind a wire consisting of a thick continuous wire around the slot, and the space factor cannot be increased.
[0006] このような状況を鑑み、素線として U字状の導体セグメントを用い、導体セグメントを 平行ティース形状とする扇状の断面形状のスロット内に径方向に 1列に収納していた 。この従来の車両用交流発電機では、 1列に並んだ導体セグメント全体の断面形状 をスロットの扇状の断面形状に適合するように、各導体セグメントを異なる断面形状に 形成して、占積率を大きくしていた (例えば、特許文献 1参照)。  [0006] In view of such a situation, U-shaped conductor segments are used as the strands, and the conductor segments are housed in a row in the radial direction in a fan-shaped cross-sectional slot having parallel teeth. In this conventional vehicle alternator, each conductor segment is formed in a different cross-sectional shape so that the cross-sectional shape of the entire conductor segment aligned in a row matches the fan-shaped cross-sectional shape of the slot, and the space factor is increased. (For example, see Patent Document 1).
[0007] 特許文献 1:特開 2004— 159460号公報 [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-159460
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] このように、従来の車両用交流発電機の固定子では、スロット内の径方向位置に応 じた断面形状の異なる導体セグメントを用意する必要があった。また、この種の車両 用交流発電機の固定子では、通常、 4〜8本の導体の一部であるスロット収納部をス ロット内に径方向に 1列に配列していた。  [0008] As described above, in the conventional stator for a vehicle alternator, it is necessary to prepare conductor segments having different cross-sectional shapes corresponding to the radial positions in the slots. In addition, in this type of vehicle alternator stator, the slot accommodating portions, which are usually a part of 4 to 8 conductors, are arranged in a row in the radial direction in the slot.
そこで、従来の車両用交流発電機の固定子では、例えば、 8ターンの巻線を作製 する場合には、 8種類の断面形状の異なる導体セグメントが必要となり、部品点数が 増加するとともに、生産工程が複雑なものとなるという課題があった。  For this reason, for example, when an 8-turn winding is produced in a conventional stator for an automotive alternator, eight types of conductor segments having different cross-sectional shapes are required, which increases the number of parts and the production process. There is a problem that becomes complicated.
[0009] この発明は、このような課題を解決するためになされたものであり、周方向幅が径方 向外方にステップ状に大きくなるように矩形断面のスロット部を連設して所定のスロッ ト断面積を確保し、スロット部毎に対応する断面形状のスロット収納部を収納させて断 面積の異なる導体の種類を低減して、部品点数を削減でき、かつ生産工程を簡略化 できる回転電機の固定子を得ることを目的とする。 課題を解決するための手段 [0009] The present invention has been made to solve such a problem. A slot portion having a rectangular cross section is continuously provided so that the circumferential width is increased stepwise outward in the radial direction. The slot cross-sectional area of each slot can be secured, and the slot storage section corresponding to each slot can be stored to reduce the types of conductors with different cross-sectional areas, thereby reducing the number of parts and simplifying the production process. It aims at obtaining the stator of a rotary electric machine. Means for solving the problem
[0010] この発明による回転電機の固定子は、スロットが開口を内周側に向けて周方向所 定ピッチで配列された円筒状の固定子鉄心と、複数本の導体が導体の一部であるス ロット収納部を上記スロット内に収納して上記固定子鉄心に巻装された複数の巻線 からなる固定子巻線と、を備えている。上記スロットは、それぞれ断面矩形に形成され た複数のスロット部を径方向に連設して、それぞれの上記スロット部の周方向幅が径 方向外方にステップ状に広くなる複数段を有する形状に形成され、それぞれの上記 スロット部には、上記スロット収納部が径方向に 1列に並んで偶数本収納されている。 上記スロット収納部の周方向幅は、上記スロット収納が収納される上記スロット部の周 方向幅に対応し、上記スロット収納部の径方向長さは、上記スロット収納部が収納さ れる上記スロット部の径方向長さを上記スロット部に収納されている上記スロット収納 部の本数で除した長さに対応している。 [0010] A stator of a rotating electrical machine according to the present invention includes a cylindrical stator core in which slots are arranged at a predetermined pitch in the circumferential direction with openings facing the inner periphery, and a plurality of conductors are part of the conductor. And a stator winding comprising a plurality of windings wound around the stator core with a certain slot storage portion being housed in the slot. The slot has a shape having a plurality of steps in which a plurality of slot portions each having a rectangular cross section are continuously provided in the radial direction, and the circumferential width of each of the slot portions is increased stepwise outward in the radial direction. In each of the slot portions, an even number of the slot storage portions are stored in a line in the radial direction. The circumferential width of the slot accommodating portion corresponds to the circumferential width of the slot portion in which the slot accommodating is accommodated, and the radial length of the slot accommodating portion is the slot portion in which the slot accommodating portion is accommodated. Corresponds to a length obtained by dividing the radial length by the number of the slot accommodating portions accommodated in the slot portion.
発明の効果  The invention's effect
[0011] この発明によれば、スロットの周方向幅が径方向外方にステップ状に広くなる複数 段を有する形状に形成されているので、周方向幅が径方向に関して一定な平行スロ ット形状のスロットに比べて、大きなスロット断面積を確保すること力できる。また、スロ ット収納部の周方向幅はスロット収納部が収納されるスロット部の周方向幅に対応し、 かつスロット収納部の径方向長さはスロット収納部が収納されるスロット部の径方向長 さをスロット部に収納されているスロット収納部の本数で除した長さに対応しているの で、大きな占積率を確保しつつ、断面積の異なる導体の種類がスロット部の段数と同 数ですみ、部品点数を削減でき、生産工程が簡略化される。  [0011] According to the present invention, since the circumferential width of the slot is formed in a shape having a plurality of steps that increase stepwise outward in the radial direction, the parallel slot having a constant circumferential width in the radial direction is formed. Compared with a slot having a shape, a large slot cross-sectional area can be secured. In addition, the circumferential width of the slot accommodating portion corresponds to the circumferential width of the slot accommodating the slot accommodating portion, and the radial length of the slot accommodating portion is the diameter of the slot accommodating the slot accommodating portion. Corresponding to the length obtained by dividing the direction length by the number of slot storage parts stored in the slot part, while ensuring a large space factor, the type of conductor with a different cross-sectional area is the number of slots The number of parts can be reduced and the production process is simplified.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]この発明の実施の形態 1に係る固定子が実装された車両用交流発電機を模式 的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing an automotive alternator mounted with a stator according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1に係る車両用交流発電機の固定子を示す斜視図であ  FIG. 2 is a perspective view showing a stator of the automotive alternator according to Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1に係る車両用交流発電機の固定子の構成を説明する 要部拡大断面図である。 [図 4]この発明の実施の形態 1に係る車両用交流発電機の固定子鉄心の構成を説明 する要部拡大断面図である。 FIG. 3 is an enlarged cross-sectional view of a relevant part for explaining the configuration of the stator of the automotive alternator according to Embodiment 1 of the present invention. FIG. 4 is an enlarged cross-sectional view of a main part for explaining the configuration of the stator core of the automotive alternator according to Embodiment 1 of the present invention.
[図 5]この発明の実施の形態 1に係る車両用交流発電機の固定子鉄心におけるスロ ットの段位置を規定するパラメータ kとスロット断面積との関係を示す図である。  FIG. 5 is a diagram showing the relationship between a parameter k that defines the slot position of the slot in the stator core of the automotive alternator according to Embodiment 1 of the present invention and the slot cross-sectional area.
[図 6]この発明の実施の形態 1に係る車両用交流発電機の固定子巻線を構成する巻 泉組立体を示す側面図である。  FIG. 6 is a side view showing a spring assembly constituting the stator winding of the automotive alternator according to Embodiment 1 of the present invention.
[図 7]この発明の実施の形態 1に係る車両用交流発電機の固定子の製造方法を説明 する工程図である。  FIG. 7 is a process diagram illustrating a method for manufacturing the stator of the automotive alternator according to Embodiment 1 of the present invention.
[図 8]この発明の実施の形態 2に係る車両用交流発電機の固定子における固定子巻 線を構成する三相交流巻線の結線図である。  FIG. 8 is a connection diagram of a three-phase AC winding constituting a stator winding in a stator of a vehicle AC generator according to Embodiment 2 of the present invention.
[図 9]この発明の実施の形態 3に係る車両用交流発電機の固定子の構成を説明する 要部拡大断面図である。  FIG. 9 is an enlarged cross-sectional view of a main part for explaining the configuration of the stator of the automotive alternator according to Embodiment 3 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 実施の形態 1.  Embodiment 1.
図 1はこの発明の実施の形態 1に係る固定子が実装された車両用交流発電機を模 式的に示す断面図、図 2はこの発明の実施の形態 1に係る車両用交流発電機の固 定子を示す斜視図、図 3はこの発明の実施の形態 1に係る車両用交流発電機の固 定子の構成を説明する要部拡大断面図、図 4はこの発明の実施の形態 1に係る車両 用交流発電機の固定子鉄心の構成を説明する要部拡大断面図である。なお、図 2で は、説明の便宜上、導線の接合部を省略している。  FIG. 1 is a cross-sectional view schematically showing an automotive alternator on which a stator according to Embodiment 1 of the present invention is mounted, and FIG. 2 shows an automotive alternator according to Embodiment 1 of the present invention. FIG. 3 is a perspective view showing a stator, FIG. 3 is an enlarged cross-sectional view of a main part illustrating the configuration of the stator of the vehicle alternator according to Embodiment 1 of the present invention, and FIG. 4 is a diagram according to Embodiment 1 of the present invention. It is a principal part expanded sectional view explaining the structure of the stator core of the alternating current generator for vehicles. In FIG. 2, for convenience of explanation, the conductor joints are omitted.
[0014] 図 1乃至図 4において、車両用交流発電機 1は、それぞれ略椀形状のアルミ製のフ ロントブラケット 2とリャブラケット 3とからなるケース 4と、シャフト 5をケース 4に軸受を 介して支持されて、ケース 4内に回転自在に配設された回転子 6と、ケース 4のフロン ト側に延出するシャフト 5の端部に固着されたプーリ 9と、回転子 6の軸方向の両端面 に固定されたファン 10と、回転子 6に対して一定の空隙を有して、回転子 6の外周を 囲繞してケース 4に固定された固定子 20と、シャフト 5のリャ側に固定され、回転子 6 に電流を供給する一対のスリップリング 11と、各スリップリング 11に摺動するようにケ ース 4内に配設された一対のブラシ 12と、を備えている。さらに、固定子 20で生じた 交流を直流に整流する整流器 13、固定子 20で生じた交流電圧の大きさを調整する 電圧調整器 14などがケース 4内に配設されている。 [0014] In Figs. 1 to 4, the vehicle alternator 1 includes a case 4 composed of a substantially bowl-shaped aluminum front bracket 2 and a rear bracket 3, and a shaft 5 that is connected to the case 4 via a bearing. The rotor 6 rotatably supported in the case 4, the pulley 9 fixed to the end of the shaft 5 extending to the front side of the case 4, and the axial direction of the rotor 6 The fan 10 fixed to both end faces of the rotor, the stator 20 having a fixed gap with respect to the rotor 6, surrounding the outer periphery of the rotor 6, and fixed to the case 4, and the rear side of the shaft 5 A pair of slip rings 11 that supply current to the rotor 6, and a pair of brushes 12 that are disposed in the case 4 so as to slide on the slip rings 11. In addition, occurred in the stator 20 A rectifier 13 that rectifies alternating current into direct current, a voltage regulator 14 that adjusts the magnitude of the alternating voltage generated by the stator 20, and the like are disposed in the case 4.
[0015] 回転子 6は、励磁電流が流されて磁束を発生する界磁コイル 7と、界磁コイル 7を覆 うように設けられ、その磁束によって磁極が形成されるポールコア 8と、シャフト 5と、を 備えている。そして、ポールコア 8はその軸心位置に貫装されたシャフト 5に固着され ている。 The rotor 6 includes a field coil 7 that generates a magnetic flux when an excitation current is passed, a pole core 8 that is provided so as to cover the field coil 7, and a magnetic pole is formed by the magnetic flux, and a shaft 5. And. The pole core 8 is fixed to a shaft 5 penetrating at the axial center position.
[0016] 固定子 20は、円筒状の固定子鉄心 21と、固定子鉄心 21に巻装され、回転子 6の 回転に伴い、界磁コイル 7からの磁束の変化で交流が生じる固定子巻線 25と、を備 えている。  [0016] The stator 20 is wound around a cylindrical stator core 21 and the stator core 21, and a stator winding in which an alternating current is generated by a change in magnetic flux from the field coil 7 as the rotor 6 rotates. Line 25.
固定子鉄心 21は、円環状のコアバック 22と、コアバック 22の内周側に周方向に所 定ピッチで配列されて、それぞれコアバック 22の内周側から一体に径方向内方に延 出された複数のティース 23と、コアバック 22と隣り合うティース 23とで構成される内周 側に開口する複数のスロット 24と、を備えている。  The stator core 21 is arranged in an annular core back 22 and a predetermined pitch in the circumferential direction on the inner peripheral side of the core back 22 and extends radially inward from the inner peripheral side of the core back 22 respectively. A plurality of teeth 23 are provided, and a plurality of slots 24 that are open to the inner peripheral side are formed by the core back 22 and the adjacent teeth 23.
[0017] また、各ティース 23は、内周側周方向幅 Xと外周側周方向幅 Xとを有する扇形状を Each tooth 23 has a fan shape having an inner circumferential side circumferential width X and an outer circumferential side circumferential width X.
1 2  1 2
なす内周側の第 1ティース部 23aと、内周側周方向幅 Xと外周側周方向幅 Xとを有  A first tooth portion 23a on the inner circumferential side, and an inner circumferential side circumferential width X and an outer circumferential side circumferential width X.
3 4 する扇形状をなし、第 1ティース部 23aから外周側に連設された第 2ティース部 23aと 力もなる 2段の形状に形成されている。そこで、各スロット 24は、周方向幅 aを有する 平行スロット形状をなす内周側の第 1スロット部 24aと、周方向幅 bを有する平行スロッ ト形状をなし、第 1スロット部 24aから外周側に連設された第 2スロット部 24bとからなる 2段の形状に形成されて!/、る。  3 4 is formed in a two-stage shape that also acts as a force with the second tooth portion 23a connected to the outer peripheral side from the first tooth portion 23a. Therefore, each slot 24 has a first slot portion 24a on the inner circumferential side having a parallel slot shape having a circumferential width a and a parallel slot shape having a circumferential width b, and the outer circumferential side from the first slot portion 24a. It is formed in a two-stage shape comprising a second slot portion 24b provided continuously to the!
[0018] 各スロット 24には、固定子巻線 25を構成する 4本の導体としての連続導体線 31A, 31Bが径方向に 1列に並んで収納されている。そして、第 1スロット部 24aには、 2本 の矩形断面に形成された第 1連続導体線 31Aの一部であるスロット収納部 32aが収 納され、第 2スロット部 24bには、 2本の矩形断面に形成された第 2連続導体線 31B の一部であるスロット収納部 32bが収納されている。  In each slot 24, continuous conductor wires 31A and 31B as four conductors constituting the stator winding 25 are accommodated in a line in the radial direction. The first slot portion 24a accommodates a slot accommodating portion 32a that is a part of the first continuous conductor wire 31A formed in two rectangular cross sections, and the second slot portion 24b includes two slots. A slot accommodating portion 32b, which is a part of the second continuous conductor wire 31B formed in a rectangular cross section, is accommodated.
[0019] ここで、スロット数を ns、第 1スロット部 24aの内周辺および外周辺の半径を r , r、第  [0019] Here, the number of slots is ns, the radius of the inner periphery and the outer periphery of the first slot portion 24a is r, r,
1 2 1 2
2スロット部 24bの外周辺の半径を rとすると、第 1ティース部 23aおよび第 2ティース 2 If the radius of the outer periphery of the slot 24b is r, the first teeth 23a and the second teeth
3  Three
部 23bの各寸法 X, X, X, Xは、下記の式で表される。 X = (2 π Γ / — a Each dimension X, X, X, X of part 23b is expressed by the following formula. X = (2 π Γ / — a
1 1  1 1
X = (2 π Γ / Zns) — a  X = (2 π Γ / Zns) — a
2 2  twenty two
X = (2 π Γ / Zns) b  X = (2 π Γ / Zns) b
3 2  3 2
X = (2 π Γ / Zns) b  X = (2 π Γ / Zns) b
4 3  4 3
なお、寸法 x, X, X, Xの大小関係は、 X = X、 X〉X、および、 X > xとしている  The size relationship between dimensions x, X, X, and X is X = X, X> X, and X> x
1 2 3 4 1 3 4 3 2 1  1 2 3 4 1 3 4 3 2 1
 Yes
[0020] 一般的に、周方向の幅が径方向外方に徐々に広くなる扇形となるティースの場合、 ティースの内周付近では磁束密度が高ぐティースの外周に行くほど磁束密度が低く なる。言い換えれば、ティースを通過する磁束量は、ティースの内周側の周方向幅に よって決定される。そこで、所望の発電量が得られるようにティースの内周側の周方 向幅を決定することになる。このティースの内周側の周方向幅は Xとなる。この時、ス  [0020] Generally, in the case of a tooth having a fan shape in which the circumferential width gradually increases outward in the radial direction, the magnetic flux density decreases toward the outer periphery of the tooth where the magnetic flux density increases near the inner periphery of the tooth. . In other words, the amount of magnetic flux passing through the teeth is determined by the circumferential width on the inner peripheral side of the teeth. Therefore, the circumferential width on the inner circumference side of the teeth is determined so that a desired power generation amount can be obtained. The circumferential width on the inner circumference side of this tooth is X. At this time,
1  1
口ッ卜は平 fiスロッ卜形状となる。  The mouthpiece has a flat fi slot shape.
一方、周方向の幅が径方向に関して常に一定の平行ティースの場合、ティースの 磁束密度は径方向に関して一定となる。そこで、この平行ティースの周方向幅は Xと  On the other hand, in the case of parallel teeth in which the circumferential width is always constant in the radial direction, the magnetic flux density of the teeth is constant in the radial direction. Therefore, the circumferential width of this parallel tooth is X and
1 なる。この時、スロットは扇状スロット形状となる。  1 becomes. At this time, the slot has a fan-shaped slot shape.
[0021] 本ティース 23では、寸法 X , X , X , Xの大小関係を、 X = x、 X〉x、および、 x >  [0021] In this tooth 23, the magnitude relation of the dimensions X 1, X 2, X 3, X is expressed by X = x, X> x, and x>
1 2 3 4 1 3 4 3 2 xとしている。そこで、本ティース 23は、磁束密度の径方向位置でのアンバランスが 1 2 3 4 1 3 4 3 2 x. Therefore, this tooth 23 has an imbalance at the radial position of the magnetic flux density.
1 1
最小に抑制され、上述の平行スロット形状を構成するティースおよび扇状スロット形 状を構成するティースと同等の磁束量を通過させることができる。また、スロット 24の スロット断面積は、平行スロット形状のスロット断面積より大きくでき、扇状スロット形状 のスロット断面積に近づけるができる。  The amount of magnetic flux equivalent to that of the teeth constituting the above-described parallel slot shape and the teeth constituting the fan-like slot shape is allowed to be minimized. Further, the slot cross-sectional area of the slot 24 can be larger than the slot cross-sectional area of the parallel slot shape, and can approach the slot cross-sectional area of the fan-shaped slot shape.
[0022] また、スロット 24が断面矩形の第 1および第 2スロット部 24a, 24bから構成されてい るので、収納される第 1および第 2連続導体線 31A, 31Bのスロット収納部 32a, 32b を第 1および第 2スロット部 24a, 24bの断面形状に適合する矩形断面に形成しやす い。つまり、スロット収納部 32aの周方向幅を第 1スロット部 24aの周方向幅に対応さ せ、径方向長さを第 1スロット部 24aの径方向長さを収納本数 (ここでは 2)で除した長 さに対応させるようにスロット収納部 32aの断面形状を形成する。同様に、スロット収 納部 32bの周方向幅を第 2スロット部 24bの周方向幅に対応させ、径方向長さを第 2 スロット部 24bの径方向長さを収納本数 (ここでは 2)で除した長さに対応させるように スロット収納部 32bの断面形状を形成する。そこで、スロット 24と第 1および第 2連続 導体線 31A, 31Bのスロット収納部 32a, 32bとの間の無駄なスペースが低減され、 占積率を高めることができる。 [0022] Since the slot 24 is composed of first and second slot portions 24a and 24b having a rectangular cross section, the slot accommodating portions 32a and 32b of the first and second continuous conductor wires 31A and 31B to be accommodated are provided. It is easy to form a rectangular cross section that matches the cross sectional shape of the first and second slot portions 24a and 24b. That is, the circumferential width of the slot housing portion 32a is made to correspond to the circumferential width of the first slot portion 24a, and the radial length is divided by the number of housings (here, 2) the radial length of the first slot portion 24a. The cross-sectional shape of the slot accommodating portion 32a is formed so as to correspond to the length. Similarly, the circumferential width of the slot accommodating portion 32b is made to correspond to the circumferential width of the second slot portion 24b, and the radial length is set to the second length. The cross-sectional shape of the slot accommodating portion 32b is formed so as to correspond to the length obtained by dividing the radial length of the slot portion 24b by the number of accommodating portions (here, 2). Therefore, useless space between the slot 24 and the slot accommodating portions 32a and 32b of the first and second continuous conductor wires 31A and 31B can be reduced, and the space factor can be increased.
[0023] また、第 1スロット部 24aには、同一断面形状の 2本の第 1連続導体線 31Aのスロッ ト収納部 32aが収納され、第 2スロット部 24bには、同一断面形状の 2本の第 2連続導 体線 31Bのスロット部 32bが収納されている。そこで、 2種類の第 1および第 2連続導 体線 31A, 31Bを用いて 4ターンの固定子巻線 25を作製できるので、部品点数を削 減でき、生産工程を簡略化することができる。  [0023] In addition, the first slot portion 24a stores the slot storage portions 32a of the two first continuous conductor wires 31A having the same cross-sectional shape, and the second slot portion 24b includes two slots having the same cross-sectional shape. The slot portion 32b of the second continuous conductor wire 31B is accommodated. Therefore, since the four-turn stator winding 25 can be manufactured using the two types of first and second continuous conductor wires 31A and 31B, the number of parts can be reduced and the production process can be simplified.
[0024] このように、この実施の形態 1によれば、太い第 1および第 2連続導体線 31A, 31B を用いても、生産性を犠牲とすることなぐスロット 24の断面積を拡大することができる 。そこで、固定子巻線 25で生じる銅損が少なくなり、高効率な車両用交流発電機が 実現され、車両の燃費改善に貢献できる。  As described above, according to the first embodiment, even if the thick first and second continuous conductor wires 31A and 31B are used, the cross-sectional area of the slot 24 can be increased without sacrificing productivity. Is possible. Therefore, copper loss generated in the stator winding 25 is reduced, and a highly efficient vehicle alternator is realized, which can contribute to improvement of vehicle fuel efficiency.
また、回転子 6に固着されたファン 10の回転により固定子巻線 25を冷却している。 そして、固定子巻線 25で生じる銅損を低減できるので、固定子巻線 25を冷却するた めの風量を少なくでき、小さなサイズのファン 10を用いることができる。その結果、ファ ン 10による騒音も低減できる。  In addition, the stator winding 25 is cooled by the rotation of the fan 10 fixed to the rotor 6. Since the copper loss generated in the stator winding 25 can be reduced, the air volume for cooling the stator winding 25 can be reduced, and the small size fan 10 can be used. As a result, noise caused by fan 10 can be reduced.
[0025] また、この車両用交流発電機は、ベルトを介してプーリ 9に伝達されたエンジンの回 転トルクにより駆動されるので、ベルトのバラツキに起因して大きな騒音が発生し、あ るいはベルト寿命が短くなる。そこで、ベルトのバラツキから起こる騒音やベルト寿命 の問題を解決するために、回転子 6の径を小さくして、回転子 6の慣性モーメントを下 げること力 S望まれる。し力、し、回転子 6の径を小さくすると、界磁コイル 7のターン数が 少なくなり、必要な界磁起磁力が得られなくなる。この実施の形態 1によれば、スロット 24が第 1および第 2スロット部 24a, 24bからなる 2段の形状に構成されているので、 回転子 6の径を小さくした分、固定子鉄心 21の内径を小さくして、鉄心磁束密度の径 方向位置でのアンバランスを最小に抑制しつつ、スロット 24の断面積を大きくするこ とができる。そこで、回転子 6の径を小さくしても、第 1および第 2連続導体線 31A, 3 1Bの断面積を大きくでき、固定子巻線 25の巻線抵抗を低減できるので、回転子 6の 径を小さくすることに起因する出力の低下を抑えて、低騒音、かつ長ベルト寿命の車 両用交流発電機を実現できる。 [0025] Further, since this vehicle alternator is driven by the rotational torque of the engine transmitted to the pulley 9 through the belt, a large noise is generated due to the variation in the belt, or The belt life is shortened. Therefore, it is desirable to reduce the rotor 6's moment of inertia by reducing the diameter of the rotor 6 in order to solve the problems of noise and belt life caused by belt variations. If the diameter of the rotor 6 is reduced, the number of turns of the field coil 7 is reduced and the required field magnetomotive force cannot be obtained. According to the first embodiment, since the slot 24 is configured in a two-stage shape including the first and second slot portions 24a and 24b, the rotor core 21 has a portion corresponding to the reduced diameter of the rotor 6. By reducing the inner diameter, the cross-sectional area of the slot 24 can be increased while minimizing the imbalance of the core magnetic flux density at the radial position. Therefore, even if the diameter of the rotor 6 is reduced, the cross-sectional area of the first and second continuous conductor wires 31A, 31B can be increased and the winding resistance of the stator winding 25 can be reduced. A reduction in output caused by reducing the diameter can be suppressed, and a vehicle AC generator with low noise and a long belt life can be realized.
[0026] ついで、スロット 24の段位置の設定方法について説明する。つまり、第 1スロット部 2Next, a method for setting the step position of the slot 24 will be described. That is, the first slot 2
4aと第 2スロット部 24bとの境界線の径方向位置を変えることで、スロット断面積を調 整すること力 Sでさる。 By changing the radial position of the boundary line between 4a and the second slot portion 24b, the slot S can be adjusted with the force S.
[0027] まず、スロット断面積 Sは式(1)で表される。 [0027] First, the slot cross-sectional area S is expressed by equation (1).
S = a(r -r )+b(r -r ) ··· (式 1)  S = a (r -r) + b (r -r) (Equation 1)
2 1 3 2  2 1 3 2
段位置を規定するパラメータ kは、スロット 24のスロット深さ(径方向長さ)に対する 第 1スロット部 24aのスロット深さ(径方向長さ)の割合であり、次式で表される。  The parameter k that defines the step position is the ratio of the slot depth (radial length) of the first slot portion 24a to the slot depth (radial length) of the slot 24, and is expressed by the following equation.
k= (r -r )/(r -r ) (0<k<l)  k = (r -r) / (r -r) (0 <k <l)
2 1 3 1  2 1 3 1
r2は上式から次式で表される。 r 2 is expressed by the following equation from the above equation.
r =r +k(r— r )  r = r + k (r- r)
2 1 3 1  2 1 3 1
第 1スロット部 24aの周方向幅 aと第 2スロット部 24bの周方向幅 bとの関係は、次式 で表される。  The relationship between the circumferential width a of the first slot portion 24a and the circumferential width b of the second slot portion 24b is expressed by the following equation.
b = m-a (但し、 m 丄ノ  b = m-a (where m mno
[0028] ここで、 X =xの制約から、式(2)が導かれる。 Here, Equation (2) is derived from the constraint of X = x.
Figure imgf000010_0001
Figure imgf000010_0001
= (27r/ns)k(r— r )+a · · · (式 3)  = (27r / ns) k (r- r) + a (3)
3 1  3 1
式(1)に b、 rを代入すると、式 (4)が導かれる。  Substituting b and r into equation (1) leads to equation (4).
S = a (r— r ) (k + m— mk) · · · (式 4)  S = a (r- r) (k + m- mk) (4)
3 1  3 1
式 (4)から mを消去すると、式(5)が導かれる。  Erasing m from equation (4) leads to equation (5).
S = r— r){ak+(27r/nsノ K(r— r)+a— (2兀/ ns)k r— r )k— ak} S = r- r) {ak + (27r / ns k (r- r) + a- (2 兀 / ns) k r- r) k- ak}
3 1 3 1 3 13 1 3 1 3 1
=(r -r )[-(2π/ηδ) (r一 r ) {k一(1/2) }2 + a+ ( π /ns) (r一 r )/2] = (r -r) [-(2π / η δ ) (r-one r) {k-one (1/2)} 2 + a + (π / ns) (r-one r) / 2]
3 1 3 1 3 1 3 1 3 1 3 1
…(式 5) ... (Formula 5)
[0030] ここで、式 5で表されるスロット断面積 Sと周方向幅を aとする段のない平行スロット形 状のスロット断面積 Sとの面積比(S/S )と との関係を図 5に示す。 [0030] Here, there is a stepless parallel slot shape where the slot cross-sectional area S represented by Equation 5 and the circumferential width a are a. Figure 5 shows the relationship between the area ratio (S / S) and the slot cross-sectional area S.
0 0  0 0
図 5から、式 5で表されるスロット断面積 Sは、 k = 0. 5の時を最大値とする上に凸の カーブとなる。そして、 kが 0. 2より大きぐかつ 0. 8未満の範囲であれば、スロット断 面積 Sを、周方向幅を aとする段のない平行スロット形状のスロット断面積 Sに対して  From Fig. 5, the slot cross-sectional area S expressed by Equation 5 is an upwardly convex curve when k = 0.5. If k is greater than 0.2 and less than 0.8, the slot cross-sectional area S is compared to the slot cross-sectional area S of a parallel slot shape having a circumferential width a.
0 0
、 10%以上拡大することができる。つまり、 kを 0. 2より大きく、 0. 8未満に設定するこ とが望ましい。 Can be expanded by more than 10%. In other words, it is desirable to set k greater than 0.2 and less than 0.8.
[0031] つぎに、固定子 20の製造方法について説明する。  [0031] Next, a method for manufacturing the stator 20 will be described.
まず、図 6に示される第 1および第 2巻線組立体 30A, 30Bを用意する。 図 6の(a)に示される第 1巻線組立体 30Aは、例えば、 12本の連続導体線 31Aを 巻線成形装置(図示せず)に同時に連続して供給して作製される。そして、 12本の連 続導体線 31Aは、巻線成形装置により、 1スロットピッチで配列された状態で一括し て折り曲げ成形される。この第 1巻線組立体 30Aは、図 6の(a)中紙面と直交する方 向に隣接する直線状のスロット収納部 32aの対カ、 1スロットピッチでスロット数分配列 されており、 6スロット離れたスロット収納部 32aの端部同士がターン部 33aで連結さ れて構成されている。そして、 12本の連続導体線 31Aの端部 31aが、第 1巻線組立 体 30Aの両側両端に 6本ずっ延出されている。ここで、連続導体線 31Aは、絶縁被 覆された銅線からなり、第 1スロット部 24aの周方向幅とほぼ等しい長さの辺と、第 1ス ロット部 24aの径方向長さを 2で除した長さとほぼ等しい長さの辺とからなる断面矩形 に作製されている。  First, first and second winding assemblies 30A and 30B shown in FIG. 6 are prepared. The first winding assembly 30A shown in FIG. 6 (a) is produced, for example, by continuously supplying twelve continuous conductor wires 31A to a winding forming apparatus (not shown) at the same time. Then, the twelve continuous conductor wires 31A are collectively bent and formed by the winding forming device in a state of being arranged at a 1-slot pitch. This first winding assembly 30A is arranged in a number of slots at a pitch of 1 slot with a pair of linear slot accommodating portions 32a adjacent to each other in the direction orthogonal to the middle sheet surface of FIG. The end portions of the slot accommodating portion 32a apart from the slot are connected by a turn portion 33a. Then, six end portions 31a of the twelve continuous conductor wires 31A are extended to both ends on both sides of the first winding assembly 30A. Here, the continuous conductor wire 31A is made of an insulation-covered copper wire, and has a side having a length substantially equal to the circumferential width of the first slot portion 24a and the radial length of the first slot portion 24a. It is made into a rectangular cross-section consisting of sides with a length approximately equal to the length divided by.
[0032] 図 6の(b)に示される第 2巻線組立体 30Bは、同様に、 12本の連続導体線 31Bを 巻線成形装置に同時に連続して供給して作製される。そして、 12本の連続導体線 3 1Bは、巻線成形装置により、 1スロットピッチで配列された状態で一括して折り曲げ成 形される。この第 2巻線組立体 30Bは、図 6の(b)中紙面と直交する方向に隣接する 直線状のスロット収納部 32bの対力 1スロットピッチでスロット数分配列されており、 6 スロット離れたスロット収納部 32bの端部同士がターン部 33bで連結されて構成され ている。そして、 12本の連続導体線 31Bの端部 31bが、第 2巻線組立体 30Bの両側 両端に 6本ずっ延出されている。また、折り曲げ成形時に、所定の時点で該当する連 続導体線 31Bの供給量を多くして、後工程で曲げ成形される導体端部 34を第 2巻線 組立体 30Bのターン部 33bから延出させている。ここで、連続導体線 31Bは、絶縁被 覆された銅線からなり、第 2スロット部 24bの周方向幅とほぼ等しい長さの辺と、第 2ス ロット部 24bの径方向長さを 2で除した長さとほぼ等しい長さの辺とからなる断面矩形 に作製されている。 [0032] Similarly, the second winding assembly 30B shown in (b) of Fig. 6 is produced by simultaneously and continuously supplying twelve continuous conductor wires 31B to the winding forming apparatus. Then, the twelve continuous conductor wires 31B are collectively bent and formed by a winding forming apparatus in a state of being arranged at a one-slot pitch. This second winding assembly 30B is arranged by the number of slots at a 1-slot pitch of the linear slot accommodating portion 32b adjacent in the direction orthogonal to the (b) middle page of FIG. 6 and separated by 6 slots. Further, the end portions of the slot storage portion 32b are connected by a turn portion 33b. Then, six end portions 31b of the twelve continuous conductor wires 31B are extended to both ends of the second winding assembly 30B. Also, at the time of bending, the supply amount of the corresponding continuous conductor wire 31B is increased at a predetermined time, and the conductor end 34 that is bent and formed in the subsequent process is connected to the second winding. It extends from the turn part 33b of the assembly 30B. Here, the continuous conductor wire 31B is made of an insulation-covered copper wire, and has a side having a length substantially equal to the circumferential width of the second slot portion 24b and a radial length of the second slot portion 24b of 2. It is made into a rectangular cross-section consisting of sides with a length approximately equal to the length divided by.
[0033] つ!/、で、磁性鋼板をプレス成形して、ティース部、スロット部およびコアバック部を有 する帯状の磁性板を作製する。そして、ティース部、スロット部およびコアバック部を 重ねて所定枚の磁性板を積層 ·一体化して、直方体の積層鉄心 35を作製する。この 積層鉄心 35は、図 7の(a)に示されるように、コアバック 35a、コアバック 35aの長さ方 向に所定のピッチで配列され、それぞれコアバック 35aから一側に延出するティース 35b、コアバック 35aと隣り合うティース 35bとで構成されるスロット 35cを有する。  [0033] Then, the magnetic steel plate is press-molded to produce a belt-like magnetic plate having a teeth portion, a slot portion, and a core back portion. Then, the teeth portion, the slot portion, and the core back portion are overlapped and a predetermined number of magnetic plates are laminated and integrated to produce a rectangular parallelepiped laminated core 35. As shown in FIG. 7 (a), the laminated iron cores 35 are arranged at a predetermined pitch in the length direction of the core back 35a and the core back 35a, and each of the teeth extends from the core back 35a to one side. 35b, and a slot 35c including a core back 35a and an adjacent tooth 35b.
[0034] ついで、図 7の(b)に示されるように、第 1および第 2巻線組立体 30A, 30Bを積層 し、積層鉄心 35をコアバック 35a側に曲げてスロット 35cの開口を拡張し、スロット収 納部 32a, 32bを各スロット 35c内に揷入する。その後、図 7の(c)に示されるように、 積層鉄心 35をコアバック 35a側に曲げるのを止め、第 1および第 2巻線組立体 30A, 30Bが積層鉄心 35に装着される。  Next, as shown in FIG. 7 (b), the first and second winding assemblies 30A and 30B are laminated, and the laminated core 35 is bent toward the core back 35a to expand the opening of the slot 35c. Then, the slot storage portions 32a and 32b are inserted into the slots 35c. Thereafter, as shown in FIG. 7 (c), bending of the laminated core 35 toward the core back 35a is stopped, and the first and second winding assemblies 30A, 30B are mounted on the laminated core 35.
[0035] ついで、積層鉄心 35を円筒状に曲げ、曲げられた積層鉄心 35の両端面を突き合 わせ、その突き合わせ部を溶接して、円筒状の固定子鉄心 21を作製する。これによ り、第 1巻線組立体 30Aは、各スロット 24の第 1スロット部 24aに巻装され、第 2巻線 組立体 30Bは、各スロット 24の第 2スロット部 24bに巻装されている。そして、各スロッ ト 24には、 4本のスロット収納部 32a, 32bが径方向に 1列に並んで収納されている。 その後、連続導体線 31A, 31Bの端部 31a, 31b同士を接合し、さらに導体端部 34 を用いて各巻線を結線し、所望の 3相交流巻線からなる固定子巻線 25を作製し、図 2に示される固定子 20を得る。  Next, the laminated iron core 35 is bent into a cylindrical shape, both end faces of the bent laminated iron core 35 are butted, and the butted portions are welded to produce a cylindrical stator core 21. Thus, the first winding assembly 30A is wound around the first slot portion 24a of each slot 24, and the second winding assembly 30B is wound around the second slot portion 24b of each slot 24. ing. In each slot 24, four slot storage portions 32a and 32b are stored in a line in the radial direction. After that, the end portions 31a and 31b of the continuous conductor wires 31A and 31B are joined together, and further, the respective windings are connected using the conductor end portion 34, so that a stator winding 25 composed of a desired three-phase AC winding is manufactured. The stator 20 shown in FIG. 2 is obtained.
[0036] なお、第 1スロット部 24aに巻装されている連続導体線 31Aで構成される各巻線は 、固定子鉄心 21の端面側のスロット外で折り返されて、 6スロット毎の第 1スロット部 24 a内でスロット深さ方向に内層と外層とを交互にとるように巻装されている。同様に、第 2スロット部 24bに巻装されている連続導体線 31Bで構成される各巻線は、固定子鉄 心 21の端面側のスロット外で折り返されて、 6スロット毎の第 2スロット部 24b内でスロ ット深さ方向に内層と外層とを交互にとるように巻装されている。 [0036] Each winding composed of the continuous conductor wire 31A wound around the first slot portion 24a is folded back outside the slot on the end face side of the stator core 21, and the first slot every six slots. In the portion 24a, the inner layer and the outer layer are alternately wound in the slot depth direction. Similarly, each winding composed of the continuous conductor wire 31B wound around the second slot portion 24b is folded back outside the slot on the end face side of the stator core 21, and the second slot portion every six slots. Slot in 24b The inner layer and the outer layer are wound alternately in the depth direction.
[0037] このように、固定子巻線 25が連続導体線 31A, 31Bを用いて作製されているので、 U字状の導体セグメントを用いる場合に比べて、接合箇所が著しく低減され、固定子 20の生産性を向上させることができる。 [0037] As described above, since the stator winding 25 is manufactured using the continuous conductor wires 31A and 31B, compared with the case where the U-shaped conductor segment is used, the number of joints is remarkably reduced, and the stator winding 25 is formed. 20 productivity can be improved.
また、所定本数の連続導体線 31A, 31Bを用いて第 1および第 2巻線組立体 30A , 30Bを作製し、第 1および第 2巻線組立体 30A, 30Bを重ねて直方体の積層鉄心 3 5に装着するようにしているので、太い連続導体線 31A, 31Bを簡易にスロット 24に 巻装すること力でさる。  Also, first and second winding assemblies 30A and 30B are manufactured using a predetermined number of continuous conductor wires 31A and 31B, and the first and second winding assemblies 30A and 30B are stacked to form a rectangular parallelepiped laminated core 3 Since it is attached to 5, it is measured by simply winding the thick continuous conductor wires 31A and 31B around the slot 24.
また、第 1および第 2巻線組立体 30A, 30Bを直方体の積層鉄心 35に装着する際 に、積層鉄心 35をコアバック 35a側に曲げて、スロット 35cの開口を拡張しているので 、第 1および第 2巻線組立体 30A, 30Bを積層鉄心 35に簡易に装着できると共に、 装着時における連続導体線 31A, 31Bの絶縁被膜の損傷の発生が抑制される。  Further, when the first and second winding assemblies 30A and 30B are mounted on the rectangular parallelepiped laminated core 35, the laminated core 35 is bent toward the core back 35a, and the opening of the slot 35c is expanded. The first and second winding assemblies 30A and 30B can be easily attached to the laminated core 35, and the occurrence of damage to the insulating coating of the continuous conductor wires 31A and 31B during the attachment is suppressed.
[0038] なお、上記実施の形態 1では、スロット数が毎極毎相当たりの 2の割合で形成されて V、る固定子鉄心につ!/、て説明して!/、る力 スロット数は毎極毎相当たりの 2の割合で 形成されている固定子鉄心に限定されるものではなぐ例えばスロット数は毎極毎相 当たりの 1の割合で形成されている固定子鉄心であってもよい。この場合、第 1および 第 2巻線組立体 30A, 30Bは、それぞれ 6本の連続導体線 31A, 31Bを用いて作製 される。 [0038] In Embodiment 1 described above, the number of slots is formed at a ratio of 2 per pole per phase, and V, the stator core is described as! /, And the force is the number of slots. Is not limited to the stator core formed at a rate of 2 per phase per pole. For example, the number of slots may be a stator core formed at a rate of 1 per phase per pole. Good. In this case, the first and second winding assemblies 30A and 30B are manufactured using six continuous conductor wires 31A and 31B, respectively.
[0039] また、上記実施の形態 1では、固定子巻線の各相巻線力 ターンの巻線で構成さ れるものとして説明している力 固定子巻線の各相巻線は 4ターンの巻線に限定され るものではなぐ例えば各相巻線が 8ターンの巻線で構成されてもよい。この場合、 2 つの第 2巻線組立体 30Bを重ねて各スロット 24の第 2スロット部 24bに収納し、 2つの 第 1巻線組立体 30Aを重ねて各スロット 24の第 1スロット部 24aに収納すればよい。 あるいは、 3つの第 2巻線組立体 30Bを重ねて各スロット 24の第 2スロット部 24bに収 納し、 1つの第 1巻線組立体 30Aを重ねて各スロット 24の第 1スロット部 24aに収納し てもよい。このように、 2種類の連続導体線 31A, 31Bを用いて 8ターンの固定子巻線 を作製できる。  [0039] In the first embodiment, each phase winding of the force stator winding described as being composed of windings of each phase winding force turn of the stator winding has 4 turns. For example, each phase winding may be composed of 8 turns. In this case, the two second winding assemblies 30B are overlapped and stored in the second slot portion 24b of each slot 24, and the two first winding assemblies 30A are overlapped in the first slot portion 24a of each slot 24. Just store it. Alternatively, three second winding assemblies 30B are stacked and stored in the second slot portion 24b of each slot 24, and one first winding assembly 30A is stacked and placed in the first slot portion 24a of each slot 24. May be stored. In this way, an 8-turn stator winding can be produced using two types of continuous conductor wires 31A and 31B.
[0040] このように、本願の第 1および第 2スロット部 24a, 24b、即ち各段のスロット部には、 偶数本の連続導体線のスロット収納部が 1列に並んで収納される。また、各段のスロ ット部に収納されるスロット収納部の本数は、必ずしも同じである必要はない。 [0040] Thus, the first and second slot portions 24a, 24b of the present application, that is, the slot portions of each stage, Slot storage parts for an even number of continuous conductor wires are stored in a line. Further, the number of slot storage portions stored in the slot portions of each stage is not necessarily the same.
[0041] また、上記実施の形態 1では、予め断面矩形に作製された第 1および第 2連続導体 線 31A, 31Bを用いるものとしている力 S、連続導体線の断面は矩形断面に限定され ず、例えば断面円形でもよい。この場合、第 1スロット部 24aの断面積を収納本数で 除して得られた断面積を有する断面円形の連続導体線を用いて第 1巻線組立体を 作製し、プレス治具などを用いてそのスロット収納部を矩形断面に成形すればょレ、。 同様に、第 2スロット部 24bの断面積を収納本数で除して得られた断面積を有する断 面円形の連続導体線を用いて第 2巻線組立体を作製し、プレス治具などを用いてそ のスロット収納部を矩形断面に成形すればよい。  [0041] In the first embodiment, the force S is assumed to use the first and second continuous conductor wires 31A and 31B prepared in advance in a rectangular cross section, and the cross section of the continuous conductor wire is not limited to the rectangular cross section. For example, the cross section may be circular. In this case, a first winding assembly is produced using a continuous conductor wire having a circular cross section having a cross sectional area obtained by dividing the cross sectional area of the first slot portion 24a by the number of stored parts, and a press jig or the like is used. If the slot storage part is molded into a rectangular cross section, Similarly, a second winding assembly is manufactured using a continuous circular conductor wire having a cross-sectional area obtained by dividing the cross-sectional area of the second slot portion 24b by the number of housings, and a press jig or the like is prepared. The slot storage part may be formed into a rectangular cross-section using this method.
[0042] 実施の形態 2.  [0042] Embodiment 2.
この実施の形態 2では、図 8に示されるように、固定子巻線 25Aの 3相交流巻線を ΔΥ混合結線で構成している。そして、第 1スロット部 24aに収納されている第 1連続 導体線 31 Aで構成される巻線 36を Δ結線し、第 1スロット部 24aより断面積の大きい 第 2スロット部 24bに収納されている第 2連続導体線 31Bで構成される巻線 37を Y結 線している。  In the second embodiment, as shown in FIG. 8, the three-phase AC winding of the stator winding 25A is configured by ΔΥ mixed connection. The winding 36 composed of the first continuous conductor wire 31A accommodated in the first slot portion 24a is Δ-connected and accommodated in the second slot portion 24b having a larger cross-sectional area than the first slot portion 24a. Winding 37 consisting of the second continuous conductor wire 31B is Y-connected.
なお、他の構成は上記実施の形態 1と同様に構成されている。  Other configurations are the same as those in the first embodiment.
[0043] ΔΥ混合結線では、 Y結線部には、 Δ結線部に流れる電流値の 3倍の電流値(ピ ーク値)が流れる。この実施の形態 2では、第 1および第 2スロット部 24a, 24bに収納 される導体の本数が等しぐかつ第 2スロット部 24bのスロット断面積を第 1スロット部 2 4aのスロット断面積より大きくしている。そして、スロット断面積の大きい第 2スロット部 24bに収納されている第 2連続導体線 31Bで構成される巻線 37を Y結線しているの で、大電流が流れる Y結線部を構成する第 2連続導体線 31Bの抵抗が小さくなり、 Y 結線部における発熱量の増大が抑制される。また、第 2連続導体線 31Bの表面積が 大きくなるので、 Y結線部における発熱が第 2連続導体線 31Bのターン部 33bから冷 却風に効果的に放熱され、 Y結線部での過度の温度上昇が抑制される。 [0043] In the ΔΥ mixed connection, a current value (peak value) that is three times the current value flowing in the Δ connection portion flows in the Y connection portion. In the second embodiment, the number of conductors accommodated in the first and second slot portions 24a and 24b is equal, and the slot sectional area of the second slot portion 24b is greater than the slot sectional area of the first slot portion 24a. It is getting bigger. Since the winding 37 composed of the second continuous conductor wire 31B housed in the second slot portion 24b having a large slot cross-sectional area is Y-connected, the Y-connection portion constituting the Y-connection portion through which a large current flows is formed. 2 The resistance of the continuous conductor wire 31B is reduced, and the increase in the amount of heat generated at the Y connection is suppressed. In addition, since the surface area of the second continuous conductor wire 31B is increased, the heat generated in the Y connection portion is effectively dissipated to the cooling wind from the turn portion 33b of the second continuous conductor wire 31B, and an excessive temperature is generated in the Y connection portion. The rise is suppressed.
[0044] ここで、理想的には、 Δ結線部のターン数: Y結線部のターン数 =^3 : 1として、 Δ 結線部に流れる電流値と Y結線部に流れる電流値とを均衡化することが望ましレ、。し かし、ターン数は整数であることから、ターン数により両者に流れる電流値を均衡化 することはできない。 [0044] Here, ideally, the number of turns in the Δ connection section: the number of turns in the Y connection section = ^ 3: 1, and the current value flowing through the Δ connection section and the current value flowing through the Y connection section are balanced. I hope to do it. Shi However, since the number of turns is an integer, the current value flowing through both cannot be balanced by the number of turns.
そこで、実施の形態 2において、第 1スロット部 24aの断面積:第 2スロット部 24bの 断面積 = 1 : ^3を満足するように kを設定し、第 1スロット部 24aに収納されている第 1 連続導体線 31 Aで構成される巻線 36を Δ結線し、第 2スロット部 24bに収納されて!/、 る第 2連続導体線 31Bで構成される巻線 37を Y結線してもよい。この場合、 Δ結線部 に流れる電流値と Y結線部に流れる電流値とを均衡化することができる。  Therefore, in the second embodiment, k is set so as to satisfy the cross-sectional area of the first slot portion 24a: the cross-sectional area of the second slot portion 24b = 1: ^ 3, and is stored in the first slot portion 24a. The winding 36 composed of the first continuous conductor wire 31 A is Δ-connected, and the winding 37 composed of the second continuous conductor wire 31B stored in the second slot 24b is Y-connected. Also good. In this case, the current value flowing through the Δ connection portion and the current value flowing through the Y connection portion can be balanced.
[0045] なお、上記実施の形態 2では、第 2スロット部 24bの断面積を第 1スロット部 24aの断 面積より大きくし、第 2スロット部 24bに収納されている第 2連続導体線 31Bで構成さ れる巻線 37を Y結線している力 第 1スロット部 24aの断面積を第 2スロット部 24bの 断面積より大きくし、第 1スロット部 24aに収納されている第 1連続導体線 31Aで構成 される巻線 36を Y結線してもよ!/、。  [0045] In the second embodiment, the second continuous conductor wire 31B accommodated in the second slot portion 24b has a sectional area of the second slot portion 24b larger than the sectional area of the first slot portion 24a. Force for connecting Y of the windings 37 to be configured The first continuous conductor wire 31A accommodated in the first slot portion 24a by making the cross-sectional area of the first slot portion 24a larger than the cross-sectional area of the second slot portion 24b You can Y-wind winding 36, which consists of!
さらに、第 1スロット部 24aの断面積:第 2スロット部 24bの断面積 = ^3 : 1を満足す るように kを設定し、第 1スロット部 24aに収納されている第 1連続導体線 31Aで構成 される巻線 36を Y結線し、第 2スロット部 24bに収納されている第 2連続導体線 31B で構成される巻線 37を Δ結線してもよ!/、。  Further, k is set so as to satisfy the cross-sectional area of the first slot portion 24a: the cross-sectional area of the second slot portion 24b = ^ 3: 1, and the first continuous conductor wire accommodated in the first slot portion 24a. Winding 36 composed of 31A may be Y-connected and winding 37 composed of second continuous conductor wire 31B housed in second slot 24b may be Δ-connected! /.
[0046] なお、上記実施の形態 2では、 2つのスロット部に収納されている導体線のスロット 収納部の本数が等しレ、時、スロット断面積の大きレ、スロット部に収納されて!/、る導体 線で構成される巻線を Y結線し、スロット断面積の小さ!/、スロット部に収納されてレ、る 導体線で構成される巻線を Δ結線するものとしている。これにより、 Y結線される巻線 の抵抗値は Δ結線される巻線の抵抗値より小さくなる。  [0046] In the second embodiment, the number of the slot accommodating portions of the conductor wires accommodated in the two slot portions is equal, and when the slot sectional area is large, the conductor portions are accommodated in the slot portion! / The winding composed of the conductor wire is Y-connected, and the slot cross-sectional area is small! / The winding composed of the conductor wire accommodated in the slot is Δ-connected. As a result, the resistance value of the Y-connected winding is smaller than the resistance value of the Δ-connected winding.
し力、し、この発明では、 2つのスロット部に収納されているスロット収納部の本数が必 ずしも同じである必要はない。つまり、一方のスロット部に収納されている導体線のス ロット収納部の本数が他方のスロット部に収納されている導体線のスロット収納部の 本数以下で、かつ一方のスロット部に収納されているスロット収納部の導体断面積が 他方のスロット部に収納されているスロット収納部の導体断面積より大きい場合に、一 方のスロット部に収納されて!/、る導体線で構成される巻線を Y結線し、他方のスロット 部に収納されてレ、る導体線で構成される巻線を Δ結線すればよ!/、。この場合にお!/、 ても、 Y結線される巻線の抵抗値は Δ結線される巻線の抵抗値より小さくなり、 Υ結線 部における発熱量の増大が抑制される。 In the present invention, the number of the slot accommodating portions accommodated in the two slot portions is not necessarily the same. That is, the number of slot storage portions of the conductor wire stored in one slot portion is less than or equal to the number of slot storage portions of the conductor wire stored in the other slot portion, and is stored in one slot portion. If the conductor cross-sectional area of the slot storage section is larger than the conductor cross-section area of the slot storage section stored in the other slot section, the winding composed of the conductor wires stored in one slot section! Y-connect the wire, and ∆-connect the winding made up of the conductor wire stored in the other slot! In this case! /, Even so, the resistance value of the Y-connected winding is smaller than the resistance value of the Δ-connected winding, and an increase in the amount of heat generated in the Υ-connected portion is suppressed.
[0047] 実施の形態 3.  [0047] Embodiment 3.
上記実施の形態 1では、スロット 24が第 1および第 2スロット部 24a, 24bからなる 2 段の形状に形成されているものとしている力 この実施の形態 3では、図 9に示される ように、ティース 26がそれぞれ扇状の第 1、第 2および第 3ティース部 26a, 26b, 26c から 3段の形状に形成され、スロット 27がそれぞれ矩形断面の第 1、第 2および第 3ス ロット部 27a, 27b, 27cを径方向に連設し、周方向幅が径方向外方にステップ状に 大きくなる 3段の形状に形成されている。そして、第 1、第 2および第 3スロット部 27a, 27b, 27cには、断面積の異なる導体としての連続導体泉 40, 41 , 42のスロット収糸内 HOa, 41a, 42a力 2本ずっ収糸内されてレヽる。  In the first embodiment, the force in which the slot 24 is formed in a two-stage shape including the first and second slot portions 24a and 24b. In the third embodiment, as shown in FIG. The teeth 26 are formed in a three-stage shape from the fan-shaped first, second, and third teeth portions 26a, 26b, and 26c, respectively, and the slots 27 are first, second, and third slot portions 27a, 27a, 27b and 27c are continuously provided in the radial direction, and the circumferential width is formed in a three-stage shape in which the circumferential width increases stepwise outward in the radial direction. The first, second, and third slot portions 27a, 27b, 27c collect two HOa, 41a, 42a forces in the slot yarn collection of the continuous conductor springs 40, 41, 42 as conductors having different cross-sectional areas. It is done in the thread.
なお、他の構成は上記実施の形態 1と同様に構成されている。  Other configurations are the same as those in the first embodiment.
[0048] この実施の形態 3においても、スロット 27がそれぞれ矩形断面の第 1、第 2および第 3スロット部 27a, 27b, 27cからなる 3段の形状に形成されているので、 2段の形状の スロットに比べて、スロット断面積を、より扇状のスロット形状のスロット断面積に近づけ ること力 Sでさる。  [0048] Also in this third embodiment, since the slot 27 is formed in a three-stage shape including the first, second and third slot portions 27a, 27b and 27c having a rectangular cross section, the two-stage shape is provided. Compared with the slot, the force S is used to bring the slot cross-sectional area closer to the fan-shaped slot cross-sectional area.
また、第 1、第 2および第 3スロット部 27a, 27b, 27cには、断面積の異なる連続導 体泉 40, 41 , 42のスロット収糸内咅 40a, 41a, 42a力 2本ずっ収糸内されてレヽるので、 6 ターンの固定子巻線を 3種類の連続導体線 40, 41 , 42を用いて構成でき、部品点 数を削減でき、生産工程を簡略化することができる。  In addition, the first, second and third slot portions 27a, 27b, and 27c have slot collecting inner collars 40a, 41a, and 42a having two cross-sectional areas 40a, 41a, and 42a. Therefore, a 6-turn stator winding can be configured using three types of continuous conductor wires 40, 41 and 42, the number of parts can be reduced, and the production process can be simplified.
[0049] なお、上記実施の形態 3では、スロットを 3段の形状に形成するものとしている力 ス ロットを 4段以上の形状に形成しても良い。  [0049] In the third embodiment, the force slot that forms the slot in a three-stage shape may be formed in a four-stage or more shape.
[0050] また、上記各実施の形態では、連続導体線を用いて固定子巻線を作製するものと している力 s、連続導体線に代えて U字状の導体セグメントを用いて固定子巻線を作 製してもよい。この場合、導体セグメントを円筒状の固定子鉄心の一端側から所定ス ロット数離れた各スロット対に差し込み、固定子鉄心の他端側に延出する導体セグメ ントの開放端同士を接合して、所定スロット数毎の各段のスロット部内でスロット深さ 方向に内層と外層とを交互にとるように巻装された複数の巻線からなる固定子巻線が 作製される。このように作製された固定子巻線においても、各段のスロット部には、偶 数本の導体セグメントが収納され、使用する導体セグメントの種類はスロット部の段数 と同数となり、部品点数を削減できる。また、接合箇所が多ぐ接合作業性が低下す る反面、直方体の積層鉄心に巻線組立体を装着し、その積層鉄心を円筒状に曲げ る工程が不要となる。 [0050] Further, in each of the above embodiments, the force s for producing the stator winding using the continuous conductor wire, and the stator using the U-shaped conductor segment instead of the continuous conductor wire Windings may be made. In this case, the conductor segment is inserted into each slot pair a predetermined number of slots away from one end of the cylindrical stator core, and the open ends of the conductor segments extending to the other end of the stator core are joined together. A stator winding comprising a plurality of windings wound so as to alternately take the inner layer and the outer layer in the slot depth direction within the slot portion of each stage for each predetermined number of slots. Produced. Even in the stator winding manufactured in this way, an even number of conductor segments are housed in the slot portions of each stage, and the number of conductor segments used is the same as the number of stages in the slot section, reducing the number of parts. it can. In addition, the joining workability is reduced because there are many joining points, but on the other hand, the step of attaching the winding assembly to a rectangular parallelepiped laminated core and bending the laminated iron core into a cylindrical shape becomes unnecessary.
また、上記各実施の形態では、車両用交流発電機の固定子に適用するものとして 説明しているが、この発明は、車両用交流発電機に限らず、車両用電動機や車両用 発電電動機などの回転電機の固定子に適用しても、同様の効果を奏する。  In each of the above embodiments, the description has been made assuming that the present invention is applied to a stator of a vehicle alternator. However, the present invention is not limited to a vehicle alternator, and includes a vehicle motor, a vehicle generator motor, and the like. Even when applied to the stator of a rotating electric machine, the same effect is obtained.

Claims

請求の範囲 The scope of the claims
[1] スロットが開口を内周側に向けて周方向所定ピッチで配列された円筒状の固定子 鉄心と、複数本の導体が導体の一部であるスロット収納部を上記スロット内に収納し て上記固定子鉄心に巻装された複数の巻線からなる固定子巻線と、を備えた回転電 機の固定子において、  [1] A cylindrical stator core in which slots are arranged at a predetermined pitch in the circumferential direction with openings facing the inner circumference, and a slot housing portion in which a plurality of conductors are part of the conductor are housed in the slot. And a stator winding comprising a plurality of windings wound around the stator iron core.
上記スロットは、それぞれ断面矩形に形成された複数のスロット部を径方向に連設 して、それぞれの上記スロット部の周方向幅が径方向外方にステップ状に広くなる複 数段を有する形状に形成され、  The slot has a shape having a plurality of steps in which a plurality of slot portions each having a rectangular cross section are connected in the radial direction, and the circumferential width of each of the slot portions is increased stepwise outward in the radial direction. Formed into
それぞれの上記スロット部には、上記スロット収納部が径方向に 1列に並んで偶数 本収納され、  Each of the slot portions stores an even number of the slot storage portions arranged in a row in the radial direction,
上記スロット収納部の周方向幅は、上記スロット収納部が収納される上記スロット部 の周方向幅に対応し、上記スロット収納部の径方向長さは、上記スロット収納部が収 納される上記スロット部の径方向長さを上記スロット部に収納されている上記スロット 収納部の本数で除した長さに対応していることを特徴とする回転電機の固定子。  The circumferential width of the slot housing portion corresponds to the circumferential width of the slot portion in which the slot housing portion is housed, and the radial length of the slot housing portion is that in which the slot housing portion is housed. A stator for a rotating electrical machine, characterized in that the length in the radial direction of the slot portion corresponds to a length obtained by dividing the length of the slot portion by the number of the slot accommodating portions accommodated in the slot portion.
[2] 上記スロットは、内周側の第 1スロット部と外周側の第 2スロット部とからなる 2段形状 に形成されており、  [2] The slot is formed in a two-stage shape including a first slot portion on the inner peripheral side and a second slot portion on the outer peripheral side,
上記スロットの径方向長さに対する上記第 1スロット部の径方向長さの割合 kが、 0. 2<k< 0. 8を満足していることを特徴とする請求項 1記載の回転電機の固定子。  2. The rotating electrical machine according to claim 1, wherein a ratio k of a radial length of the first slot portion to a radial length of the slot satisfies 0.2 <k <0.8. stator.
[3] 上記固定子巻線は、上記複数の巻線を Δ Y混合結線して構成された 3相交流巻線 を備えて、上記第 1および第 2スロット部の一方のスロット部に収納されている巻線が Y結線され、上記第 1および第 2スロット部の他方のスロット部に収納されている巻線 が Δ結線されており、  [3] The stator winding includes a three-phase AC winding constituted by Δ Y mixed connection of the plurality of windings, and is housed in one slot portion of the first and second slot portions. Winding is Y-connected, and the winding housed in the other slot part of the first and second slot parts is Δ-connected,
上記一方のスロット部に収納されている上記スロット収納部の本数が上記他方のス ロット部に収納されている上記スロット収納部の本数以下であり、かつ上記一方のスロ ット部に収納されている上記スロット収納部の導体断面積が上記他方のスロット部に 収納されて!/、る上記スロット収納部の導体断面積より大き!/、ことを特徴とする請求項 2 記載の回転電機の固定子。  The number of the slot accommodating portions accommodated in the one slot portion is equal to or less than the number of the slot accommodating portions accommodated in the other slot portion, and is accommodated in the one slot portion. The fixing of the rotating electrical machine according to claim 2, wherein the conductor cross-sectional area of the slot housing portion is housed in the other slot portion and is larger than the conductor cross-sectional area of the slot housing portion. Child.
[4] 上記一方のスロット部のスロット断面積が、上記他方のスロット部のスロット断面積の 3倍に形成されていることを特徴とする請求項 3記載の回転電機の固定子 c [4] The slot cross-sectional area of the one slot portion is equal to the slot cross-sectional area of the other slot portion. The stator c of the rotating electrical machine according to claim 3, wherein the stator c is formed three times.
PCT/JP2007/069743 2006-10-12 2007-10-10 Stator of rotating electric machine WO2008044703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538739A JPWO2008044703A1 (en) 2006-10-12 2007-10-10 Stator for rotating electrical machine, method for manufacturing the stator, and method for manufacturing the rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-278469 2006-10-12
JP2006278469 2006-10-12

Publications (1)

Publication Number Publication Date
WO2008044703A1 true WO2008044703A1 (en) 2008-04-17

Family

ID=39282896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069743 WO2008044703A1 (en) 2006-10-12 2007-10-10 Stator of rotating electric machine

Country Status (2)

Country Link
JP (1) JPWO2008044703A1 (en)
WO (1) WO2008044703A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015606A1 (en) * 2009-08-04 2011-02-10 Feaam Gmbh Electric machine
JP2012186938A (en) * 2011-03-07 2012-09-27 Denso Corp Armature
WO2012147310A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Stator of motor, and motor
EP2378628A3 (en) * 2008-07-28 2012-12-26 Direct Drive Systems, Inc. Stator for an electric machine
WO2013021559A1 (en) * 2011-08-05 2013-02-14 パナソニック株式会社 Motor stator and motor
JP2013132176A (en) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd Stator and rotary electric machine
WO2013114735A1 (en) * 2012-01-31 2013-08-08 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine
US20130342070A1 (en) * 2011-03-08 2013-12-26 Panasonic Corporation Stator of motor and motor
JP2014033532A (en) * 2012-08-03 2014-02-20 Toyota Motor Corp Concentrated winding coil
JP2014090615A (en) * 2012-10-31 2014-05-15 Aisin Seiki Co Ltd Wave winding for three-phase rotary electric machine
WO2014192350A1 (en) * 2013-05-28 2014-12-04 三菱電機株式会社 Rotary electric machine, and manufacturing method therefor
JP2016012981A (en) * 2014-06-27 2016-01-21 株式会社デンソー Stator for rotary electric machine
US9318926B2 (en) 2008-11-14 2016-04-19 Feaam Gmbh Electric machine
JP2017093097A (en) * 2015-11-06 2017-05-25 株式会社デンソー Rotary electric machine
CN107070017A (en) * 2017-05-24 2017-08-18 乐视汽车(北京)有限公司 The stator and its manufacture method of a kind of motor
EP3327903A1 (en) * 2016-11-25 2018-05-30 Delta Electronics, Inc. Stator
CN108110917A (en) * 2016-11-25 2018-06-01 台达电子工业股份有限公司 Stator
JP2018093714A (en) * 2016-11-30 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Stator of electric machine or bar winding structure of rotator
US20180367005A1 (en) * 2017-06-14 2018-12-20 GM Global Technology Operations LLC Stator assembly with uneven conductors
CN110178291A (en) * 2017-01-18 2019-08-27 松下知识产权经营株式会社 Motor
CN111130233A (en) * 2018-11-01 2020-05-08 福建省仙游电机股份有限公司 Convex groove flat copper wire motor stator assembly
JP2020137384A (en) * 2019-02-26 2020-08-31 株式会社Ihi stator
JP2020171134A (en) * 2019-04-03 2020-10-15 日立金属株式会社 Radial gap type rotary electric machine, method for manufacturing radial gap type rotary electric machine, and magnetic type gear
JP2020202634A (en) * 2019-06-07 2020-12-17 日立オートモティブシステムズ株式会社 Stator used in rotary electric machine
JP2021016300A (en) * 2015-11-06 2021-02-12 株式会社デンソー Rotary electric machine
JP2022076092A (en) * 2020-11-09 2022-05-19 トヨタ自動車株式会社 Stator
WO2022112281A1 (en) * 2020-11-26 2022-06-02 Valeo Siemens Eautomotive Germany Gmbh Stator laminated core for a stator of an electric machine, stator for an electric machine, and electric machine for driving a vehicle
EP4089883A1 (en) * 2021-05-12 2022-11-16 Suzuki Motor Corporation Electric machine
DE102021125488A1 (en) 2021-10-01 2023-04-06 Schaeffler Technologies AG & Co. KG Stator of a rotary electric machine and a rotary electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107801U (en) * 1977-02-01 1978-08-30
JPS5450904A (en) * 1977-09-30 1979-04-21 Hitachi Ltd Rotor
JPS57118646U (en) * 1981-01-17 1982-07-23
JPH048140A (en) * 1990-04-24 1992-01-13 Nippondenso Co Ltd Rotary electric machine
JP2004159460A (en) * 2002-11-07 2004-06-03 Denso Corp Stator for rotating electric machine
JP2005045987A (en) * 2003-07-25 2005-02-17 Denso Corp Armature for rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149771A (en) * 1994-11-15 1996-06-07 Nippondenso Co Ltd Stator for magnet generator and manufacture thereof
JP3310971B2 (en) * 1999-12-27 2002-08-05 三菱電機株式会社 AC generator manufacturing method
JP2006094673A (en) * 2004-09-27 2006-04-06 Toshiba Corp Dynamo-electric machine and stator for the dynamo-electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107801U (en) * 1977-02-01 1978-08-30
JPS5450904A (en) * 1977-09-30 1979-04-21 Hitachi Ltd Rotor
JPS57118646U (en) * 1981-01-17 1982-07-23
JPH048140A (en) * 1990-04-24 1992-01-13 Nippondenso Co Ltd Rotary electric machine
JP2004159460A (en) * 2002-11-07 2004-06-03 Denso Corp Stator for rotating electric machine
JP2005045987A (en) * 2003-07-25 2005-02-17 Denso Corp Armature for rotary electric machine

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378628A3 (en) * 2008-07-28 2012-12-26 Direct Drive Systems, Inc. Stator for an electric machine
US8421297B2 (en) 2008-07-28 2013-04-16 Direct Drive Systems, Inc. Stator wedge for an electric machine
US8415854B2 (en) 2008-07-28 2013-04-09 Direct Drive Systems, Inc. Stator for an electric machine
US9318926B2 (en) 2008-11-14 2016-04-19 Feaam Gmbh Electric machine
WO2011015606A1 (en) * 2009-08-04 2011-02-10 Feaam Gmbh Electric machine
CN102577036A (en) * 2009-08-04 2012-07-11 菲艾姆股份有限公司 Electric machine
JP2012186938A (en) * 2011-03-07 2012-09-27 Denso Corp Armature
US20130342070A1 (en) * 2011-03-08 2013-12-26 Panasonic Corporation Stator of motor and motor
US9548633B2 (en) * 2011-03-08 2017-01-17 Panasonic Intellectual Property Management Co., Ltd. Stator of motor having tooth portions with different widths
US9373981B2 (en) 2011-04-28 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Stator of motor and motor
WO2012147310A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Stator of motor, and motor
JP5909680B2 (en) * 2011-04-28 2016-04-27 パナソニックIpマネジメント株式会社 Motor stator and motor
US9356478B2 (en) 2011-08-05 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Stator of motor and motor
CN103718429A (en) * 2011-08-05 2014-04-09 松下电器产业株式会社 Motor stator and motor
JPWO2013021559A1 (en) * 2011-08-05 2015-03-05 パナソニック株式会社 Motor stator and motor
WO2013021559A1 (en) * 2011-08-05 2013-02-14 パナソニック株式会社 Motor stator and motor
JP2013132176A (en) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd Stator and rotary electric machine
WO2013114735A1 (en) * 2012-01-31 2013-08-08 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine
CN104885344A (en) * 2012-08-03 2015-09-02 丰田自动车株式会社 Stator for rotary electric motor
US9806573B2 (en) 2012-08-03 2017-10-31 Toyota Jidosha Kabushiki Kaisha Stator for rotary electric motor
US20150188371A1 (en) * 2012-08-03 2015-07-02 Toyota Jidosha Kabushiki Kaisha Stator for rotary electric motor
CN104885344B (en) * 2012-08-03 2019-03-12 丰田自动车株式会社 Stator for rotating electric machine
JP2014033532A (en) * 2012-08-03 2014-02-20 Toyota Motor Corp Concentrated winding coil
JP2014090615A (en) * 2012-10-31 2014-05-15 Aisin Seiki Co Ltd Wave winding for three-phase rotary electric machine
US9923438B2 (en) 2013-05-28 2018-03-20 Mitsubishi Electric Corporation Method for manufacturing a rotary electric machine
WO2014192350A1 (en) * 2013-05-28 2014-12-04 三菱電機株式会社 Rotary electric machine, and manufacturing method therefor
JP2016012981A (en) * 2014-06-27 2016-01-21 株式会社デンソー Stator for rotary electric machine
JP7464506B2 (en) 2015-11-06 2024-04-09 株式会社デンソー Rotating Electric Machine
JP2017093097A (en) * 2015-11-06 2017-05-25 株式会社デンソー Rotary electric machine
JP2021016300A (en) * 2015-11-06 2021-02-12 株式会社デンソー Rotary electric machine
US10411635B2 (en) 2015-11-06 2019-09-10 Denso Corporation Rotating electric machine
EP3327903A1 (en) * 2016-11-25 2018-05-30 Delta Electronics, Inc. Stator
CN108110917A (en) * 2016-11-25 2018-06-01 台达电子工业股份有限公司 Stator
US10404123B2 (en) 2016-11-25 2019-09-03 Delta Electronics, Inc. Stator
JP2018085911A (en) * 2016-11-25 2018-05-31 台達電子工業股▲ふん▼有限公司Deltaelectronics,Inc. Stator
CN108110917B (en) * 2016-11-25 2020-07-31 台达电子工业股份有限公司 Stator
JP2018093714A (en) * 2016-11-30 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Stator of electric machine or bar winding structure of rotator
CN110178291A (en) * 2017-01-18 2019-08-27 松下知识产权经营株式会社 Motor
CN107070017A (en) * 2017-05-24 2017-08-18 乐视汽车(北京)有限公司 The stator and its manufacture method of a kind of motor
US20180367005A1 (en) * 2017-06-14 2018-12-20 GM Global Technology Operations LLC Stator assembly with uneven conductors
CN109088490A (en) * 2017-06-14 2018-12-25 通用汽车环球科技运作有限责任公司 Stator module with uneven conductor
CN111130233A (en) * 2018-11-01 2020-05-08 福建省仙游电机股份有限公司 Convex groove flat copper wire motor stator assembly
JP7331380B2 (en) 2019-02-26 2023-08-23 株式会社Ihi stator
JP2020137384A (en) * 2019-02-26 2020-08-31 株式会社Ihi stator
JP7247720B2 (en) 2019-04-03 2023-03-29 株式会社プロテリアル Radial gap type rotary electric machine and method for manufacturing radial gap type rotary electric machine
JP2020171134A (en) * 2019-04-03 2020-10-15 日立金属株式会社 Radial gap type rotary electric machine, method for manufacturing radial gap type rotary electric machine, and magnetic type gear
JP2020202634A (en) * 2019-06-07 2020-12-17 日立オートモティブシステムズ株式会社 Stator used in rotary electric machine
JP7347965B2 (en) 2019-06-07 2023-09-20 日立Astemo株式会社 Stator used in rotating electrical machines
JP2022076092A (en) * 2020-11-09 2022-05-19 トヨタ自動車株式会社 Stator
JP7428114B2 (en) 2020-11-09 2024-02-06 トヨタ自動車株式会社 stator
WO2022112281A1 (en) * 2020-11-26 2022-06-02 Valeo Siemens Eautomotive Germany Gmbh Stator laminated core for a stator of an electric machine, stator for an electric machine, and electric machine for driving a vehicle
EP4089883A1 (en) * 2021-05-12 2022-11-16 Suzuki Motor Corporation Electric machine
DE102021125488A1 (en) 2021-10-01 2023-04-06 Schaeffler Technologies AG & Co. KG Stator of a rotary electric machine and a rotary electric machine

Also Published As

Publication number Publication date
JPWO2008044703A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
WO2008044703A1 (en) Stator of rotating electric machine
KR101107884B1 (en) Automotive dynamoelectric machine
JP3484407B2 (en) AC generator for vehicles
JP5460884B2 (en) Rotating electric machine for vehicle and method for manufacturing winding assembly used therefor
US7155805B2 (en) Method for making stator of rotary electric machine
EP1107425B1 (en) Vehicular AC generator
JP3561249B2 (en) Stator for AC generator and method of manufacturing the same
KR100522389B1 (en) Automotive dynamoelectric machine
JP5461709B2 (en) Rotating electric machine for vehicle and manufacturing method of stator used therefor
TWI393327B (en) A stator for a dynamoelectric machine
JP5289499B2 (en) Rotating electric machine
JP4007476B2 (en) AC generator for vehicles
JP5425132B2 (en) Rotating electric machine
US20090184601A1 (en) Polyphase stator of a rotating electrical machine with claw-pole rotor and alternator or alternator starter comprising same
JP3484412B2 (en) Method for manufacturing vehicle alternator and stator thereof
JP5802581B2 (en) Rotating electric machine and production method thereof
JP3593009B2 (en) Rotating electric machine
JP2004350381A (en) Stator of rotating electric machine
US8115362B2 (en) Rotating electric machine having fusion bonded stator core blocks
KR100489291B1 (en) Alternator
JP3633498B2 (en) Rotating electric machine
JP2010514406A (en) Stator for multi-phase rotating electrical machine, multi-phase rotating electrical machine having the stator, and method for manufacturing the stator
US6943477B1 (en) Stator of rotary electric machine and method for making the same
US20050046299A1 (en) Windings for electric machines
EP1258968A2 (en) Generator having stator assembly with improved phase coil insertion in order to reduce noise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829481

Country of ref document: EP

Kind code of ref document: A1