JP3099086B2 - Subway of shield tunnel which becomes double-layered double track - Google Patents

Subway of shield tunnel which becomes double-layered double track

Info

Publication number
JP3099086B2
JP3099086B2 JP63133958A JP13395888A JP3099086B2 JP 3099086 B2 JP3099086 B2 JP 3099086B2 JP 63133958 A JP63133958 A JP 63133958A JP 13395888 A JP13395888 A JP 13395888A JP 3099086 B2 JP3099086 B2 JP 3099086B2
Authority
JP
Japan
Prior art keywords
tunnel
arc
subway
track
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63133958A
Other languages
Japanese (ja)
Other versions
JPH01304294A (en
Inventor
周作 原
Original Assignee
周作 原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周作 原 filed Critical 周作 原
Priority to JP63133958A priority Critical patent/JP3099086B2/en
Publication of JPH01304294A publication Critical patent/JPH01304294A/en
Application granted granted Critical
Publication of JP3099086B2 publication Critical patent/JP3099086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries

Description

【発明の詳細な説明】 近時、先進国の大都市には、人や、物や、資金及び情
報の集中化が増大して、密集度が異常に高まる一方、自
動車の著しい増加によって都市における路面交通の混雑
が極限状態となり、交通事故の増大は勿論、各所で絶間
なく交通渋滞をまねいているばかりか、これに対する地
上走行の鉄道輸送は過飽和となつて日夜通勤地獄をもた
らし、特に朝夕のラッシュアワーに対して地上走行の在
来鉄道では、列車を増結し増発をおこなって急場をしの
いできたものの、今やこれらの強化策も限界に達してい
る。しかも最近異常に増加した通勤通学の交通需要に対
して最も効果的と考えられる鉄道の増線や新線としての
増設も、既成市街地では高地価問題が立ちはだかってそ
の実現は極めて困難となるため、これらの現象の結果、
日々の都市機能を著しく阻害している。
DETAILED DESCRIPTION OF THE INVENTION Recently, large cities in developed nations have become increasingly crowded, with increased concentration of people, goods, funds and information, while the number of vehicles has increased dramatically due to the remarkable increase in the number of vehicles. Road traffic congestion has become extreme, increasing traffic accidents, not only leading to constant traffic congestion in various places, but also ground-based rail transport has become oversaturated, leading to day and night commuter hell, especially in the morning and evening. Conventional railroads, which are taxiing during rush hours, have increased the number of trains and increased the number of trains to surpass the urgent need, but these measures have now reached their limits. Moreover, it is extremely difficult to realize the increase in the number of railway lines and new lines that are considered to be the most effective for the traffic demand for commuting to school, which has recently increased unusually, because the problem of high land prices stands in the built-up city area, As a result of these phenomena,
It severely hinders daily city functions.

この様な事態への対策としては、地下鉄道の建設が最
も理想的であって、各国の主要な大都市ではそれぞれい
ろんなタイプの地下鉄道網の発達を見ることができる。
The most ideal way to deal with this situation is to build a subway system, and major metropolitan cities in each country can see the development of various types of subway networks.

地下鉄道用のトンネルの建設には現在二通りの方法が
行われており、その一つは深度の浅い場合に適用される
開削工法や潜函工法による箱形トンネルを敷設する場合
と、いま一つは深度の深い場合におけるシールド工法に
よる円形断面のトンネルを敷設する場合とがある。
There are currently two methods of constructing tunnels for subway roads, one of which is to lay a box-shaped tunnel by the open cut method or the latent box method, which is applied when the depth is shallow. In some cases, a tunnel with a circular cross section is laid by a shield method at deep depths.

ところが最近になって都市における建設物等の密集化
と高層化により可なり深い所まで沢山の基礎打ち工事が
なされて、地下鉄ルートはこれらを避けながら主に幹線
街路下に限定される傾向が強くなって、強いカーブを嫌
う鉄道ルートでの自由な設計に対する大きな制約をもた
らすばかりか、地下に対する土地所有権上の問題もから
んで、浅度ルートによる地下鉄建設は益々困難な情勢と
なってきた。
However, recently, many foundations have been constructed to a very deep place due to the denseness and high rise of constructions in cities, and the subway route tends to be limited mainly to the main street while avoiding these. In addition to the major restrictions on free design on railroad routes that dislike strong curves, the problem of land tenure underground has made the construction of subways by shallow routes increasingly difficult.

これに対して大深度ルートのシールド工法による地下
鉄道の建設は、上記浅深度の場合における障害を避けて
都市の地下に自由なルート設計ができる長所があって、
これからの地下鉄道建設は或程度の費用高でも大深度の
地下鉄となる傾向が強い。
On the other hand, the construction of a subway using the shield method for large depth routes has the advantage that free routes can be designed underground in the city avoiding obstacles in the case of the above-mentioned shallow depth,
Subway road construction in the future tends to be a deep subway at a certain cost.

しかしながら地下鉄建設は、いずれの方法によるとも
地上線や高架線の建設と比べて膨大な建設費を要するこ
とは避けられず、そのため堀削断面を少しでも小さくし
て、最近では低床小型のミニ地下鉄の建設が各地で推進
されようとしている。
However, subway construction inevitably requires a huge amount of construction cost compared to the construction of ground lines and elevated lines, so that the excavation section has been made a little smaller, and recently a mini-mini Subway construction is being promoted in various places.

交通需要のそれほど多くないルートでは、これらのミ
ニ地下鉄の建設はそれなりに意義のある事であるが、郊
外鉄道の終着駅をいくつも有する大ターミナル副都心間
等を結ぶ幹線となる地下鉄路線では、この様なミニ地下
鉄ではとうてい膨大な交通需要を捌くことはできないの
で、在来型の車幅(例えば2,790〜2,865mm)の電車を走
らせねばならないし、更に必要あらば我国の新幹線鉄道
電車(車体幅3,400mm)等を走らせる必要も生ずる。
The construction of these mini-subways is meaningful on routes with modest traffic demand.However, on subway lines that serve as trunk lines connecting large terminal sub-centers with several terminal stations for suburban railways, Such mini-subways cannot handle huge traffic demands at all, so it is necessary to run a conventional train with a vehicle width (for example, 2,790 to 2,865 mm), and if necessary, the Shinkansen trains of Japan There is also a need to run such as 3,400mm wide.

すなわち、従来の複線シードルトンネルは、トンネル
断面に対して列車を左右に併立させて走行させる複線路
線を設定するのが普通であるが、ここに本発明は円形掘
削断面のシードルトンネルに於いて、路線全長にわたっ
て上下2層の軌道敷となる複線を構築して超広幅車体の
列車を走行させるようにした地下鉄道装置であって、上
層軌道床の自重及びこれに加わる上層走行列車の荷重と
振動とを受け支えるための円弧柱列の円弧柱の下端が、
下層軌道床となるインバート・コンクリートに両端から
挟むようにしてボルト・ナット等で固定されると共に、
円弧柱の側面が、セグメントを基幹として円筒状に形成
されたトンネル下半部の円弧状内壁面とほぼ同じ曲率で
作られ、該トンネル下半部の円弧状内壁面に硬質ゴム等
の緩衝材を介して密着した状態で当接し、トンネル内を
上下2層の往復車線とした地下鉄装置であり、このこと
によって、2倍以上の交通量をもたらす超広幅車体の電
車を走行させることが出来て、高価な地下鉄建設工事費
に対してそれを償う飛躍的な輸送量を確保することがで
きるようになる。
That is, the conventional double track cider tunnel is usually set with a double track line that allows the train to run side by side with respect to the tunnel cross section, but here the present invention relates to a circular excavation cross section cider tunnel, A subway system in which a double track consisting of two upper and lower tracks is constructed over the entire length of the route to allow a train with an ultra-wide body to run, and the weight of the upper track floor and the load and vibration of the upper running train added thereto The lower end of the arc column of the arc column to support and
It is fixed with bolts and nuts etc. so that it is sandwiched from both ends in the invert concrete which will be the lower track floor,
The side surfaces of the arc-shaped column are formed with substantially the same curvature as the arc-shaped inner wall surface of the lower half of the tunnel formed cylindrically with the segment as a base, and a cushion material such as hard rubber is provided on the arc-shaped inner wall surface of the lower half of the tunnel. This is a subway system that has two layers of reciprocating lanes in the tunnel, which are in close contact with each other through the road, and this makes it possible to run a train with an ultra-wide body that can achieve twice or more traffic volume. As a result, it is possible to secure a dramatic amount of transportation to compensate for the expensive subway construction costs.

この事について、以下図面に基ずいて、在来線の場合
と比較しながら本発明の詳細について説明する。
This will be described below in detail with reference to the drawings, in comparison with the case of a conventional line.

第1図は、我国主要都市における地下鉄線の標準的な
複線シールドトンネルの断面を示したものであって、車
両(1)は東京都の営団丸の内線をモデルとしたもの
で、これらを以後は在来線とすることとする。
Fig. 1 shows a cross section of a standard double-track shield tunnel of a subway line in major cities in Japan. The vehicle (1) is a model of the Eidan Marunouchi line in Tokyo. It will be a conventional line.

すなはち、第1図で例示した在来線のシールドトンネ
ルは、その掘削断面の半径Dが4,900mmで直径Eは9,800
mmであり、セグメント及び二次覆工を合わせたトンネル
躯体(2)の厚さFは500mmとなる。このトンネルに
は、在来線の車幅Bが2,790mmで車高Aが3,495mmであっ
て、1,435mmの標準軌間Cの電車(1)を左右併立させ
た複線として走行させていた。この場合に道床部には、
大量のインバートコンクリート(3)を要し、また架空
線集電方式の場合には上部空間にパンダグラフ(4)や
架空線設備を要するけれども、これらの空中設備の無い
第3軌条による集電方式の場合でも、円形断面のトンネ
ルに複線を左右に併走させる場合には、上下に相当無駄
なスペースを生じていた。
In other words, the shield tunnel of the conventional line illustrated in FIG. 1 has a radius D of the excavated cross section of 4,900 mm and a diameter E of 9,800.
mm, and the thickness F of the tunnel frame (2) including the segments and the secondary lining is 500 mm. In this tunnel, a train (1) having a standard track C of 1,435 mm having a vehicle width B of 2,790 mm, a vehicle height A of 3,495 mm, and a standard gauge C of 1,435 mm was run as a double-track having both left and right sides. In this case,
A large amount of invert concrete (3) is required, and in the case of an overhead wire current collection method, a pandagraph (4) and overhead wire equipment are required in the upper space, but a current collection method using a third rail without these aerial equipment. Even in the case of, when a double track runs side by side in a tunnel having a circular cross section, a considerable useless space is created in the vertical direction.

これに対して本発明では、新幹線用と同等のシールド
トンネルを上下に2分割し、上下に複線鉄道として走行
させることによって、掘削面積に対する輸送量の割合を
著しく増大させるものである。
On the other hand, in the present invention, the ratio of the transport amount to the excavated area is significantly increased by dividing the shield tunnel equivalent to that for the Shinkansen into two upper and lower sections and running as a double-track railway up and down.

すなはち本発明は、第2図に示すように、人体の平均
身長より見て、電車(5)の車高A′を3,700mmとする
とき、シールドトンネルの半径Dは6,500mmに、その断
面直径E′は13,000mm程度とするのが理想的であろう。
That is, according to the present invention, as shown in FIG. 2, when the height A 'of the train (5) is 3,700 mm, the radius D of the shield tunnel is 6,500 mm, as viewed from the average height of the human body. Ideally, the cross-sectional diameter E 'should be about 13,000 mm.

この様なシールドトンネルは従来の工事例より見てト
ンネル躯体(6)の厚さF′はセグメントが550mmで二
次覆工は300mmで合計壁厚は850mmとなるが、このトンネ
ルのほぼ2分の1の高さの所に図の様に上部軌道敷
(7)をトンネル全長にわたって設け、上側と下側に往
復方向に電車(5)を複線として走行させる。
In the case of such a shield tunnel, the thickness F 'of the tunnel frame (6) is 550 mm in the segment, the secondary lining is 300 mm, and the total wall thickness is 850 mm. As shown in the figure, an upper track rail (7) is provided over the entire length of the tunnel at a height of 1, and a train (5) is run on the upper and lower sides in a reciprocating direction as a double track.

この様な構成とする場合には、電車(5)の車幅B′
は実に6,900mmもとることができるので、第1表に示す
ように、在来線の複線シールドトンネルの堀削断面積3
0.79m2を1とすると、本発明ではその掘削断面積を40.8
4m2のわずか1.3倍に増加させるだけで、在来線の車体幅
2,790mmに対し、本発明の地下鉄電車の車体幅は6,900mm
ともなって、実に2.47倍の輸送力を発揮する事となる。
In the case of such a configuration, the vehicle width B 'of the train (5)
As shown in Table 1, the excavation cross section of a conventional double track shield tunnel is
Assuming that 0.79 m 2 is 1, in the present invention, the excavated cross-sectional area is 40.8
Only increases in only 1.3 times the 4m 2, the vehicle body width of the conventional lines
Compared to 2,790 mm, the subway train of the present invention has a body width of 6,900 mm
At the same time, it will actually exhibit 2.47 times the transport capacity.

また、本発明を我国の在来新幹線鉄道のシールドトン
ネルの断面と比較すると、第3図のように新幹線シール
ドトンネルとしては、東北新幹線第1上野トンネルの場
合を例示したが、新幹線電車(7)の車高A″は4,000m
mで、車幅B″は3,400mmであるから、この大きさの車体
が併立した複線として通過できるシールドトンネルは、
補遺削断面の半径Dが6,510mm、直径E″が13,020mmで
あり、トンネル躯体F″の厚さ(8)はセグメント550m
m、二次覆工が300mmの合計850mmとなって、本発明の上
下2層の地下鉄道シールドトンネルと掘削断面積はほと
んど同じとなる。
When the present invention is compared with the cross section of the shield tunnel of a conventional Shinkansen railway in Japan, the Shinkansen shield tunnel is exemplified as the Tohoku Shinkansen No. 1 Ueno tunnel as shown in FIG. Height A "is 4,000m
m, and the vehicle width B "is 3,400 mm, so a shield tunnel that can pass as a double track with a body of this size,
The radius D of the appendix section is 6,510 mm, the diameter E "is 13,020 mm, and the thickness (8) of the tunnel body F" is 550 m in the segment.
m, the secondary lining is 300mm and the total is 850mm, and the excavation cross-sectional area is almost the same as the upper and lower two-layer subway shield tunnel of the present invention.

ところが、その両者の輸送量を車体幅に換算して見る
と、第1表に示すように新幹線の場合を1とすると、本
発明のばあいは優に2倍と言う事となり、掘削断面を上
下2層に分割して利用することによっていかに強大な輸
送力を確保できるかがわかる。
However, when the transport amount of both of them is converted into the width of the car body, as shown in Table 1, if the case of the Shinkansen is 1, then in the case of the present invention, it will be said that it is twice as much, and the excavation cross section is It can be seen how strong transportation capacity can be ensured by dividing and using the upper and lower layers.

尚、図では在来線の軌間C及び新幹線の軌間C″はい
ずれも標準軌間の1,435mmとしたが、本発明の場合は超
広幅車体となるので、軌間C′も走行安定のため3,000m
m以上の超広軌鉄道としなければならないであろう。
In the figure, the gauge C of the conventional line and the gauge C ″ of the Shinkansen are both 1,435 mm between the standard gauges. However, in the case of the present invention, since the vehicle is an ultra-wide body, the gauge C 'is also 3,000 m for stable running.
It would have to be a super-wide gauge railway of m or more.

しかし超広軌とすると、従来の電車のように左右の車
輪が同軸で回転する場合には、曲線部で左右輪に大きい
回転差をもたらして、車輪とレールの間に好ましくない
摩擦回転等を生ずる虞れがあるが、近時開発されたリニ
アモーター推進により左右輪を独立回転させるようにす
ればこの問題は技術的に容易に解決されるであろう。
However, when the super-wide gauge is used, when the left and right wheels rotate coaxially as in a conventional train, a large rotation difference is caused between the left and right wheels at the curved portion, causing an undesirable friction rotation between the wheels and the rail. Although there is a fear, if the left and right wheels are independently rotated by the recently developed linear motor propulsion, this problem will be easily solved technically.

また、集電方式についても、上部に空間を多く必要と
するパンダグラフによる架空線式でなく、第3軌条方式
とすることによって、超広幅の偏平な超大型車両を上下
2層に走行させる事ができるのである 一般にシールドトンネルの建設は、円形断面のシール
ド掘削機を土中に推進させながら、掘削と土砂の搬出を
行うと同時に円形断面のトンネル周壁に鉄製や鉄筋コン
クリート製のブロック状になったセグメント(9)を組
み立て、セグメント相互の突つ支い作用を利用してトン
ネル壁が崩れないように保持させ、この内面側には更に
二次覆工(10)により一層強度を高めると共に防水のた
めにも鉄筋コンクリートを捲立てる事によって完成す
る。
Regarding the power collection system, the third rail system will be used instead of the overhead line system using a panda graph, which requires a large amount of space above, so that an ultra-wide, flat, ultra-large vehicle can be run in two layers above and below. In general, the construction of shield tunnels was carried out by excavating and carrying out earth and sand while propelling a shield digging machine with a circular cross section into the soil, and at the same time, turning into a block made of iron or reinforced concrete on the tunnel wall with a circular cross section. The segment (9) is assembled, and the tunnel wall is held so as not to collapse by utilizing the mutual support of the segments. On the inner surface side, the secondary lining (10) further increases the strength and waterproofness. It is completed by rolling up reinforced concrete.

しかし通常はこの様な構造のトンネル壁体部には局部
的に集中して大きな力や振動が掛かる上部道床(11)を
載せて支える梁(12)のような構造体をトンネル躯体
(6)の内面壁の局所に直接取り付ける事は避けなけれ
ばならない。
However, a structure such as a beam (12) that supports and supports an upper roadbed (11) to which a large force or vibration is applied locally is usually applied to the tunnel wall having such a structure. Should not be installed directly on the interior wall of the car.

そこで本発明では、第4図に示すように、上部道床
(11)を載せて支える梁(12)の両端に取り付け板(1
3)等を介して、トンネルの内面に添うように円弧状に
作ったH型鋼や角パイプ等で成る円弧柱(14)で、下方
線路の道床(15)となるインバートコンクリート(3)
の上側面より踏鉄板(16)を介して挟みみ込む様に支持
する構造とする。
Therefore, in the present invention, as shown in FIG. 4, mounting plates (1) are provided at both ends of a beam (12) on which an upper track bed (11) is placed and supported.
3) Inverted concrete (3), which is an arc-shaped column (14) made of H-shaped steel or square pipe made into an arc shape along the inner surface of the tunnel through etc.
It is structured to be supported so as to be sandwiched from the upper side of the slab via the treadplate (16).

この場合、インバートコンクリート(3)に固定され
た踏鉄板(16)の円弧柱(14)の下端とはボルトナット
等で固定するも、上部道床(11)を支える梁(12)及び
円弧柱(14)の側面は、トンネル躯体(6)との間を直
接固着固定する事無く、その間は硬質ゴム等の緩衝材に
より接触面全体にわたっておだやかに当接させる様に
し、上部を走行する電車(5)及び上部道床(11)や梁
(12)の荷重と電車走行による振動の大部分は、円弧柱
(14)を介して下部のインバートコンクリート(3)へ
挟むように伝えられるが、それ以外の荷重や振動は円弧
状に曲がった円弧柱(14)の側面から、緩衝材を介して
セグメントによって構成されるトンネル躯体(6)の下
半部半周に広く分散された穏やかな状態に伝えられて支
えられ受容する構成とする事によって、シールドトンネ
ルを上下2層に分割して、複数鉄道を障害なく円滑に走
行させる事ができるのである。
In this case, the lower end of the circular column (14) of the treadle plate (16) fixed to the inverted concrete (3) is fixed with bolts and nuts, etc., but the beam (12) and the circular column ( The side surface of (14) is not directly fixed to the tunnel body (6), but is made to abut softly over the entire contact surface with a cushioning material such as hard rubber. ) And most of the vibration caused by the train running and the load on the upper roadbed (11) and the beam (12) are transmitted to be sandwiched between the lower invert concrete (3) via the arc-shaped column (14). Loads and vibrations are transmitted from the side of the arcuate column (14), which is curved in an arc, to a gentle state that is widely dispersed in the lower half of the tunnel frame (6) composed of segments via cushioning material. Be supported and accepted Therefore, by dividing the shield tunnel into upper and lower layers, it is possible to smoothly travel without failure several railway.

尚第4図中の(17)は排水溝であり、トンネル内のレ
ールや、集電用の第3軌条や、通信線や、作業員の歩道
等の図示は省略した。
Incidentally, (17) in FIG. 4 is a drainage groove, and illustration of rails in the tunnel, third rail for current collection, communication lines, sidewalks of workers, and the like are omitted.

この様な構成により、上部走行の列車及びその道床等
を支持する構造体の荷重を直接局所的にセグメント等に
よって成るトンネル躯体(6)に掛けること無く建設で
きるので、トンネルの寿命が永く保たれ、上下2層とし
ての交通スペースが円形断面内に無駄なく有効に納める
事ができるので、将来例えば、通常の列車を走行させる
複線鉄道と自動車道路を併用した大型の海底シールドト
ンネルの建設等の場合にも活用する事ができるであろ
う。
According to such a configuration, since the load of the structure for supporting the train running on the road and its track bed and the like can be constructed without directly and locally applying the load to the tunnel frame (6) composed of the segments and the like, the life of the tunnel is maintained long. In the future, for example, in the case of construction of a large undersea shield tunnel using both a double-track railway and a motorway for running ordinary trains, since the traffic space as the upper and lower two layers can be effectively stored in a circular cross section without waste. It can be used for

【図面の簡単な説明】[Brief description of the drawings]

【第1図】 在来地下鉄複線シールドトンネルの断面図、[Fig. 1] Cross section of conventional subway double track shield tunnel,

【第2図】 我国新幹線複線シールドトンネルと同等の掘削断面とな
るシールドトンネルを上下2層の複線トンネルとして、
在来線車両と同車高でかつ超広幅車体となる電車を走行
させるようにした本発明トンネルの横断面図、
[Fig. 2] The shield tunnel with the same excavation section as the Shinkansen double track shield tunnel in Japan is a double track tunnel with upper and lower layers.
A cross-sectional view of the tunnel of the present invention in which a train having the same height as a conventional line vehicle and an ultra-wide body is run,

【第3図】 我国在来新幹線鉄道複線シールドトンネルの断面図、[Fig. 3] Cross-sectional view of Japanese traditional Shinkansen railway double track shield tunnel,

【第4図】 本発明に於ける上層線路床を支える構成を示したシール
ドトンネルの断面図である。
FIG. 4 is a sectional view of a shield tunnel showing a configuration for supporting an upper track floor according to the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円形掘削断面のシールドトンネルに於い
て、路線全長にわたって上下2層の軌道敷となる複線を
構築して超広幅車体の列車を走行させるようにした地下
鉄道装置であって、上層軌道床の自重及びこれに加わる
上層走行列車の荷重と振動とを受け支えるための円弧柱
列の円弧柱の下端が、下層軌道床となるインバート・コ
ンクリートに両端から挟むようにしてボルト・ナット等
で固定されると共に、円弧柱の側面が、セグメントを基
幹として円筒状に形成されたトンネル下半部の円弧状内
壁面とほぼ同じ曲率で作られ、該トンネル下半部の円弧
状内壁面に硬質ゴム等の緩衝材を介して密着した状態で
当接し、トンネル内を上下2層の往復車線とした地下鉄
道装置。
In a shield tunnel having a circular excavated cross section, a subway system device in which a double-track having two layers of upper and lower layers is constructed over the entire length of the line to allow a train having an ultra-wide body to run, comprising: The lower ends of the arc columns in the row of arc columns to support the weight of the raceway floor and the load and vibration of the upper running train added thereto are fixed with bolts and nuts so that the lower ends of the arc columns are sandwiched from both ends by invert concrete. At the same time, the side surface of the arc column is formed with substantially the same curvature as the arc-shaped inner wall surface of the lower half of the tunnel formed into a cylindrical shape with the segment as a base, and the hard rubber is formed on the arc-shaped inner wall surface of the lower half of the tunnel. A subway system with two tunnels inside and outside the tunnel, which are in close contact with each other via a buffer material.
JP63133958A 1988-05-30 1988-05-30 Subway of shield tunnel which becomes double-layered double track Expired - Fee Related JP3099086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133958A JP3099086B2 (en) 1988-05-30 1988-05-30 Subway of shield tunnel which becomes double-layered double track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133958A JP3099086B2 (en) 1988-05-30 1988-05-30 Subway of shield tunnel which becomes double-layered double track

Publications (2)

Publication Number Publication Date
JPH01304294A JPH01304294A (en) 1989-12-07
JP3099086B2 true JP3099086B2 (en) 2000-10-16

Family

ID=15117056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133958A Expired - Fee Related JP3099086B2 (en) 1988-05-30 1988-05-30 Subway of shield tunnel which becomes double-layered double track

Country Status (1)

Country Link
JP (1) JP3099086B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1016233C2 (en) * 2000-09-21 2002-03-22 Lambertus Roelof Toorenman Tunnel for road transport.
US7857078B2 (en) 2007-05-29 2010-12-28 Baker Hughes Incorporated Cutting tools and methods of making the same
JP4544545B1 (en) * 2009-11-16 2010-09-15 英治 川西 Single and straight roads and deep tunnel high-speed underground electric railways
WO2011024928A1 (en) * 2009-08-24 2011-03-03 Kawanishi Eiji Hybrid power generator coupled to gravity power generator using balance which has pressure load device
ES2344827B1 (en) 2010-03-30 2011-06-28 Idelfonso Pablo Metro De Madrid, S.A. METHOD AND METROPOLITAN TRANSPORT SYSTEM.
CN102155240A (en) * 2011-04-29 2011-08-17 中铁第四勘察设计院集团有限公司 Shield tunnel lining structure by adopting non-closed secondary lining
KR101306281B1 (en) * 2011-09-28 2013-09-09 한국철도기술연구원 Low depth structure for small tracked vehicle
CN106758610B (en) * 2016-12-21 2019-05-17 张博飞 City rail public transport stereo traffic system
CN108252722B (en) * 2018-03-09 2024-01-30 上海市隧道工程轨道交通设计研究院 Shield method-based up-down stacked double-side station structure and application method thereof
CN108313063A (en) * 2018-03-09 2018-07-24 上海市隧道工程轨道交通设计研究院 A kind of method for arranging at bilateral formula shield method station folded up and down
CN109356597B (en) * 2018-11-19 2023-12-15 中铁第四勘察设计院集团有限公司 Track deformation control structure arranged in shield tunnel with bottom gallery
CN109751061B (en) * 2019-03-26 2023-10-17 西南交通大学 Single-pipe double-layer shield tunnel built by common rail and common rail
CN115027507A (en) * 2022-06-07 2022-09-09 中铁二院工程集团有限责任公司 Railway line structure additionally arranged in existing railway land boundary and train running method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885699U (en) * 1981-12-01 1983-06-10 日本国有鉄道 High-speed railway tunnel with double-decker track

Also Published As

Publication number Publication date
JPH01304294A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
JP3099086B2 (en) Subway of shield tunnel which becomes double-layered double track
EP1279579B1 (en) A suspended vehicles transportation system
KR101176054B1 (en) Hybrid transport system
JP2005023765A (en) Underground railway of shield tunnel having four-tracks with cross-shaped cross-section
RU2297934C1 (en) Transport system "metrobus"
KR102435459B1 (en) Structure And Method For Constructing Track Of Mountain train
GB2348410A (en) Hanging railway system
RU2145557C1 (en) Overhead monorail transportation system
RU2181328C1 (en) Mega polis transport complex
RU2328392C1 (en) Truss transport
UA71059U (en) Elevated frame system of railway transport
JP7244385B2 (en) Track-based transportation system
Chounde et al. FEASIBILITY STUDY OF METRO RAIL PROJECT IN PUNE CITY
Kerr et al. Infrastructure Cost Comparisons for PRT and APM
Novales et al. Light Rail in Alicante, Spain: Improving the Use of Existing Railway Lines
EA013247B1 (en) Monorail transport system
JP2004346735A (en) Structural system equipped with track for magnetic levitation transportation system supplied with power by linear electric motor
Yuyama The tobu kyuryo line (popular name: linimo) a magnetic levitation system
US1883363A (en) System and structure for high speed traffic
JP2021113403A (en) Extending structure of traffic facility
JPH06317095A (en) Tunnel constructing method
Bondada et al. Potential of APMs as Line Haul Systems in Developing Nations: A Case Study—Sky Bus Metro Technology
Martinec et al. Railway line Prague centre–Ruzynˇe airport
US386120A (en) Elevated suspension-railroad
AU2004235614A1 (en) Railway tunnel construction method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees