JP4544545B1 - Single and straight roads and deep tunnel high-speed underground electric railways - Google Patents

Single and straight roads and deep tunnel high-speed underground electric railways Download PDF

Info

Publication number
JP4544545B1
JP4544545B1 JP2009260651A JP2009260651A JP4544545B1 JP 4544545 B1 JP4544545 B1 JP 4544545B1 JP 2009260651 A JP2009260651 A JP 2009260651A JP 2009260651 A JP2009260651 A JP 2009260651A JP 4544545 B1 JP4544545 B1 JP 4544545B1
Authority
JP
Japan
Prior art keywords
station
floor
train
speed
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009260651A
Other languages
Japanese (ja)
Other versions
JP2011109763A (en
Inventor
英治 川西
Original Assignee
英治 川西
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英治 川西 filed Critical 英治 川西
Priority to JP2009260651A priority Critical patent/JP4544545B1/en
Priority claimed from US13/261,179 external-priority patent/US20130341934A1/en
Application granted granted Critical
Publication of JP4544545B1 publication Critical patent/JP4544545B1/en
Publication of JP2011109763A publication Critical patent/JP2011109763A/en
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】市街地内での地下鉄道建設において、費用を半減させる高速低床型電車、リニアモータ電車のいずれかで運行する高速地下鉄道。
【解決手段】公有地の地表駅からで直線広軌レールの小口径大深度トンネルにして、同じ勾配で下り、上り区間、水平区間、同じ距離の地表駅間にして、下り加速減速区間は回生発電区間にして、水平区間は高速度の慣性運転区間にして、回生電力を戻して複数の変電設備に設置の電力で駆動する運行本数に見合う出力の圧力負荷装置を有する天秤使用の重力発電装置に合成して発電量を増して、再びき電して使用電力の大半を賄える構成の単線及び複線の直線路の大深度小口径トンネルの高速地下鉄道とした。
【選択図】図1
[PROBLEMS] To provide a high-speed subway operated by either a high-speed low-floor train or a linear motor train that halves the cost in constructing a subway in an urban area.
SOLUTION: From a public land surface station, make a straight wide-gauge rail small-diameter large-depth tunnel, and at the same slope down, up section, horizontal section, between the surface stations of the same distance, down acceleration and deceleration sections are regenerative power generation For the gravitational power generator using a balance that has a pressure load device with an output suitable for the number of operations that is driven by the power installed in multiple substations by returning the regenerative power to the high speed inertial operation section in the horizontal section The power generation amount was increased by combining, and the high-speed subway of a deep and small-diameter tunnel with a single line and a double line with a structure that can supply most of the power by supplying electricity again.
[Selection] Figure 1

Description

地表駅間を大深度トンネルで結ぶ単線と直線構造の高速地下電気鉄道と回生電力に関する。       It relates to single-line and straight-line high-speed underground electric railways and regenerative power that connect ground stations with deep tunnels.
現況の地上鉄道の乗客数の少ない過疎地等にはディーゼル車両等の単線の運転となっていて、乗客数の多い市街地等の地下鉄は複線路のものである。     In the presently depopulated areas where the number of passengers on the ground railway is small, the operation of a single line such as a diesel vehicle is carried out.
特公平7-83630 リニアインダクションモータの制御方法7-83630 Linear induction motor control method 特許第2800586号 電気自動車用ブレーキ装置Patent No. 2800586 Brake device for electric vehicle 特許第2782079号 大深度地下鉄駅ホームと上部ホーム間の乗客輸送方法とその設備Patent No. 2782079 Passenger transportation method and equipment between deep underground station platform and upper platform 特開第2006-335289JP 2006-335289 A 特開2006-76458 ダイヤ作成支援装置とダイヤ作成支援方法及びその処理プログラムを記憶した記憶媒体Patent application title: Diamond creation support device, diamond creation support method, and storage medium storing processing program thereof 特開2007-98965 ハイブリット列車のエネルギー制御方法及び装置JP 2007-98965 HYBRID TRAIN ENERGY CONTROL METHOD AND DEVICE 特開2007-252084 電気車制御装置JP 2007-252084 ELECTRIC CAR CONTROL DEVICE 特許第3924077号 電力蓄積式電動機、電力蓄積式電動機を用いた電力蓄積方法Patent No. 3924077 Electric power storage type electric motor, electric power storage method using electric power storage type electric motor 特許第4281072号 天秤使用の重力発電装置。Patent No.4281072 Gravity power generator using balance. 特許第4333930号 圧力負荷装置を有する天秤使用の重力発電装置。Patent No. 4333930 Gravity power generation device using balance with pressure load device. 特許第4367795号 圧力負荷装置を有する天秤使用の重力発電装置。Patent No. 4376795 Gravity power generation device using balance with pressure load device. 特願2009-192940号 圧力負荷装置を有する天秤使用の重力発電装置と連結するハイブリット発電装置。Japanese Patent Application No. 2009-192940 Hybrid power generator connected to a gravity power generator using a balance with a pressure load device. 特開2005-92240 軌道車両のプラットホーム高速電気鉄道は300km/hが普通のものとなって、超電導浮上リニアモータ電車は500km/hが実現の過程となっていて、地下鉄は市街地の複線各駅間短距離輸送の各駅停車の歴史のある鉄道となっている。[特許文献9から12]等に記載の重し、流体圧力を天秤比で大きな力にして、支点位置の左右の任意のシリンダーの流体に載せて、圧して連係するクランク機構の発電機に入力する装置であって、使用されていない又気づかなくて廃棄されているボイラー熱、ダムの水圧力、船速度による水流等、又は効率の悪い太陽光、風力、水力等の自然エネルギー等と上記装置と連結するものであって、本発明は、あえて地下駅とする地下鉄道を地表駅等にして、高低差と高速低床電車から単線の大深度小口径トンネルにして、各費用の低減と成すものとした。又、ホームから下り勾配の水平区間までの加速からの制動区間を回生発電区間にして、地表駅間の加速度運行の高速地下鉄道とした。断続的な回生電力を架線から商用電力と合成するフライホイールを備える[特許文献9から12]の圧力負荷装置、往復動油圧伝達装置からなる天秤使用の重力発電装置の油圧ポンプの電動機の電力として利用して、重し、ビル等からの水圧、貯蔵空気圧、油圧装備等からの力を圧力負荷天秤比で大きくして、閉回路往復動シリンダーの流体に載せて、圧してクランク機構から発電機の回転出力として、回生電力を効率良く取り入れて使用電力量を少なく出来るものとした。JP 2005-92240 Platform high-speed electric railway for track vehicles is normal at 300km / h, and superconducting levitation linear motor train is in the process of realizing 500km / h. It is a railway with a history of stopping at each station for distance transportation. [Patent Documents 9 to 12], etc. Weight, fluid pressure is set to a large force in the balance ratio, placed on the fluid of any cylinder on the left and right of the fulcrum position, and input to the generator of the crank mechanism linked with pressure Boiler heat, dam water pressure, water flow due to ship speed, etc., or inefficient natural energy such as sunlight, wind power, hydraulic power, etc. The present invention is intended to reduce costs by using a subway as an underground station and making it a surface station, etc., and changing from a height difference and a high-speed low-floor train to a single-line deep and small-diameter tunnel. It was supposed to be. In addition, the braking section from the acceleration from the platform to the horizontal section of the descending slope was made the regenerative power generation section, and it was made a high-speed subway for acceleration operation between the surface stations. As the electric power of the hydraulic pump motor of the gravitational power generator using the pressure load device of [Patent Documents 9 to 12] and the reciprocating hydraulic transmission device equipped with a flywheel that combines intermittent regenerative power with commercial power from the overhead line Use the weight, the water pressure from the building, the storage air pressure, the force from the hydraulic equipment, etc. by increasing the pressure load balance ratio, put it on the fluid of the closed circuit reciprocating cylinder and press it to generate power from the crank mechanism As the rotation output, the regenerative power can be taken in efficiently to reduce the amount of power used.
市街地の高速地下電気鉄道建設において、公有地と民有地をまたぐ大深度50m程のトンネル水平車線とする。総延長を30kmに仮定した場合、地表部に設ける始発駅から終着駅間の5駅7.5km間隔として1駅に3乗降ホームを設けて、4乃至6本の電車又は連絡電車、路線バスが待機して停車できるものとした。地下水平区間から上りと下り区間の勾配を各1km区間にして、加速と減速区間とした。電車には下り1km間勾配で400km/hの加速が可能となる高速低床形回転モータ電車又は磁気浮上リニアモータ電車を使用して、下り1km間勾配で最大速度に加速して、水平運転から上り勾配で減速してホーム停車と成すものとして、駅間の折り返し運転を基本構成にして、下り制動区間の回生電力を最大限利用できる圧力負荷装置を有する天秤使用の重力発電装置を複数の駅に設置から発電量を増して、商用電力、再び架線にき電するものとして、単線の直線標準軌、或いはそれ以上のレール幅の低床形回転モータ電車はシールドトンネル直径6.0m、磁気浮上リニアモータ電車5.0m、複線の直線路の一つのトンネルを上下に分割して上り下りの低床形の磁気浮上リニアモータ電車では8.0mのシールドマシン掘削、仮定の5駅から下り8基で掘削して、各駅舎、ホーム等の地上部同時施工として、3年程で完成出来るものとして、直線コースは私有地を含むものでもあり50mより深いトンネル区間、駅間は同勾配、同距離のものにして地表部は極力公有地を使用するものとした。 In the construction of high-speed underground electric railways in urban areas, the tunnel will be a horizontal lane with a depth of about 50m that spans public and private land. Assuming a total length of 30 km, a 3-stop platform will be set up at one station at 7.5 km intervals from the first station to the last station on the surface, and 4 to 6 trains, connecting trains, and route buses will be on standby It was supposed to be able to stop. The slope from the underground horizontal section to the up and down sections is 1km each, and it is set as the acceleration and deceleration section. Use a high-speed low-floor rotary motor train or a magnetically levitated linear motor train that can accelerate at a speed of 400 km / h with a slope of 1 km down, and accelerate to the maximum speed with a slope of 1 km down. A gravitational power generator using a balance with a pressure load device that can make maximum use of the regenerative power in the downward braking section based on a turn-back operation between stations as a basic structure that decelerates on an ascending slope and forms a home stop. In order to increase the amount of power generated from the installation, the commercial power, and the overhead line again, the single-line straight standard gauge or the low floor type rotary motor train with a rail width larger than that of the shield tunnel diameter 6.0m, magnetic levitation linear Motor train 5.0m, one double-straight tunnel is divided into upper and lower parts, and an up-and-down low-floor magnetic levitation linear motor train excavates 8.0m shield machine, 8 hypotheses from the assumed 5 stations Each station building As the ground construction such as homes can be completed in about 3 years, the straight course also includes private land, tunnel sections deeper than 50m, the same distance between stations, the same distance, the ground part is public as much as possible The ground was used.
複線で地下駅とする既存の地下鉄道と同じ工法で計画した場合と本発明の単線で地表部の駅から大深度の水平区間まで下り水平慣性運転から上り地上駅に到着して直ちに次駅に発車して、待機する電車は始発駅に発車して単線路を交互に使用するメリットは、地表駅ホーム以外は円筒形トンネルであり、電車の窓は必要の無いものとして、乗車から到着まで3乃至4分のものにして、発車から下り勾配の加速は瞬間的に2Gの程のものとして、トンネル内の走行は、単線で直線路で標準軌、それ以上の広軌レールの低床電車から高スピードでも揺れは無く、座席を無くして複数の手すりスタンドと吊り手からと停車から身障者用の自動ステップを設けて乗降時間を短縮して、上りの減速区間は勾配で自然減速となって、各駅間を2km乃至3kmの既存の複線の地下鉄道と違って各地表駅間を10km程の直線コースを高スピードを必要とする地下鉄道に適する工法のものである。 When planning with the same construction method as an existing subway as an underground station with double lines and with a single line of the present invention from a surface section to a deep horizontal section descending from a horizontal inertia operation to an upstream ground station and immediately going to the next station The merit of leaving and waiting for the train leaving the first station and using single tracks alternately is that it is a cylindrical tunnel except for the surface station platform, and there is no need for a train window. or in that of 4 minutes, as the degree of acceleration instantaneously 2G with a descending slope from the departure, travel in the tunnel is a straight road in single line standard gauge, high low floor train more broad gauge rail There is no shaking even at speed, there are no seats, multiple handrail stands and suspension hands, and automatic steps for disabled people from stopping and shortening the getting on and off time, the ascending deceleration section becomes a natural deceleration with a gradient, each station Existing 2km to 3km Unlike the subway line, it is a construction method suitable for subways that require high speed on a straight course of about 10 km between Omotesando stations.
高速度とする電車には始発駅、中間駅、終着駅等に設置する変電設備から交流20000Vで架線にき電して、電車内変圧器、整流器等で交流三相二極のVVVFインバータベクトル制御高出力かご形誘導モータ駆動にして、最大速度350km/hが可能な10両程の編成で5400kW/hの出力のアルミ合金で軽くして、車輪(700mm程)を小さく軸受の高さを床部分にして、車輪が座席下の側壁床内に入る低床形電車にして、水平慣性運転では250km/h乃至300km/hのスピードにして、ホーム停車から下り区間の加速から位置エネルギーを回生ブレーキで制動して、水平区間に至る10秒程の700m間を回生発電区間にして、各電車は3分間隔で発車して各トンネルの同じ位置が回生発電場所になって、各電車は高電圧に変圧して複数の駅に設ける変電所設備に戻して、低電圧に変圧した電力で駆動の複数の圧力負荷装置を有する天秤使用の重力発電装置のかご形誘導電動機に入力してクランク機構のフライホイールで断続の電力を連続回転力とするものとなって、その電力と変圧した低圧電力、又は商用電力で左右の重し負荷天秤上の圧力負荷装置の地面の重しのエアハイドロシリンダー、油圧ユニットの油圧複動片ロッドシリンダー、貯蔵する空気圧の複動片ロッドシリンダー、又は高所からの水圧複動片ロッドシリンダー等の力を永久磁石と電磁石との吸引力と反発力を利用して左右交互の負荷と成して、往復動天秤との天秤比で支点位置の上下室等油量の左右油圧閉回路両ロッドシリンダーに大きくした力にして載せ圧して、増油量と作動油の入れ替え用の補助ポンプとエアハイドロシリンダー用の一つの小型閉回路可変容量形ピストンポンプと二つの同じ閉回路可変容量形ピストンポンプを一つにまとめる多連ポンプをベクトル制御インバータ交流三相6極かご形誘導モータで駆動して、天秤比で大きくした力は油圧ポンプの増油量から回転を増して、左右油圧閉回路両ロッドシリンダーに連動するクランク機構のベクトル制御インバータ三相6極かご形誘導発電機は出力増と成して、複数の高速電車の消費電力に見合う電力を複数の変電設備から高電圧で架線にき電、又は低電圧から商用電力に送電するものとした。 For high-speed trains, power is transferred to the overhead line with AC 20000V from the substation equipment installed at the first station, intermediate station, end station, etc., and the AC three-phase two-pole VVVF inverter vector control is performed with a transformer, rectifier, etc. It is driven by a high-power squirrel-cage induction motor and is lightened with an aluminum alloy with an output of 5400kW / h with a knitting of about 10 cars capable of a maximum speed of 350km / h, and the wheel (about 700mm) is made smaller and the bearing height is reduced to the floor A low-floor electric train with wheels entering the floor under the seat, and with horizontal inertia driving at a speed of 250 km / h to 300 km / h, regenerative braking is applied to the potential energy from the acceleration of the descending section from the home stop. Set the regenerative power generation section between 700m for about 10 seconds to reach the horizontal section, each train departs every 3 minutes, the same position of each tunnel becomes the regenerative power generation place, each train has high voltage back to the substation equipment provided to a plurality of stations and transformers, the power that is transformed to low voltage It is input to a squirrel-cage induction motor of a gravity power generation device using a balance having a plurality of pressure load devices driven by an electric motor, and the intermittent electric power is converted into a continuous rotational force by the flywheel of the crank mechanism. Low pressure or commercial power on the left and right weight load balance on the pressure load device ground weight air hydro cylinder, hydraulic unit hydraulic double acting single rod cylinder, storing pneumatic double acting single rod cylinder, or high The upper and lower chambers at the fulcrum position are based on the balance ratio with the reciprocating balance using the force of the hydraulic double-acting single rod cylinder, etc. A small closed-circuit variable capacity for an auxiliary pump and air-hydro cylinder for replacing oil increase and hydraulic oil by applying a large force to the left and right hydraulic closed circuit double rod cylinders of equal oil amount The multiple pumps that combine the quantity piston pump and two identical closed circuit variable displacement piston pumps with a vector control inverter AC three-phase six-pole squirrel-cage induction motor, the force increased by the balance ratio is a hydraulic pump Vector control inverter three-phase 6-pole squirrel-cage induction generator with crank mechanism linked to the left and right hydraulic closed circuit double rod cylinders, increasing the rotation from the oil increase amount of the oil, the power consumption of multiple high-speed trains The power that meets the requirements is transmitted from a plurality of transformers to the overhead line at a high voltage, or from a low voltage to commercial power.
500km/hの超電導浮上式リニアモータ電車にすることは各主要駅間の距離が長くて、一時的に乗客の多い、又集客して速く目的駅に到着の出来る市街地から距離のある海底下等を利用のエアーターミナル等に採用されるものであり、本発明の市街地の駅間の短い大深度トンネル走行では小型軽量形の車上一次方式の磁気浮上リニアモータ電車を使用するものとした。 The 500km / h superconducting levitation type linear motor train has a long distance between the main stations, temporarily has a large number of passengers, and can attract customers quickly and arrive at the target station quickly. It is used for air terminals and the like, and a small and lightweight primary magnetic levitation linear motor train is used for a short and deep tunnel traveling between urban stations of the present invention.
請求項1の発明は
市街地、海底下等の公有地、民有地をまたぐ高速地下電気鉄道において、
大深度の小口径トンネル(2)の単線の駅間を直線路の標準軌、或いはそれ以上のレール幅にして、地表部に設ける始発駅と終着駅と複数の中間駅に1駅当たり複数のホーム(4)を設ける各駅間は、ホームから同じ下り上り(2)勾配、同距離で水平区間も同じ深さ、長さの構造にして、複数のホームの一部を地上路面電車との連絡ホーム、若しくは路線バスの連絡ホームにして、単線の駅間の折り返し運行を基本とするため一駅間の完成で営業運転の出来るものであって、
電車には、下りの加速区間で400km/hの加速が可能となる各制御機器を具備する交流高出力回転ベクトル制御インバータVVVF誘導モータ駆動の低床形電車(7)を使用して(より小口径トンネルにするには磁気浮上の低床リニアモータ電車を使用する)、下り勾配で最大速度に加速してその区間の位置エネルギーの制動は、回生ブレーキとして、
そして、その回生電力は、複数の駅に設置する変電所設備(31a)に戻して、低電圧で各制御機器を具備して駆動する圧力負荷装置を有する天秤使用の重力発電装置(A)の往復動油圧伝達装置と圧力負荷装置の各シリンダー用の主ポンプ(50、50a)と増油量とフラッシング用の補助ポンプ(50b、50c)を一つにまとめる多連油圧ポンプ(38)のベクトル制御インバータ電動機(31)の駆動電力に入力して、圧力負荷装置は、一つの閉回路油圧可変容量形ピストンポンプ(50a)で左右の負荷天秤下(22)に設置する重し(47)を左右交互に負荷するエアハイドロシリンダー(46)、若しくは油圧ユニット、空気圧シリンダー、或いは高所からの水圧を利用する水圧シリンダーのいずれかの力を永久磁石(34a)と電磁石(34)との吸引力と反発力を併用して負荷するものであって、往復動油圧伝達装置は、負荷天秤(22)と支点を挟み左右両ロッドシリンダー(25)で左右対称でリンク連結する往復動天秤(24)と長さの比で大きくした力を両ロッドシリンダー(25)に伝えて、上下室間を二つの閉回路油圧可変容量形ピストンポンプ(50)で連通して往復駆動するものであり、そして左右の負荷天秤を支えて徐々に入力する装置の地面に設置する単動エアシリンダー(30)の排出から大きくした力は、徐々に入力のものにして、同時に補助ポンプ(50b)から大きくした力に見合う可変容量分を徐々に増油量にして、回転出力は増して、往復動天秤(24)と連結して両ロッドシリンダー(25)と連動のクランク機構の増速ギアケース(27)の左右クランクギアと係合の中間ギアシャフトのフライホイール(28)とベクトル制御インバータ発電機(32)に入力から出力となって、発電量は複数の電車の使用電力量に見合うものにして再び交流高電圧に変圧して架線にき電して、又は商用電力に送電するものとして、前記水平区間と上り勾配からのホーム間を前記の下り勾配区間の回生電力と重力発電装置(A)の発電量で地表のホームまで走行出来て、単線路をほぼ3乃至4分間隔で発車する各駅間の複数の電車の電力量は、大半が圧力負荷装置を有する天秤使用の重力発電装置(A)からのものにして、その運行は、各駅の複数のホーム(4)から始発駅(1a)の電車が次駅(1b)に到着して、次駅(1b)の待機電車は始発駅(1a)に発車して、次駅(1b)の到着電車は直ちに中間駅(1c)へ発車して、到着後中間駅(1c)に待機する電車は次駅(1b)に発車する単線走行として、始発駅から終着駅間の各駅停車と各駅単位の折り返し運行ダイヤにして、そして、終着駅を始発として、前記始発駅(1a)の発車と同時に発車する運行形態にして、そして始発駅(1a)から出発して終着駅で降りる人、或いは終着駅から出発する反対の人は乗り換えなしの各駅停車のものとなって、各それぞれの駅で乗車の人は、常に待機中の電車若しくはホームに到着する上り下りのいずれかの電車を待つものであって、その待ち時間は駅間の走行時間からのものとなり、停車からの乗客の乗降は、座席を無くして乗客の流れがスムーズとなる床からの手すりスタンド(19)を設けて、ドアの開閉に自動連動の乗降ステップ(11、11a)を設けてホームとの隙間と段差をなくして、車椅子、乳母車等の不自由の無い速やかな乗降のものにして、停車から発車の時間的な余裕を持てるものとなって、そして単線路運行のため停車ホーム(4)のレール(5)には、駅間トンネルに一電車しか入れない仕組みの安全装置を設けて、地表駅間をほぼ同じ下り、水平区間、上りの距離構成と広いレール幅の単線の駅間を直線路とする小口径大深度トンネル(2)で結び、前記下り区間の回生電力を有効利用の複数の圧力負荷装置を有する天秤使用の重力発電装置(A)は、交流高出力回転誘導モータ駆動の複数の低床形電車(7)の走行電力の大半を賄うことが出来る高速地下電気鉄道を構成したものである。即ち本発明は、市街地の公有地を使用して、高速電車にするには地表駅間を直線路にして、小口径の単線の大深度シールドトンネルにして、私有地の下部も必然にしてまたぐものとなって、駅間の上り下り勾配区間と水平区間は同じものにして、回生電力を有効利用の出来る圧力負荷装置を有する天秤使用の重力発電装置に入力して、発電量を増して架線にき電して、無理な運行構成には一次的に安全装置が働くものとしての高速地下電気鉄道を構成するものである。
The invention of claim 1 is a high-speed underground electric railway that straddles urban areas, public land under the seabed, private land,
A large-depth, small-diameter tunnel (2) with a single rail between the single-track stations, or a rail width larger than that, and multiple stations per station at the first and last stations and multiple intermediate stations on the surface. Each station where the platform (4) is installed has the same descending (2) gradient from the platform, the same distance and the same depth and length in the horizontal section , and some of the platforms are connected to the ground tram It can be used as a home or commuter platform for local buses, and it can be operated in business by completing one station because it is based on the return service between single stations.
The train uses a low-floor train (7) driven by an AC high-output rotation vector control inverter VVVF induction motor equipped with each control device capable of 400km / h acceleration in the downward acceleration section (smaller) To make a tunnel tunnel, use a low-floor linear motor train with magnetic levitation), accelerate to the maximum speed with a downward slope, and brake the potential energy in that section as a regenerative brake ,
Then, the regenerative power is returned to the substation equipment (31a) installed at a plurality of stations, and the balance-use gravity power generation device (A) having a pressure load device that is driven by each control device at a low voltage is used. Vector of the main hydraulic pump (50, 50a) for each cylinder of the reciprocating hydraulic transmission device and pressure load device and the multiple hydraulic pump (38) that combines the oil increase and flushing auxiliary pumps (50b, 50c). Input to the drive power of the control inverter motor (31), the pressure load device has a weight (47) installed on the left and right load balances (22) with one closed circuit hydraulic variable displacement piston pump (50a) The attractive force of the permanent magnet (34a) and the electromagnet (34) is either the air-hydro cylinder (46) that loads alternately left or right, or the hydraulic unit, pneumatic cylinder, or hydraulic cylinder that uses water pressure from a high place. And repulsive force The reciprocating hydraulic pressure transmission device is loaded with a load ratio (22) and the reciprocating balance (24) which is symmetrically linked with the left and right rod cylinders (25) across the fulcrum. Is transmitted to both rod cylinders (25), and is reciprocated between the upper and lower chambers by two closed circuit hydraulic variable displacement piston pumps (50), and gradually supports the left and right load balances. The force increased from the discharge of the single-acting air cylinder (30) installed on the ground of the input device is gradually changed to that of the input, and at the same time, the variable capacity corresponding to the increased force from the auxiliary pump (50b) is gradually increased. Rotation output is increased by increasing the oil amount, and it is connected to the reciprocating balance (24) and is engaged between the left and right crank gears of the speed increasing gear case (27) of the crank mechanism interlocked with both rod cylinders (25). Gear shaft flywheel (28) and serves as the output from the input to the vector control inverter generator (32), the power generation amount by electricity in the overhead line to the transformer again AC high voltage to those commensurate with the power usage of a plurality of trains, Or, as power to be transmitted to commercial power, it is possible to travel between the horizontal section and the platform from the uphill to the home on the ground surface with the regenerative power in the downgraded section and the power generation amount of the gravity power generation device (A). Most of the electric power of multiple trains between stations that depart at intervals of approximately 3 to 4 minutes is from a gravity power generation device (A) using a balance with a pressure load device . From the home (4), the train at the first station (1a) arrives at the next station (1b), the standby train at the next station (1b) leaves at the first station (1a) and arrives at the next station (1b) Immediately depart to the intermediate station (1c), and the train that waits for the intermediate station (1c) after arrival departs to the next station (1b) As a single line running, each station stop between the first station and the last station and a turnover schedule of each station unit, and the last station as the first train, in the form of operation that starts at the same time as the departure of the first station (1a), and Those who depart from the first station (1a) and get off at the end station, or those who depart from the end station will be at each station stop without transfer, and the passengers at each station will always be waiting It waits for either the train going up or down to arrive at the train or the platform, and the waiting time is from the traveling time between stations, and passengers getting on and off from the stop will lose the seat and flow of passengers There is a handrail stand (19) from the floor that is smooth, and an automatic getting on and off step (11, 11a) is provided to open and close the door, eliminating gaps and steps from the platform, and inconvenience for wheelchairs, baby carriages, etc. Not prompt And to those of getting on and off, become a thing-held a time allowance of departure from the stop, and the rail (5) of the stop home for a single-line service (4), not only put one train at a station between the tunnel mechanism It is equipped with safety devices, about the same down between ground stations, horizontal section, connected by a small-diameter deep tunnels between single wire station uplink distances structure and wide rail width and a straight line (2), the downlink section The gravity power generator (A) using a balance with multiple pressure load devices that effectively use the regenerative power of the power supply covers most of the running power of multiple low-floor trains (7) driven by AC high-power rotation induction motors It constitutes a high-speed underground electric railway that can In other words, the present invention uses a public land in an urban area, and in order to make a high-speed train, it is a straight road between surface stations, a small-diameter single-line deep shield tunnel, and the lower part of private land is inevitably straddled. The up and down slope section and the horizontal section between the stations are the same, and the regenerative power is input to a gravity power generator using a balance with a pressure load device that can effectively use it, increasing the power generation amount to the overhead line A high-speed underground electric railway is constructed as a safety device that works temporarily in the unreasonable operation configuration.
請求項2の発明は、
請求項1に記載する市街地、海底下等の公有地、民有地をまたぐ高速地下電気鉄道において、
前記、磁気浮上低床形リニアモータ電車(6)は、地表部に設ける始発駅と終着駅と複数の中間駅に1駅当たり複数のホーム(4)を設けて、各駅間はホームから前記と同じ下り、上りの(2)勾配、同距離で水平区間も同じ深さ、長さの構造の大深度単線路トンネルから、小型で高速走行と成る車上一次方式磁気浮上リニアモータ電車(6)にして、前記モータ回転駆動の低床形電車(7)より小口径シールドトンネルに出来て高速安定運行の出来る磁気浮上低床形リニアモータ電車(6)と上下分割の複線路走行の大きくしたシールドトンネルからの磁気浮上低床形リニアモータ電車(6a)は、車体の天井の冷房設備と制御機器を床と接する側壁の座席(21b)下に配置して、前記磁気浮上低床形リニアモータ電車(6)より上下幅を圧縮して、トンネルのコンクリートセグメント(8)の一部を鋼製セグメント(8a)にして、そのトンネル中央部分の鋼製セグメント(8a)と接合固定の磁気浮上構成材(8c)を一体にした薄い鋼構造材(8b)で分割遮断して、そして上下線の複線路トンネル内の歪な構造から高速走行車体の揺れを風圧で圧さえる構造の風圧板(54)をセグメントと鋼構造材(8b)を支える鋼構造材に一定の任意の間隔に設けて、その車体屋根にも風圧板(55)を設けて、車体の上と左右から空気の流れを車体に向けて一定の流れにして揺れを抑える構造にして、地表駅のホーム(4)も上下二階の運行形態にしての磁気浮上低床形リニアモータ電車(6a)にした。
そして、その単線、複線路走行の磁気浮上低床形リニアモータ電車(6、6a)は、共に下り勾配で最大速度に加速してその区間の回生ブレーキによる回生電力は、変電所設備(31a)の各制御機器から圧力負荷装置を有する天秤使用の重力発電装置の多連油圧ポンプ(38)のベクトル制御インバータ電動機(31)の駆動電力に入力して、そしてベクトル制御インバータ発電機(32)の発電量は、前記モータ回転低床形電車(7)と同様の構成から再び交流高電圧に変圧して架線にき電して、又は商用電力に送電するものであり、その磁気浮上低床形リニアモータ電車(6、6a)の駆動は、交流高出力ベクトル制御インバータVVVF誘導リニアモータを使用して、そして各駅間をより長くしてよりスピードを必要とする場合には、超電導浮上リニアモータ電車を採用とする小口径大深度トンネルから成る高速地下電気鉄道を構成したものである。
即ち本発明のリニアモータ電車は、他社との相互乗り入れ等を必要としなくて、回転モータ駆動電車より小型化出来るものからリニアモータ推進のものとして、磁気浮上、又車輪仕様は任意なものとして、シールドトンネルの上下分割の複線化は小型化の出来る磁気浮上のリニアモータ電車のメリットであって、超電導浮上リニアモータ電車の採用は、駅間の距離が10km以上のものとして超高速を必要とするエアポート間等の連絡線に採用となるものである。
The invention of claim 2
In the high-speed underground electric railway that straddles the urban area, the public land under the seabed, and the private land described in claim 1,
The magnetically levitated low-floor linear motor train (6) is provided with a plurality of platforms (4) per station at the first station, the final station, and a plurality of intermediate stations provided on the ground surface. (1) On- vehicle primary magnetic levitation linear motor train that is compact and capable of high-speed running from a deep single-track tunnel with the same descending and ascending (2) slope, the same distance and the same depth and length in the horizontal section (6) Thus, a magnetically levitated low-floor linear motor train (6) that can be operated in a smaller-diameter shield tunnel than the low-floor train (7) driven by the motor rotation and capable of high-speed stable operation, and a shield that has a large number of upper and lower split lines. The magnetically levitated low-floor linear motor train (6a) from the tunnel has the above-mentioned magnetically levitated low-floor linear motor train arranged under the seat (21b) on the side wall in contact with the floor with cooling equipment and control equipment on the ceiling of the vehicle body. (6) Compress the top and bottom width to make the tunnel A thin steel structural material in which a part of the concrete segment (8) is made of steel (8a), and the steel segment (8a) at the center of the tunnel and the magnetically levitated component (8c) for joint fixation are integrated. Supports the segment and the steel structure (8b) with the wind pressure plate (54) that is divided and cut off at (8b) , and from the distorted structure inside the upper and lower double-track tunnels, and that suppresses the shaking of the high-speed vehicle body by wind pressure. The steel structure is provided at regular intervals, and the wind roof (55) is also provided on the roof of the car body, so that the air flow from the top and left and right of the car body is directed toward the car body to suppress shaking. Then, the platform (4) of the surface station was also a magnetically levitated low-floor linear motor train (6a) in the form of operation on the upper and lower floors.
The single-line and double-lined magnetically levitated low-floor linear motor trains (6, 6a) both accelerate to the maximum speed with a downward slope, and the regenerative power generated by the regenerative brake in that section is substation equipment (31a) Input the driving power of the vector control inverter motor (31) of the multiple hydraulic pump (38) of the balance-use gravity power generator with pressure load device from each control equipment, and the vector control inverter generator (32) The amount of power generation is the same as that of the motor-rotating low-floor train (7), and is transformed again to an AC high voltage and sent to the overhead line or transmitted to commercial power. driving the linear motor train (6, 6a), using the high AC output vector control inverter VVVF linear induction motor, and if you need more speed and longer between each station, a superconducting levitation linear motor electrostatic It is obtained by constituting the high-speed underground electric railway consisting adopted to small-diameter deep tunnel.
That is, the linear motor train of the present invention does not require mutual entry with other companies, and can be made smaller than a rotary motor drive train, as a linear motor propulsion, magnetic levitation, and wheel specifications are arbitrary, The double division of the shield tunnel's upper and lower divisions is a merit of a magnetic levitation linear motor train that can be reduced in size, and the adoption of a superconducting levitation linear motor train requires ultra-high speed with a distance between stations of 10 km or more It will be used for communication lines between airports.
請求項3の発明は、
請求項1に記載の高速地下電気鉄道において、
前記、乗客の乗降ステップ(11、11a)は、乗降を速やかで安全確実に行うものであって、その構成はスライドドア(8)下部の収納部分を固定メスネジ部にして、ステップ(11)が車体床に接する左右の側部を軸受(14a)にして、左右オスネジシャフトを嵌入してからシャフトに左右ステップ(11)部を接合して、ドアの開閉に連動するメスネジ(14)はオスネジシャフト(13)を上下に回動させて適宜の幅のステップはホーム床に接して、電車の揺れ等には遊び部を設けて、スライドドア前面の格納とホーム床設置を繰り返す機械式の簡単で確実なものにして、若しくは全ホームの段差と隙間がほぼ一定の車両では、電気、空気圧機器を使用してドアの開閉に連係して乗降ステップ(11a)をドア床下に出入する装置として、二つのステップ装備(11、11a)は、ホーム(10)と乗降ドア(12、12a)床との隙間(15)と段差を無くす金属部とゴム、プラスチック等の弾性材であって、幅と厚みは適宜の滑らない乗降ステップにして、大きなキャリーバック所持者、車椅子、乳母車、身障者が安心して確実安全に乗降させる乗降ステップ(11、11a)となり、前記リニアモータ電車、地上路面電車、若しくは路線バスの仕様にして、又自動車にも応用出来るものであって、高速電車の運行においての乗降時間を安全確実に短縮出来る乗降ステップ(11、11a)を具える高速地下電気鉄道を構成したものである。即ち本発明は、既存の電車では車椅子に対応する駅員が専用のステップを持ち運び乗降していて、乗降時間は乗客数に応じるものであって、走行時間をスピードで補えるものではなくて、乗降ステップは、旅客がスムーズに乗降出来ることから平均して乗降時間が短縮出来る構成のものである。
The invention of claim 3
In the high-speed underground electric railway according to claim 1,
The passenger boarding / exiting step (11, 11a) is to perform boarding / exiting promptly and safely, and the structure is such that the storage part at the lower part of the sliding door (8) is a fixed female screw part, and step (11) The left and right sides that contact the vehicle floor are the bearings (14a), the left and right male screw shafts are inserted, the left and right step (11) parts are joined to the shaft, and the female screw (14) that is linked to the opening and closing of the door is the male screw shaft (13) Rotate up and down, the step of appropriate width is in contact with the platform floor, a play section is provided for shaking the train, etc. in the reliable ones, or in the entire home stepped and substantially constant vehicle gap, electrical, as a device to and from the passenger in conjunction with the opening and closing of the door step (11a) to the door under the floor using pneumatic equipment, two One step equipment 11, 11a) is a home (10) and passenger doors (12, 12a) metal part and the rubber to eliminate the step and gap (15) between the floor, elastic material such as plastic, the slip of the appropriate width and thickness There is no boarding / exiting step, it becomes a boarding / exiting step (11, 11a) for large carry-back holders, wheelchairs, prams, and handicapped people to get on and off safely and safely, with the specifications of the linear motor train, ground tram, or route bus It can also be applied to automobiles, and constitutes a high-speed underground electric railway with a boarding / exiting step (11, 11a) that can safely and reliably shorten the boarding / alighting time in high-speed train operation. That is, according to the present invention, in the existing train, the station staff corresponding to the wheelchair carries a special step and gets on and off, the boarding time depends on the number of passengers, and the traveling time is not compensated for by speed, In this configuration, the passenger can get on and off smoothly, so that on average the boarding time can be shortened.
請求項4の発明は、
請求項1に記載の高速地下電気鉄道において、
前記、停車から乗客の乗降の流れをスムーズにする床からの手すりスタンド(19)を設ける高速地下電気鉄道は、ほぼ3乃至4分間隔で発車する短時間のトンネル内走行から窓の必要が無くて、前記低床形回転モータ電車(7)の車輪のカバー床部分等を身障者用の必要数の座席(21、21a)にして、又磁気浮上低床形リニアモータ電車の天井の各冷房設備と制御機器等を床と接する側壁の座席(21b)下に配置して、以外のフロアは座席を無くして、吊り手等と左右側壁に手すり(19b)(ハンドレール)とフロアを側壁から平行の中央部、若しくは平行の2列の手すりスタンド(19)を配置して、適宜の長さと床から腰高程の手すりスタンド(19)は、乗降ドア(12、12a)近辺を除いた位置に適宜の本数を設けて、或いはフロアの乗降に支障にならない部分に座席の替わりとなる手すりスタンド(19a)を走行に正対する方向に設けるものとして、
そのスタンド(19a)は、腰高程の高さにして高速走行の加速をスタンド(19a)に体をあてがって、吊り手を持って受け流すものとして、通勤電車、身障者用の自動車、路線バスに応用出来て、座席を無くした乗客の乗降の流れをスムーズにする手すりスタンドから成る高速地下電気鉄道を構成したものである。即ち本発明は、既存の複線の客車では座席は必要なものとしていて、しかし通勤の満員となる電車ではそのスペースすら煩わしいものとなっていて、座席を無くすと窓のある電車では窓が煩わしくなるものであって、窓を無くした客車では壁に体をもたれて、フロアは広くなり中央部に手すりスタンドが必要となって、乗降の流れをスムーズにする適切な長さと一列又は二列幅にしての手すりスタンド(19)を設ける客車を構成するものである。
The invention of claim 4
In the high-speed underground electric railway according to claim 1,
The high-speed underground electric railway provided with a handrail stand (19) from the floor that smoothes the flow of passengers getting on and off from the stop eliminates the need for windows from short-time tunnel runs that depart almost every 3 to 4 minutes. The lower floor type rotary motor train (7) has a wheel cover floor portion, etc., which is necessary for the disabled (21, 21a) , and each cooling system on the ceiling of the magnetically levitated low floor type linear motor train. And control equipment, etc., are placed under the seat (21b) on the side wall that touches the floor, and the other floors have no seat, and the handrails (19b) (hand rail) and the floor are parallel to the side wall from the suspension hand and the left and right side walls. Place the handrail stand (19) in the center of the parallel or two rows, and the handrail stand (19) with the appropriate length and waist height from the floor, as appropriate at the position excluding the vicinity of the entrance door (12, 12a) It will not interfere with getting on and off the floor. As minute provided directly opposite to the direction traveling railing stand (19a) serving as a replacement for the seat,
The stand (19a) is placed at the height of the waist and the acceleration of high-speed driving is applied to the stand (19a), and it is applied to a commuter train, a car for the disabled, and a route bus. This is a high-speed underground electric railway that consists of a handrail stand that smoothes the flow of passengers getting on and off without seats. That is, according to the present invention, a seat is necessary for an existing double-track passenger car, but even the space is troublesome for a train full of commuting, and if a seat is removed, the window becomes troublesome for a train with a window. In a passenger car without a window, the body is leaned against the wall, the floor is widened, and a handrail stand is required in the center, so that it has an appropriate length and a single or double row width that smoothes the flow of getting on and off. It constitutes a passenger car with all handrail stands (19).
地価の高い市街地の地下空間の大深度シールドトンネルから、又直線路、任意の幅レール、単線にして、同じ距離の下り上り水平区間、同じ地表駅ホームにして、高速低床回転モータ電車、リニアモータ電車の選択からのものとして、地表駅は公有地に設けて、土地の費用と小型化のトンネル建設費用と小型電車費用からの低減となる単線路運行の高速地下電気鉄道。又大深度シールド円形トンネルを小口径8.0mにすると上下に複線路に出来るものとなって、左右の複線化より小口径に出来て、又上下線を遮断することからすれ違い走行が無く、より走行本数を増すことが可能なものとなる軽量低床の磁気浮上リニアモータ電車。 High-speed, low-floor rotating motor trains, linear, from deep shield tunnels in underground spaces in high-land areas, straight roads, arbitrary width rails, single tracks, downhill horizontal sections of the same distance, and the same surface station platform From the choice of motor train, the surface station is set up on public land, a single-line high-speed underground electric railway that reduces land costs, miniaturized tunnel construction costs, and small train costs. Also, if the deep tunnel circular tunnel has a small diameter of 8.0m, it becomes a double track up and down, it can be made smaller than the double track on the left and right, and since the vertical line is cut off, there is no passing traveling, more traveling Lightweight, low-floor, magnetically levitated linear motor train that can be increased in number.
地表駅プラットホームから左右地下へ下る各大深度トンネルの概略図。[実施例1、2](a図)同じ距離と深さの駅間の構成の縮小した全体の概略図。[実施例1、2](b図)一つの地表駅から地下トンネルに下る正面断面図。[実施例1、2](c図)一つの地表駅からの複数のホームからトンネルに下る平面断面図。(d図)一つの地表駅から地下トンネルに下る上下二階のホームに停車する磁気浮上リニアモータ電車の正面断面の概略図。[実施例2](e図)小口径大深度シールドトンネル内の低床形の回転誘導モータ電車の断面図。[実施例1](f図)小口径大深度シールドトンネル内の磁気浮上リニアモータ電車の断面図。[実施例2](g図)大深度シールドトンネルを上下に分割して上下複線トンネル内に走行の低床形の磁気浮上リニアモータ電車の断面図。[実施例2]Schematic of each deep tunnel going down from the surface station platform to the left and right underground. [Examples 1 and 2] (Fig. A) Schematic of a reduced overall configuration of a station between stations having the same distance and depth. [Examples 1 and 2] (Fig. B) Front sectional view of one underground station going down to an underground tunnel. [Examples 1 and 2] (FIG. C) A cross-sectional plan view of a plurality of platforms from one surface station down to a tunnel. (D) Schematic of the front cross-section of a magnetically levitated linear motor train that stops at a platform on the top and bottom two floors down from one surface station to an underground tunnel. [Embodiment 2] (e) A cross-sectional view of a low floor type rotary induction motor train in a small-diameter large-depth shield tunnel. [Example 1] (f) A cross-sectional view of a magnetically levitated linear motor train in a small-diameter large-depth shield tunnel. [Embodiment 2] (Fig. G) A cross-sectional view of a low-floored magnetically levitated linear motor train that is divided into upper and lower double-track tunnels by dividing a deep shield tunnel vertically. [Example 2] プラットホームと乗降ドアの開閉と連動する乗降ステップの概略図。[実施例3](h図)ホームに停車する左右開閉形のドアとホーム床にステップを格納と下ろした状態の概略図。(i図)ホームに停車する一枚開閉形高速電車のドアとホーム床にステップを格納と下ろした概略図。(j図)左右開閉形ドアのステップを下ろした状態と格納するドアのスライド収納部のオス、メスネジと軸受部の平面詳細図。(k図)左右開閉形のドアのホーム床から電車の床下にステップを空圧シリンダーでスライド格納する状態の概略図。(l図)左右開閉形のドアの凹メスネジ(14)に嵌入の緩い凸オスネジシャフト(13)の詳細図。Schematic of the boarding / exiting step interlocking with the opening and closing of the platform and the boarding / exiting door [Embodiment 3] (Fig. H) Schematic of the left and right open / close doors that stop at the platform and the steps stored and lowered on the platform floor. (Fig. I) Schematic of storing and lowering steps on the door and platform floor of a single open / close high-speed train that stops at the platform. (J figure) Detailed plan view of the male and female screws and the bearing portion of the sliding storage portion of the door to be stored and the state in which the step of the left and right open / close door is lowered. (K figure) Schematic of the state in which the step is slid and stored with the pneumatic cylinder from the platform floor of the left and right open / close doors to the floor of the train. (L) Detailed view of the convex male screw shaft (13) loosely fitted into the concave female screw (14) of the left / right open / close door. 座席を無くして客車フロア床に手すりスタンド(19)を設ける簡単な全体の構成図。[実施例4](m図)客車内の側壁の手すり(19b)と一部分の加速と正対の手すりスタンド(19a)とフロアの手すりスタンド(19)の開放図。[実施例4](n図)客車内を進行方向から見た手すりスタンド(19)と窓を無くしての側壁の手すり(19b)と吊り手の概略図。[実施例4](o図)客車内を進行方向から見た車体の前部と後部等に設ける手すりスタンド(19a)と吊り手の概略図。[実施例4](p図)駆動モータの無い2軸車輪をカバーして、身障者等の座席位置にした概略図。[実施例4](q図)駆動モータを取り付けの3軸車輪をカバーして、身障者等の座席位置にした概略図。[実施例4]、A simple overall configuration diagram in which a handrail stand (19) is provided on a passenger car floor without a seat. [Embodiment 4] (Fig. M) Opening of handrail (19b) on side wall in passenger car, partial acceleration and handrail stand (19a) facing front and floor handrail stand (19). [Embodiment 4] (Fig. N) Schematic diagram of handrail stand (19), handrail of side wall without window (19b) and suspension as seen from inside of passenger car from traveling direction. [Embodiment 4] (FIG. O) Schematic diagram of a handrail stand (19a) and a suspension provided at the front and rear of the vehicle body as viewed from the traveling direction inside the passenger car. [Embodiment 4] (p. FIG.) Schematic view of a biaxial wheel that does not have a drive motor and is positioned at a seat for a disabled person or the like. [Embodiment 4] (Fig. Q) Schematic of covering the 3-axis wheel with the drive motor attached to the seat position for the handicapped. [Example 4] 圧力負荷装置を有する天秤使用の重力発電装置の構成図。(r図)圧力負荷装置を有する天秤使用の重力発電装置の全体の簡略した平面図。(s図)上記の正面図(t図)上記の支点中心位置の各機器の配置の概略の側面から見た断面図。(u図)上記の支点位置の両ロッドシリンダーを負荷天秤との連結する平面断面図。(v図)上記の支点位置の両ロッドシリンダーとクランクとの連結する往復動天秤の平面断面図。(w図)上記の支点位置の多連油圧ポンプの側面断面図。The block diagram of the gravity power generation device of the balance use which has a pressure load apparatus. (R figure) The simplified top view of the gravity power generation apparatus of the balance use using a pressure load apparatus. (S figure) Said front view (t figure) Sectional drawing seen from the side of the outline of arrangement | positioning of each apparatus of said fulcrum center position. (U figure) Plan sectional drawing which connects the rod cylinder of said fulcrum position with a load balance. (V figure) Plan sectional drawing of the reciprocating balance which connects both the rod cylinders and cranks of said fulcrum position. (W figure) Side surface sectional drawing of the multiple hydraulic pump of said fulcrum position. 圧力負荷装置を有する天秤使用の重力発電装置の下部圧力負荷天秤上先端部に設置の各負荷シリンダーの構成図。(x図)上記の重し、水圧、空気圧、油圧等の各シリンダーと地面の固定フレームと天秤の負荷と無負荷(接地)に電磁石と永久磁石の吸引と反発力の基本シリンダーの断面図。(y図)負荷天秤を支えて徐々に空気圧を排出して大きくした力を支点位置の油圧両ロッドシリンダーに伝える単動の空気圧シリンダーの断面図。(z図)地面に設置する重しを軽くする空気圧を充填して、地面と重しに電磁石と永久磁石を設けて吸引と反発力も利用して、小容量ロッド室に電磁弁から油圧を左右交互に圧入して負荷と無負荷とするエアハイドロシリンダーの側面からの断面図。(5a図)貯蔵する空気圧タンクの空気圧の排出と圧入と電磁石と永久磁石を設けて負荷と無負荷を交互にくり返す単動、又は油圧力を併用の空気圧単動片ロッドシリンダーの断面図。(5b図)高所(ビル)の水槽等からの水圧、僅かな水量を圧入して、電磁ボール排出弁、圧入弁と電磁石と永久磁石を設けて負荷と無負荷を交互にくり返す油圧力を併用の水圧複動片ロッドシリンダーの断面図。(5c図)負荷天秤上に油圧ユニット装置を設けての負荷と無負荷を電磁弁で交互にくり返して、電磁石、永久磁石も利用する油圧ユニットの簡単な配置の断面図。(5d図)上記に記載の各シリンダーと天秤上の間に挟む複数の電磁石と永久磁石を配置の簡単な平面断面図。The block diagram of each load cylinder installed in the lower pressure load balance upper end part of the gravity power generation apparatus of the balance use which has a pressure load apparatus. (Fig. X) Cross-sectional view of the basic cylinder of attraction and repulsion of electromagnets and permanent magnets to the above-mentioned cylinders for weight, water pressure, air pressure, hydraulic pressure, etc., the fixed frame of the ground, and the load and unload (ground) of the balance. (Fig. Y) Cross section of a single acting pneumatic cylinder that supports the load balance and gradually discharges the air pressure to transmit the increased force to the hydraulic double rod cylinder at the fulcrum position. (Fig. Z) Fills the ground with air pressure to lighten the weight, and installs electromagnets and permanent magnets on the ground to use the suction and repulsion force to control the hydraulic pressure from the solenoid valve to the small capacity rod chamber. Sectional drawing from the side of the air hydro cylinder which press-fits alternately and makes it load and no load. (Fig. 5a) Cross-sectional view of a pneumatic single acting single rod cylinder that discharges air, press fits, stores an electromagnet and a permanent magnet in a stored air tank, and repeats load and no load alternately, or uses oil pressure in combination. (Fig. 5b) Hydraulic pressure that repeats load and no load by inserting a water pressure from a tank in a high place (building), a small amount of water, and installing an electromagnetic ball discharge valve, press-in valve, electromagnet, and permanent magnet. Sectional drawing of a hydraulic double-acting single rod cylinder used together. (FIG. 5c) A cross-sectional view of a simple arrangement of a hydraulic unit that uses an electromagnet and a permanent magnet by alternately repeating a load and a no-load with a solenoid valve on a load balance. (FIG. 5d) A simple plan sectional view in which a plurality of electromagnets and permanent magnets sandwiched between the cylinders described above and a balance are arranged. 前記、支点位置に設ける油圧多連ポンプからの構成と各シリンダーへの回路図。(6e図)上下2連カム切換えの閉回路可変容量形アキシャルピストンポンプは往復動油圧伝達装置の左右両ロッドシリンダー上下室用の交互の上下動とするポンプであり、その増油量と作動油入れ換え用の一つの高圧力定容量形のピストンポンプと圧力負荷装置用のギアポンプからのフラッシングバルブを組み込む小形の閉回路可変容量形ピストンポンプをまとめた多連ポンプであって、支点中心の上下、左右対称の位置に設けて変電設備から変圧したかご形誘導モータで駆動する5連のポンプの透視図。(6f図)上記の支点を左右にして、同位置でクランクの上下動と連動する上下室等油量の両ロッドシリンダーへのポンプからの簡単な回路図。(6g図)上記の両ロッドシリンダーの上下死点位置で増油量と作動油の入れ換えと成す二つのポペット形電磁弁をタイマー設定時間差からの排出と圧入の小型定容量形ピストンポンプの補助ポンプの回路図。(6h図)上記の二つ両ロッドシリンダー上下室用のポンプと一つの作動油入れ換えと増油量用ポンプの関連の回路図。(6i図)上記の圧力負荷装置の高所の水槽(ビル等)からの水圧を複動片ロッドシリンダーのヘッド室に連通して二つの電磁ボール弁は支点位置の両ロッドシリンダー上下死点のリミットスイッチでタイマー設定作動して、カム切換えの閉回路可変容量形ピストンポンプはロッド室に連通して同時作動に連係する回路図。(6j図)上記の圧力負荷装置の作動油の入れ換え用の補助ギアポンプのフラッシングバルブの回路図。(6k図)上記の天秤上に設置する油圧ユニット装置の複動片ロッドシリンダーの回路図。圧力負荷装置の天秤上の複動片ロッド空気圧シリンダーは、ヘッド室にタンクから連通して電磁弁で圧入して、電磁弁での排出と電磁石と永久磁石の吸引と反発力で負荷と無負荷となり、ロッド室への油圧力は任意のものとする。The structure from the hydraulic multiple pump provided in the said fulcrum position, and the circuit diagram to each cylinder. (Fig. 6e) A closed-circuit variable displacement axial piston pump with two-way cam switching is an alternating vertical pump for the upper and lower chambers of the left and right rod cylinders of a reciprocating hydraulic transmission device. A multi-unit pump that combines a single high-pressure constant-capacity piston pump for replacement and a small closed-circuit variable-capacity piston pump that incorporates a flushing valve from a gear pump for a pressure load device. A perspective view of a five-unit pump that is driven by a squirrel-cage induction motor that is provided at symmetrical positions and transformed from a substation facility. (Fig. 6f) A simple circuit diagram from the pump to both rod cylinders with the same amount of oil in the upper and lower chambers interlocking with the vertical movement of the crank at the same position with the above fulcrum as the left and right. (Fig. 6g) Auxiliary pump for small constant displacement piston pump that discharges and press-fits from the time difference between two poppet-type solenoid valves, which replace the oil increase amount and hydraulic oil at the top and bottom dead center positions of the above rod cylinders. Circuit diagram. (Fig. 6h) A circuit diagram relating to the pump for the upper and lower chambers of the above-mentioned two double rod cylinders and one hydraulic oil replacement and oil increase amount pump. (Fig. 6i) The water pressure from the high water tank (building, etc.) of the above-mentioned pressure load device communicates with the head chamber of the double-acting single rod cylinder, and the two electromagnetic ball valves A circuit diagram in which a timer setting operation is performed by a limit switch, and a cam-switched closed circuit variable displacement piston pump communicates with a rod chamber and cooperates with simultaneous operation. (Fig. 6j) A circuit diagram of a flushing valve of an auxiliary gear pump for exchanging hydraulic oil in the pressure load device. (Fig. 6k) Circuit diagram of the double-acting single rod cylinder of the hydraulic unit installed on the balance. The double acting single rod pneumatic cylinder on the balance of the pressure load device communicates with the head chamber from the tank and press-fit with the solenoid valve, and with the solenoid valve, the electromagnet and the permanent magnet are attracted and the repulsive force is loaded and unloaded Therefore, the oil pressure to the rod chamber is arbitrary. 上記のクランクの上下死点リミットスイッチからの圧力負荷装置の各電磁弁と電磁石への回路図と往復動油圧伝達装置の作動油入れ換え用ポペット形電磁弁への回路図。The circuit diagram to each solenoid valve and electromagnet of the pressure load apparatus from the upper and lower dead center limit switch of said crank, and the circuit diagram to the poppet type solenoid valve for hydraulic fluid replacement | exchange of a reciprocating hydraulic pressure transmission apparatus.
図面と符号に基づいて説明するものとした。   The description will be made based on the drawings and reference numerals.
[図1]に記載の市街地の高速地下電気鉄道建設において、大深度の法規則の範囲の50m程の深い単線トンネル水平車線(3)とする。総延長を30kmに仮定した場合、地表部に設ける始発駅(1a)から終着駅を5駅7.5kmとして1駅に3乗降ホーム(4)を設けて、4乃至6本の電車が停車出来るものとして、連係する他社直流電車、バス路線の発着場所にして、ホームから地下水平区間の上りと下り区間(2)の勾配を各1km区間にして、加速と減速区間にして、駅間を曲がりの無い直線路の標準軌、或いはそれ以上のレール幅にして、変電設備から20000Vでき電して電車には最大で350km/hの加速が可能となる10両程の編成にして、各3車両に交流三相二極のVVVFインバータベクトル制御高出力かご形誘導モータ駆動300kW、車輪径700mm、1両6軸駆動の3両駆動車の18基のモータの減速ギア出力となるアルミ合金等を多用の軽い低床形電車を使用して、編成出力5400kW/hにして、下り1km間勾配で最大速度に加速して、回生ブレーキで減速して水平慣性運転から上り勾配で再び減速してホーム停車と成すものとして、変圧器、整流器、各種の制御機器を備えて、空気圧ブレーキを使用して、(e図)の車輪を小さくして軸受の高さを床部分にして、広いレール幅から車輪が側壁の座席(21、21a)下の床内に入る低床電車にして、直線路の下り勾配から加速と制動の回生発電からとスピードに対しての粘着力を良くする目的の先頭車両と中間と後尾の3両を車輪を一両に12輪の6軸を減速ギアモータ駆動にして7両はけん引客車の無駆動の8輪車にした、水平運転では250km/h乃至300km/hのスピードにして、停車から下り区間の加速の位置エネルギーを回生ブレーキで制動して、水平区間に至るほぼ700m間を回生発電区間にして、始発と終着駅等に設置する変電設備に戻して、低電圧に変圧して駆動する圧力負荷装置を有する天秤使用の重力発電装置(A)のベクトル制御インバータ電動機(31)に入力してクランク機構のフライホイール(28)で断続の電力を回転力とするものとした。 In the construction of the high-speed underground electric railway in the urban area described in [Fig. 1], it is assumed to be a single-track tunnel horizontal lane (3) that is about 50 meters deep, which is within the scope of the deep legal regulations. Assuming a total length of 30 km, the first station (1a) on the surface and the last station are 5 stations 7.5 km, and a 3rd-floor platform (4) is installed at one station, allowing 4 to 6 trains to stop. As for the other company's DC trains and bus routes that link to each other, the slopes of the ascending and descending sections (2) from the platform to the underground horizontal section (1 km each) are made into acceleration and deceleration sections, and turns between stations There is no standard track on a straight road, or a rail width larger than that, 20,000V can be generated from the substation, and the train can be accelerated up to 350km / h, forming a train of about 10 cars for each 3 vehicles AC three-phase two-pole VVVF inverter vector control High-power squirrel-cage induction motor drive 300kW, wheel diameter 700mm, aluminum alloy used as the reduction gear output of 18 motors of three-drive car with one 6-axis drive Using a light low-floor train, the train output is set to 5400kW / h and accelerated to the maximum speed with a slope of 1km downhill. Then, decelerate with the regenerative brake, decelerate again from the horizontal inertia operation with the up slope, and form a home stop, equipped with a transformer, rectifier, various control equipment, and using a pneumatic brake (e ) The wheel is made smaller and the bearing height is set to the floor, and from a wide rail width, the wheel enters a floor under the seats (21, 21a) on the side walls, and is accelerated from a downward slope on a straight road. From the regenerative power generation of braking and the leading vehicle for the purpose of improving the adhesion to speed, the middle and the rear 3 cars with one wheel and the 12 wheels 6 shafts driven by the reduction gear motor, 7 cars are tow passenger cars In a horizontal operation, the speed energy of 250km / h to 300km / h is reduced to a non-driven 8-wheeled vehicle. Return to the substation facilities installed at the first and last stations, etc. Input to the vector-controlled inverter motor (31) of a gravity power generator (A) using a balance that has a pressure load device that transforms and drives to a low voltage and rotates intermittent power with the flywheel (28) of the crank mechanism It was supposed to be power.
各駅間は直線路で同勾配の同距離の上り下りを交互にくり返すものとして、駅間での乗客の乗降時間は1分間程として、始発駅から5駅の終着駅間30kmは12分で結べるものとなり、直線速度を300km/hとすると1分で5kmのスピードとなり、1kmの下り勾配角度は20対1にして、その加速時間は20秒程のものとなり、停車する上り勾配、距離も同じものとして1km間を300km/hからの減速時間40秒程のものとして、7.5km間を2分で到着する構成のものとした。下り勾配の回生ブレーキ区間は10秒程となって、上り勾配での回生ブレーキは適宜のものであって、下りの発電エネルギーとほぼ相殺されるものとなり、圧力負荷装置を有する天秤使用の重力発電装置は、大きくした力を発電量に換える装置であり、その発電量は加速、水平慣性運転の大半の電力量を賄えるものとした。 Assuming that each station repeats up and down at the same gradient and the same distance alternately on a straight road, passengers' boarding time between stations is about 1 minute, 30 km between the first station and the last station is 5 minutes If the linear speed is 300 km / h, the speed will be 5 km in 1 minute, the 1 km descending slope angle will be 20 to 1, the acceleration time will be about 20 seconds, the ascending slope and distance to stop In the same way, it is assumed that the deceleration time is about 40 seconds from 300km / h for 1km, and that 7.5km arrives in 2 minutes. The regenerative braking section of the descending slope is about 10 seconds, the regenerative braking in the ascending slope is appropriate, and is almost offset with the descending power generation energy, and gravity power generation using a balance with a pressure load device The device is a device that converts the increased power into the amount of power generated, and the amount of power generated can cover most of the power for acceleration and horizontal inertia operation.
そして下り勾配区間の1km、1/20の角度のスタートから5秒前後の100mで150km/h程に加速して10秒程の300m乃至400m程の位置エネルギーから400km/hとなり、残り10秒程の700mの下り勾配区間は回生ブレーキ区間として、水平区間の平均速度を300km/hに抑える回生発電状態で減速して、次駅の上り地点で減速せず300km/hの慣性のままの運転走行して、複数の上り下り電車からの回生電力は各変電設備(31a)に戻されて、[特許第4367795号]等に詳細に記載のその断続電力をフライホイール(28)を設ける複数の電車の出力に見合う大きさの複数の圧力負荷装置を有する天秤使用の重力発電装置(A)は、10000V、ベクトル制御インバータ、交流三相、6極、5000kW/h程のかご形誘導電動機(31)で前記、往復動油圧伝達装置の(図6e)に記載の多連油圧ポンプの両ロッドシリンダー(25)上下室の二つの閉回路可変容量形ピストンポンプ(50)と圧力負荷装置の油圧シリンダー(49a)、空気圧シリンダー(5a図)、重し(47)の左右エアハイドロシリンダー(46)ロッド室への一つの閉回路可変容量形ピストンポンプ(50a)の油圧力として、天秤上の電磁石(34)、地面の永久磁石(34a)と連係して励磁からの反発と吸引力も負荷と無負荷(接地)の左右交互の100tの負荷から天秤比1対6で600tの大きくした力を左右の両ロッドシリンダーに載せて1m/sの上下速度に圧して、可変ピストンポンプの可変容量範囲内の増油量からの大きくした出力(複数の電車出力に見合う)を左右のクランク機構、フライホイールの中間軸のベクトル制御インバータ、交流三相、6極、かご形誘導発電機の発電量10000kW/hにして、再び変電設備(31a)で変圧してトロリ線に戻して、若しくは低電圧の商用電力に送電するものとした。長くした下段の圧力負荷(重し)天秤(22)と短くした上段の往復動天秤(24)は、地面に固定の支点から左右の両ロッドシリンダー(25)でリンク連結する上下2段の天秤であって、前記左右交互の負荷で天秤比で大きくした力は大きくした力を徐々に入力する装置の地面に設置の単動エアシリンダー(30)の排出から徐々に入力のものにして、[図5、6、7]に記載の各装備を制御する各電磁弁と詳細な回路図であって、発電機等の回転センサーからコントローラ(32a)でプログラムのベクトル制御インバータの交流三相6極かご形誘導発電機(32)を使用して、電車の出力、商用電力を負荷としてつり合わす出力の発電機を使用した。単線路の各電車のホームからのトンネル内400m程の位置から地下水平位置の700m間を回生発電区間として、その同時間に4トンネル内を走行する4電車の使用電力21400kW/hであって、回生発電量は各複数の重力発電装置(A)に戻されるものとなる。 Then, 1km in the descending slope section, accelerating to about 150km / h at 100m around 5 seconds from the start of 1/20 angle, the potential energy from about 300m to 400m in about 10 seconds becomes 400km / h, and the remaining 10 seconds The 700m descending slope section is the regenerative braking section, decelerating in the regenerative power generation state that keeps the average speed of the horizontal section at 300km / h, and driving with the inertia of 300km / h without decelerating at the next station ascending point Then, regenerative power from a plurality of up and down trains is returned to each substation (31a), and the intermittent power described in detail in [Patent No. 4376795] etc. is provided with a plurality of trains provided with flywheels (28). A gravitational power generator (A) using a balance with multiple pressure load devices sized to match the output of the 10000V, vector control inverter, AC three-phase, 6 poles, 5,000kW / h cage induction motor (31) The double rod system of the multiple hydraulic pump described in the reciprocating hydraulic transmission device (FIG. 6e). Two closed-circuit variable displacement piston pumps (50) in the upper and lower chambers (50), hydraulic cylinder (49a), pneumatic cylinder (Fig. 5a), right and left air-hydro cylinder (46) with weight (47) The hydraulic pressure of one closed circuit variable displacement piston pump (50a) to the rod chamber is linked to the electromagnet (34) on the balance and the permanent magnet (34a) on the balance. Within the variable displacement range of the variable piston pump, a force increased by 600 t with a balance ratio of 1: 6 on both left and right rod cylinders is pressed to a vertical speed of 1 m / s from a load of 100 tons on the left and right of the load (grounding). Increased output from the amount of oil increase (comparable to multiple train outputs) left and right crank mechanism, flywheel middle shaft vector control inverter, AC three-phase, 6 pole, squirrel-cage induction generator 10000kW / h again, the substation equipment ( In 31a), it was transformed and returned to the trolley line, or transmitted to low-voltage commercial power. The lengthened lower pressure load (weight) balance (22) and the shortened upper reciprocating balance (24) are two-stage upper and lower balances that are linked to the ground by the left and right rod cylinders (25) from a fixed fulcrum. The force increased by the balance ratio with the left and right alternating loads is gradually input from the discharge of the single-acting air cylinder (30) installed on the ground of the device that gradually inputs the increased force, 5, 6, 7] is a detailed circuit diagram and each solenoid valve for controlling each equipment described in FIG. 5, from a rotation sensor such as a generator to a controller (32 a) with a vector control inverter AC three-phase six pole Using a squirrel-cage induction generator (32), an output generator that balances the output of a train and commercial power as a load was used. The regenerative power generation section is between 700m in the tunnel from the position of 400m in the tunnel from the platform of each train on the single track, and the electric power used by 4 trains running in 4 tunnels at the same time is 21400kW / h, The regenerative power generation amount is returned to each of the plurality of gravity power generation devices (A).
運行の方法の一案として、駅間の所要時間を乗降を含めて3分として始発駅の第1駅(1a)から2列車(ペア運行)が次駅の第2駅(1b)に6分で到着して、次駅で待機の2列車が直ちに反対の始発駅(1a)に発車して、第2駅から中間駅の第3駅(1c)に6分で到着して、第3駅の待機の2列車は6分で第2駅に到着して待機する。第3駅から第4駅(1d)へ、待機の列車は第3駅へ、第4駅から終着駅の第5駅へ運行の構成のものとして、始発駅の第1駅から第3駅間と第5駅の終着駅を始発として第3駅間は同時発車にして、第3駅は等距離の中心位置にして、上り、下り列車の時間調整と待機状態とする重要駅となり、上り下りの2列車の先の列車の出発時間に乗車すると3分で次の駅に到着して、乗り遅れても次の列車で6分で到着するものとなる。始発1駅から終着5駅の所要時間は各駅間6分で24乃至25分のものとなって、単独の3分間隔運転ではその半分の12分の所要時間となる。 As a plan of operation, the required time between stations is 3 minutes including getting on and off, and 2 trains (pair operation) from the first station (1a) of the first station to the second station (1b) of the next station is 6 minutes 2 trains waiting at the next station immediately depart to the opposite first station (1a) and arrive at the third station (1c) of the middle station from the second station in 6 minutes, the third station The two waiting trains arrive at the second station in 6 minutes and wait. From the 3rd station to the 4th station (1d), the waiting train is the 3rd station, the 4th station to the 5th station of the terminal station, the first station of the first station to the 3rd station And the 5th station at the end of the station, the 3rd station will start at the same time, the 3rd station will be the center of the equidistant, and it will be an important station for time adjustment and standby state of the up and down trains, up and down If you get on the departure time of the train ahead of 2 trains, you will arrive at the next station in 3 minutes, and even if you miss the train, you will arrive in 6 minutes on the next train. The time required from the first station to the last 5 stations is 24 to 25 minutes in 6 minutes between each station, and in a single 3-minute operation, it takes half of that time to be 12 minutes.
高速鉄道であり、線路幅は標準軌、それ以上のレール幅にして、所要乗客数からの客車数、又各パーツ部分品等を他の鉄道車両と共通仕様のものにして、軽いアルミ合金を使用して、高加速に安定させる低床形電車(7)にして、下り加速区間での左右手すりスタンド(19)、吊り手での加速度に耐えるものにして、トンネル区間の運行から窓等は必要なくなり、乗降ドア等の幅、位置が自由な設計のものとなり、単線路、地表駅は構内のものにして、風の入らない小口径トンネル内には、鳥、犬、猫等が入れないものにして、アクシデント等に対処方法は完全なものでなければならなくて、コントロール室からの指示と各トンネルの安全装置の確認指示と2駅間の運転手は双方で連係確認して、停車から一方の電車がスタートすると片方の電車は自動的に電源が切れる二重三重の閉そく構成のものとして、トンネル内での地震停車、又トンネル線路から徒歩による脱出等も考えて、バッテリー設備、空気圧タンク、送風設備、漏水等と湿度、浸水等の水圧ポンプも具える万全のものにしての運行とする。 It is a high-speed railway, the track width is a standard gauge, a rail width larger than that, the number of passenger cars from the required number of passengers, each part part etc. is of the same specification as other railway vehicles, and light aluminum alloy Use a low-floor train (7) that stabilizes at high acceleration, make it stand up to the left and right handrail stand (19) in the descending acceleration section, acceleration in the hanging hand, from the operation of the tunnel section to the window etc. No need, width and position of entry / exit doors are designed freely, single track, surface station should be on premises, and birds, dogs, cats etc. can not enter in small diameter tunnel where wind does not enter In order to deal with accidents, etc., the handling method must be complete, and the instructions from the control room, the confirmation instructions for the safety devices of each tunnel, and the driver between the two stations should confirm the cooperation between the two and stop When one train starts from one train Is a double-triple closed structure that automatically turns off the power, considering an earthquake stop in the tunnel, escape from the tunnel line on foot, etc., battery equipment, pneumatic tank, blower equipment, water leakage etc. and humidity, The operation will be fully equipped with a hydraulic pump such as submersion.
単線は複線トンネル掘削と比べて費用が少なくなって、各駅待機ホームを2本多く設ける費用は増えるものではあるが大深度にすることで私有地の買い入れ、地下権等の使用許可等の費用が僅かなものとなって、今まで不可能と思われていた直線での線路運行が可能となるもので、又短期間での操業となり、設置する圧力負荷装置を有する天秤使用の重力発電装置(A)で使用電力量はほぼ賄えて、各駅はハブ機能のものとして既存の電鉄とは構造から相互乗り入れは出来ないが、ホームで乗り換えて、又ホームでの乗降の路線バス等と出来るだけ連絡連係して、単線路運行を特長の3分から4分で一区間に到着出来る構成のものとした。 The cost of a single track is lower than that of double-track tunnel excavation, and the cost of installing two more waiting stations for each station is increased, but the cost of purchasing private land, permitting use of underground rights, etc. is small by increasing the depth. As a result, it is possible to operate the track on a straight line, which has been considered impossible until now, and it will be operated in a short period of time. ) The power consumption can be almost covered, and each station is a hub function and cannot be connected to the existing electric railway because of its structure. However, it is possible to transfer at the platform, or to connect with the platform bus for getting on and off at the platform as much as possible. Thus, the single line operation can be reached in one section in 3 to 4 minutes.
(e図)に記載の回転誘導モータ低床形電車の単線路の直線広軌レールからトンネル幅6.0m、(f図)の磁気浮上リニアモータ電車では車輪が無いため5.0m、(g図)のトンネルは、上下に分割して上下幅を8.0m程にして2車線に分割の低床形磁気浮上リニアモータ電車(床高2.5m程)、予定5駅の左右地表から下り、水平区間の中間部まで8基のシールドマシンで掘削して、各駅ホーム建設と同時施工として、3年で完成出来るものとして、直線コースは私有地を含むものでもあり50mより深いトンネル区間、勾配から駅舎は極力公有地を使用するものとした。
工費において、各上下掘削4工区と5駅舎と各3ホームづつのものと、高速電車60両のものであり、
シールド全線と線路、電気設備等の費用と電車製作費と駅舎等と私有地等の買い入れ費用として、
シールドトンネル施工8工区、電車製作、駅舎等5工区、その他は事業者で行うものとする。
The rotary induction motor described in Fig. (E) has a tunnel width of 6.0m from the single-line straight-gauge rail of the low-floor train, and the magnetically levitated linear motor train (Fig. F) has 5.0m (Fig. G) because there are no wheels. The tunnel is divided into two lanes, divided into two lanes with a vertical width of about 8.0m, and the tunnel is descended from the left and right ground surfaces of the planned five stations, in the middle of the horizontal section. As the construction of each station platform can be completed at the same time as the construction of each station platform, it can be completed in 3 years. The straight course includes private land, and the tunnel section is deeper than 50m. Was supposed to be used.
In terms of construction costs, each of the four up-and-down excavation zones, five station buildings and three platforms each, and 60 high-speed trains,
Costs for all shield lines, tracks, electrical equipment, train production costs, station buildings, etc.
8 tunnels for shield tunnel construction, train production, 5 zones for station building, etc., etc. shall be carried out by the operator.
(f図)の単線路の小口径トンネルにおいての車上一次方式の磁気浮上リニアモータ電車(6)の採用は、回転誘導モータ低床電車と比較して、トンネル内の保守、軌道、車両において、現在では高価格のものとなり、しかし磁気浮上のリニアモータ電車(6)は、小型に出来るメリットがあり、地上から架線部(パンタグラフ)の上下幅を3.3m程の車体に圧縮して、または地上部にコレクターシューからの集電と天井の冷房設備等をフロア側壁等の座席(21b)下に配置しても良くて、上下より横幅の広い形状の車体が可能となって、屋根にはパンタグラフと風圧板(55)のみのものにして、磁気浮上構成枠材(8c)からトロリ線まで3.3m以下の車両が可能となり、客車には窓の必要性が無くて、床からの2列の手すりスタンドと左右側壁の手すりと吊り手の乗降を優先の客車構成にして、身障者用の座席(21b)はフロア床上の側壁等に設ける冷暖房装置と制御機器(変圧設備)の高さのカバー部に併用した。 In the single-track small-diameter tunnel shown in Fig. (F), the on-vehicle primary magnetic levitation linear motor train (6) is used in tunnel maintenance, tracks, and vehicles compared to the rotary induction motor low-floor train. However, now it is expensive, but the magnetically levitated linear motor train (6) has the merit that it can be made small, compressing the vertical width of the overhead wire part (pantograph) from the ground to a car body of about 3.3m, or Current collectors from the collector shoe and cooling equipment for the ceiling may be placed under the seat (21b) such as the floor side wall on the ground. By using only the pantograph and wind pressure plate (55), it is possible to have a vehicle of 3.3m or less from the magnetically levitated component frame material (8c) to the trolley line, and there is no need for windows in the passenger car, and two rows from the floor Handrail stand and left and right handrails and hanging A passenger car with priority on getting on and off of the rider was used, and the seat (21b) for the handicapped was used in combination with the cooling / heating device provided on the side wall on the floor and the cover of the control equipment (transformer).
そして(g図)の被覆コンクリートセグメント(8)等を含むシールドトンネル幅8.0mで上下に分割の複線運行が可能となって、部分鋼製セグメント(8a)と上下分割の鋼製枠材(8b)は接合固定して、既存のコンクリート受台と違って、簡単な陸上施工の薄い適宜の間隔の完全固定の車体受台となり、その台は同時にリニア推進と磁気浮上構成枠材(8c)と一体となるものとして、上下線は遮断して、狭いトンネルの直線高速走行による風圧を鋼製セグメント(8a)壁面と上下分割鋼製枠材(8b)を上下で支える鋼材に取り付ける風圧板(54)は(歪なトンネル形状を反対走行に対応の三角形状の角度調整の出来る板)、板に当たる風力を上と左右から車体に向けて空気圧で圧して揺れを抑える構造となって、車体屋根とトンネルとの間隔も一定のものとする車体屋根風圧板(55)を任意の間隔で設けて、車両全長を180mに仮定して、側面を20m程、屋根を10m程の間隔で両板で30cm程の間隔に絞ると300km/hの速度ではおよそ0.05Mpaで上と左右から車体を平均の圧力で押さえることになる。又(e図)の回転モータ電車では車輪を設けるため重い車体となって、レールと床下に空気の流れを少なくする板を設けて、あえてトンネルと車体に風圧板を設けないものとした。
磁気浮上、車輪式リニアリダクションモータ電車の技術は公開されて各地で実用化されたものであり、本発明の磁気浮上リニアモータ電車は、車両とトンネルと出力構成は適宜のものからにして、回生ブレーキ等も同様のものであって、大深度トンネル内の小口径にする単線、複線路の小型の改造車両設計にも何ら支障の無いものである。地上一次方式等の超電導浮上リニアモータ電車は近未来で実用化の進むものであって、500km/hのスピードの営業運転の実績の問題となっていて,まずは適当な短い路線の営業実績が必要とされる。
And, the shield tunnel width including the covered concrete segment (8) in Fig. (G) is 8.0m, and it is possible to operate a double-line splitting up and down, with a partial steel segment (8a) and a vertically divided steel frame (8b ) Is bonded and fixed, and unlike conventional concrete cradles, it becomes a thin and fully fixed body cradle for easy construction on the ground, and the cradle can be used with linear propulsion and magnetic levitation component frame (8c) at the same time. As a unit, wind pressure plate (54) that cuts off the vertical lines and attaches the wind pressure due to straight high speed travel in a narrow tunnel to the steel material that supports the steel segment (8a) wall surface and the upper and lower divided steel frame material (8b) vertically ) (A plate with a tunable tunnel shape that can adjust the angle of the triangle corresponding to the opposite travel), the wind force hitting the plate is directed against the body from above and from the left and right by the air pressure to suppress the shaking, The distance from the tunnel is also constant Car body roof wind pressure plate (55) is provided at an arbitrary interval, assuming that the total length of the vehicle is 180m, the side is about 20m, the roof is about 10m, and the distance between both plates is about 30cm. At a speed of / h, the body is held at an average pressure of 0.05Mpa from above and from the left and right. In addition, the rotating motor train shown in Fig. (E) is a heavy vehicle body because of the provision of wheels, and a plate that reduces the flow of air is provided under the rail and the floor, and a wind pressure plate is not provided on the tunnel and vehicle body.
The technology of magnetic levitation and wheel type linear reduction motor train has been publicized and put into practical use in various places. The magnetic levitation linear motor train of the present invention can be The brakes and the like are also the same, and there is no problem in designing a small-sized modified vehicle having a small diameter in a deep tunnel and a single line or a double line. Superconducting levitation linear motor trains, such as the primary ground system, will be put into practical use in the near future, and it has become a problem with the results of commercial operation at a speed of 500 km / h. It is said.
電車の乗降ステップは、本発明の高速地下鉄に限らず電車等の客車が停車して、乗降スライドドア(12)の床とホーム(10)との隙間(15)と段差は各鉄道会社まちまちであり、キャリーバック所持者、乳母車、車椅子、身障者等が安全確実に速やかに乗降の出来るドア(12、12a)の開閉と同時に自動設置となるステップ(11、11a)を設けるものとした。
ホームとの隙間(15)と段差に合わす一枚の薄い金属板、又はゴム、プラスチック材等のステップ(11)をドアレール前面で自動回動からのものにして、ドア収納部の車体側面とドア前面のスペースにドアの開閉と連動して同時にステップが連動して上下回動となって、ドアの開閉直線距離とステップの回動角度に合わす緩いオスネジ加工のネジシャフト(13)にして、収納部(16)内のドアの下部にチューブの緩いメスネジ部(14)を接合して、左右のドアレール前部の左右収納部のスペース部分の床高さの位置をステップの左右軸受(14a)にして、オスネジシャフト凸部(18a)をチューブメスネジ凹部(18)に嵌入係合して、そのチューブネジは、ドアを開けてステップを下ろして乗降からの車体の揺れに対応する遊び部分を設けるネジ加工にして(エンド部分のかみ合いのオスネジ部を無くして、又バネでホーム床に押さえるものとして)、ステップ(11)の左右連結部をオスネジシリンダーシャフト(13)に固定して、ドアを開けると同時にステップは回転床となって、閉めると同時にステップはドア前部に格納となる構成のものとした。各社まちまちとなる任意の形のステップを既存の車両に改造してからのものとして、或いは新車両に取り付けることにした。
The boarding / exiting step of the train is not limited to the high-speed subway of the present invention, and passenger cars such as trains stop. The gap (15) between the floor of the boarding / exiting sliding door (12) and the platform (10) (15) and steps are different in each railway company. Yes, there will be a step (11, 11a) that will be automatically installed at the same time as the opening and closing of the door (12, 12a), which allows carry-back holders, baby carriages, wheelchairs, and disabled people to get on and off safely and quickly.
Make a step (11) made of a thin metal plate or rubber, plastic material, etc. that fits the gap (15) and the step with the platform from the automatic rotation on the front of the door rail, and the side of the door housing and the door At the same time as the opening and closing of the door in the front space, the step is simultaneously linked and turned up and down, and it is stored as a loose male threaded screw shaft (13) that matches the door opening and closing linear distance and step turning angle Join the female screw part (14) with a loose tube to the lower part of the door in the part (16), and set the floor height position of the space part of the left and right storage part at the front of the left and right door rails to the left and right bearings (14a) of the step. The male screw shaft convex part (18a) is fitted and engaged with the tube female screw concave part (18), and the tube screw opens the door and lowers the step to provide a play portion corresponding to the shaking of the vehicle body from getting on and off. Addition At the same time as opening the door, fixing the left and right connecting parts of step (11) to the male screw cylinder shaft (13) The step is a rotating floor, and the step is stored at the front of the door at the same time as it is closed. The company decided to modify the steps in any form that would vary from company to company, or install it on a new vehicle.
停車、減速用の空気圧ブレーキに使用の空気圧機器のシリンダー(17)の或いは電動機器を床下、又はドア収納部に設けての開閉と前後の連動のものとして、又本発明の単線で直線路の全ホームと電車の床が一定の高さのものでは、フレキシブルな薄い金属板、又は硬質ゴム、プラスチック材等のステップ(11a)を車両ドア床下からドアの開閉機器と連動の空気圧シリンダー(17)で出入する方法、高速電車に限らずに乗降ステップは風圧を受けない車体側面と一体となり、又ドアを開ける前にステップを出して、ドアを閉めてからその直前から床下に格納する構成のものとして、風圧を受けない構造のものとする。 The cylinder (17) of pneumatic equipment used for stopping and decelerating pneumatic brakes, or as an interlocking mechanism for opening and closing with an electric equipment under the floor or door storage, and for the straight road of the present invention If the platform and the floor of the train are of a certain height, a pneumatic cylinder (17) that links a flexible thin metal plate or a step (11a) such as hard rubber or plastic material from the bottom of the vehicle door to the door opening / closing device The entry / exit step is integrated with the side of the vehicle body not subject to wind pressure, not limited to high-speed trains, and the step is taken before opening the door, and the door is closed and stored under the floor immediately before closing Assuming that the structure does not receive wind pressure.
停車からの乗降において、高速運転では乗降時間を安全確実に短縮しなければならなくて、手すりスタンド(ハンドレール)と上記のドアステップ(乗降ステップ)は、乗客の流れがスムーズとなる床からの手すりスタンド(19)からとドアの開閉に連動のホームとの隙間(15)と段差を無くすステップ(11、11a)から乗客全体が乗降が楽なものとなって、トンネル内走行から窓の必要が無くて、必要数の小窓(20)を設けて、又乗車から3乃至4分で降車となる構成から、前記低床形回転モータ電車(7)の車輪のカバー部分等を身障者用の必要数の座席(21、21a)にして、屋根の冷房設備等を又磁気浮上低床リニアモータ電車の各制御機器等をフロアの床側壁の座席(21b)に応用して、それ以外のフロアは、吊り手等と左右側壁に手すり(19b)(ハンドレール)とフロアを側壁に対して平行の客車幅を中央から2分して又は3分割の幅にして、適宜の長さ(1.2mから1.5m程)から床から尻又は腰高程の手すりスタンドを乗降ドア(12、12a)近辺を除いた位置に適宜の本数を設けるものとした。或いは、座席の替わりとなる手すりスタンド(19a)を走行に正対する方向に部分的に設けて高速走行の加速重力を体の腰高と吊り手を持って受け流すものにして、座席を無くすフロア床から乗降がスムーズと成る手すりスタンド(19)を設けて、自動的にドアに連動して乗降ステップが上下回動(11)、床下出入(11a)となる乗降がスムーズとなる高速地下鉄道に限らず通勤電車、身障者用の自動車、路線バス等にも採用のものとなる。 In getting on and off from a stop, it is necessary to reduce the time of getting on and off safely in high-speed driving, and the handrail stand (handrail) and the above door step (getting on and off) are from the floor where the flow of passengers is smooth. From the railing stand (19) and the gap (15) between the platform linked to the opening and closing of the door and the step (11, 11a) that eliminates the step, the entire passenger can easily get on and off, and the window is required from traveling in the tunnel There are no small windows (20) required, and it is possible to get off in 3 to 4 minutes from the boarding. Apply the required number of seats (21, 21a) , air conditioning equipment for the roof, and control devices for the magnetically levitated low-floor linear motor train to the seats (21b) on the floor side walls of the floor. The handrails on the left and right side walls (19b) ( Handrails) and the floor parallel to the side walls are divided into two parts from the center or divided into three parts, and handrails from the floor to the hips or hips from the appropriate length (about 1.2m to 1.5m) An appropriate number of stands are provided at positions excluding the vicinity of the entrance / exit doors (12, 12a). Alternatively, a handrail stand (19a) that replaces the seat is partially provided in the direction directly opposite to the run so that the acceleration gravity of the high-speed run can be carried with the waist of the body and the suspension hand, so that the seat is removed from the floor floor. It is not limited to a high-speed subway that provides a handrail stand (19) that makes boarding and exiting smoothly and that automatically moves in and out of the door (11) and moves under the floor (11a). It will also be used in commuter trains, cars for the disabled, and buses.
1、地表駅 1a 始発駅 1b 次駅 1c 中間駅

2、上り下りシールドトンネル車線
3、水平車線
4、プラットホーム
5、線路
6、単線路の低床形磁気浮上リニアモータ電車 6a 複線路の低床形磁気浮上リニアモータ電車
7、低床形の回転モータ電車
8、コンクリートセグメント 8a、鋼製セグメント 8b、鋼製枠材 8c、磁気浮上構成枠材
9、地表部
10、プラットホーム床
11、乗降ステップ 11a 電車床下にスライドの乗降ステップ
12、左右開閉ドア 12a 高速電車等の風圧を受けない一枚ドア
13、オスネジシャフト(ネジシリンダー)
14、メスネジ部 14a 軸受
15、ホームと電車の隙間
16、ドアの収納部
17、空気圧シリンダー等
18、メスネジの凹部 18a オスネジの凸部
19、床の平行手すりスタンド
19a、床の体を載せる手すりスタンド
19b 側壁の手すり
20、小窓
21、側壁向きの駆動モータの無い2軸車輪上の座席 21a、 進行方向の駆動モータ上の3軸車輪上の座席 21b、磁気浮上低床形リニアモータ電車、冷暖房機器、制御機器(変圧器、整流器等)のカバー上部の座席 (A)圧力負荷装置を有する天秤使用の重力発電装置
22、圧力負荷天秤 23、クランク 24、往復動天秤 25、上下室等油量両ロッドシリンダー 26、クランクの連結部 27、増速ギアケース 28、フライホイール 29、圧力負荷装置の地面からのフレーム 29a、調整フレーム 30、負荷天秤を支えて徐々に大きくした力を入力する単動空気圧シリンダー 31、電動機 31a、変電所設備 32、発電機 32a、コントローラ 33、各負荷シリンダー 34、電磁石、 34a、永久磁石 34b、励磁調整器 34cリレー 34d、リミットスイッチ 35、水圧シリンダー
36、 作動油管 37、水冷のラジエータ 38、多連油圧ポンプ 39、支点位置の固定フレーム 40、水圧管 41、タイマー 42、電磁水圧圧入ボール弁 42a、電磁水圧排出ボール弁 43、しぼり弁 44、空気圧管 44a、貯蔵タンク 44b、空気圧コンプレッサー 45、単動空気シリンダーポペット形電磁圧入弁 45a、単動空気圧シリンダーポペット形電磁排出弁 45b、複動空気圧シリンダーポペット形電磁圧入弁 45c、複動空気圧シリンダーポペット形電磁排出弁 46、エアハイドロシリンダー 47、重し(鉄材、コンクリート、水タンク等) 47a、重しフレーム 48、電動バルブ 48a、高所への高圧水圧ポンプ 49、油圧ポンプユニットの作動油タンク 49a、油圧駆動複動片ロッドシリンダー 49b、油圧可変容量形ピストンポンプ 50、多連油圧ポンプ内の両ロッドシリンダー用の上下2連カム作動の閉回路可変容量ピストンポンプ 50a、圧力負荷装置のエアハイドロ用の1連カム作動の小型閉回路可変容量ピストンポンプ 50b、両ロッドシリンダー用の増油量、作動油の入れ換え用の高圧力定容量形ピストンポンプ 50c、エアハイドロ等用の増油量、作動油の入れ換え用のギアポンプ 51、両ロッドシリンダー上下室の定容量形ピストンポンプからタイマー設定(閉回路)の増減油量ポペット形電磁弁 51a、タイマー設定(閉回路)の入れ換え用排出ポペット形電磁弁 52、油圧ユニットの電磁切換弁 53、補助(予備)ポペット形電磁弁 54、トンネルに設ける緩い三角構造の風圧板 55、車体に設ける風圧板
1, ground surface station 1a first station 1b next station 1c intermediate station

2, up and down shield tunnel lane
3, horizontal lane
4, platform
5, track
6. Single-line low-floor magnetic levitation linear motor train 6a Double-floor low-floor magnetic levitation linear motor train
7, low floor rotary motor train
8, concrete segment 8a, steel segment 8b, steel frame material 8c, magnetic levitation component frame material
9, surface part
10, platform floor
11. Steps to get on and off 11a Steps to get on and off the slide under the train floor
12, left and right doors 12a Single door that is not subject to wind pressure such as high-speed trains
13, male screw shaft (screw cylinder)
14, female threaded part 14a bearing
15, gap between home and train
16, door storage
17, pneumatic cylinder, etc.
18, female screw recess 18a male screw protrusion
19, parallel railing stand on the floor
19a, a handrail stand on which to place the body of the floor
19b Side railing
20, small window
21, Seat 21a on 2-axis wheel without drive motor for side wall, Seat 21b on 3-axis wheel on drive motor in traveling direction, Magnetically levitated low floor linear motor train, Air conditioning equipment, Control equipment (transformer, (A) Gravity generator using a balance with a pressure load device
22, Pressure load balance 23, Crank 24, Reciprocating balance 25, Oil quantity double rod cylinder 26 in upper and lower chambers, Crank connection 27, Speed increasing gear case 28, Flywheel 29, Frame 29a from pressure load device ground , Adjustment frame 30, Single-acting pneumatic cylinder 31 that supports load balance and gradually increases force, Electric motor 31a, Substation equipment 32, Generator 32a, Controller 33, Each load cylinder 34, Electromagnet, 34a, Permanent magnet 34b, excitation adjuster 34c relay 34d, limit switch 35, hydraulic cylinder
36, hydraulic oil pipe 37, water-cooled radiator 38, multiple hydraulic pump 39, fixed frame 40 at fulcrum position, hydraulic pipe 41, timer 42, electromagnetic water pressure injection ball valve 42a, electromagnetic water pressure discharge ball valve 43, throttle valve 44, air pressure Pipe 44a, Storage tank 44b, Pneumatic compressor 45, Single-acting air cylinder poppet-type electromagnetic press-in valve 45a, Single-acting pneumatic cylinder poppet-type electromagnetic discharge valve 45b, Double-acting pneumatic cylinder poppet-type electromagnetic press-in valve 45c, Double-acting pneumatic cylinder poppet Electromagnetic discharge valve 46, air-hydro cylinder 47, weight (iron material, concrete, water tank, etc.) 47a, weight frame 48, electric valve 48a, high-pressure hydraulic pump 49 to high place, hydraulic oil tank 49a of hydraulic pump unit, Hydraulically driven double acting single rod cylinder 49b, hydraulic variable displacement piston pump 50, double upper and lower for double rod cylinder in multiple hydraulic pump Closed-circuit variable displacement piston pump 50a operated by a hydraulic system, single cam-operated small closed-circuit variable displacement piston pump 50b for air-hydraulic pressure load device, oil increase for double rod cylinder, high pressure for replacement of hydraulic oil Constant displacement piston pump 50c, oil increase amount for air-hydro, etc., gear pump 51 for exchanging hydraulic oil, constant displacement piston pump in the upper and lower chambers of both rod cylinders, timer setting (closed circuit) increase / decrease oil amount poppet type electromagnetic Valve 51a, discharge poppet type solenoid valve 52 for timer setting (closed circuit) replacement, solenoid valve 53 for hydraulic unit, auxiliary (spare) poppet type solenoid valve 54, wind pressure plate 55 with a loose triangular structure installed in the tunnel, Wind pressure plate to be installed

Claims (4)

  1. 市街地、海底下等の公有地、民有地をまたぐ高速地下電気鉄道において、
    大深度の小口径トンネル(2)の単線の駅間を直線路の標準軌、或いはそれ以上のレール幅にして、地表部に設ける始発駅と終着駅と複数の中間駅に1駅当たり複数のホーム(4)を設ける各駅間は、ホームから同じ下り上り(2)勾配、同距離で水平区間も同じ深さ、長さの構造にして、複数のホームの一部を地上路面電車との連絡ホーム、若しくは路線バスの連絡ホームにして、単線の駅間の折り返し運行を基本とするため一駅間の完成で営業運転の出来るものであって、
    電車には、下りの加速区間で400km/hの加速が可能となる各制御機器を具備する交流高出力回転ベクトル制御インバータVVVF誘導モータ駆動の低床形電車(7)を使用して(より小口径トンネルにするには磁気浮上の低床リニアモータ電車を使用する)、下り勾配で最大速度に加速してその区間の位置エネルギーの制動は、回生ブレーキとして、
    そして、その回生電力は、複数の駅に設置する変電所設備(31a)に戻して、低電圧で各制御機器を具備して駆動する圧力負荷装置を有する天秤使用の重力発電装置(A)の往復動油圧伝達装置と圧力負荷装置の各シリンダー用の主ポンプ(50、50a)と増油量とフラッシング用の補助ポンプ(50b、50c)を一つにまとめる多連油圧ポンプ(38)のベクトル制御インバータ電動機(31)の駆動電力に入力して、
    圧力負荷装置は、一つの閉回路油圧可変容量形ピストンポンプ(50a)で左右の負荷天秤下(22)に設置する重し(47)を左右交互に負荷するエアハイドロシリンダー(46)、若しくは油圧ユニット、空気圧シリンダー、或いは高所からの水圧を利用する水圧シリンダーのいずれかの力を永久磁石(34a)と電磁石(34)との吸引力と反発力を併用して負荷するものであって、
    往復動油圧伝達装置は、負荷天秤(22)と支点を挟み左右両ロッドシリンダー(25)で左右対称でリンク連結する往復動天秤(24)と長さの比で大きくした力を両ロッドシリンダー(25)に伝えて、上下室間を二つの閉回路油圧可変容量形ピストンポンプ(50)で連通して往復駆動するものであり、そして左右の負荷天秤を支えて徐々に入力する装置の地面に設置する単動エアシリンダー(30)の排出から大きくした力は、徐々に入力のものにして、同時に補助ポンプ(50b)から大きくした力に見合う可変容量分を徐々に増油量にして、回転出力は増して、往復動天秤(24)と連結して両ロッドシリンダー(25)と連動のクランク機構の増速ギアケース(27)の左右クランクギアと係合の中間ギアシャフトのフライホイール(28)とベクトル制御インバータ発電機(32)に入力から出力となって、発電量は複数の電車の使用電力量に見合うものにして再び交流高電圧に変圧して架線にき電して、又は商用電力に送電するものとして、前記水平区間と上り勾配からのホーム間を前記の下り勾配区間の回生電力と重力発電装置(A)の発電量で地表のホームまで走行出来て、単線路をほぼ3乃至4分間隔で発車する各駅間の複数の電車の電力量は、大半が圧力負荷装置を有する天秤使用の重力発電装置(A)からのものにして、
    その運行は、各駅の複数のホーム(4)から始発駅(1a)の電車が次駅(1b)に到着して、次駅(1b)の待機電車は始発駅(1a)に発車して、次駅(1b)の到着電車は直ちに中間駅(1c)へ発車して、到着後中間駅(1c)に待機する電車は次駅(1b)に発車する単線走行として、始発駅から終着駅間の各駅停車と各駅単位の折り返し運行ダイヤにして、そして、終着駅を始発として、前記始発駅(1a)の発車と同時に発車する運行形態にして、そして始発駅(1a)から出発して終着駅で降りる人、或いは終着駅から出発する反対の人は乗り換えなしの各駅停車のものとなって、各それぞれの駅で乗車の人は、常に待機中の電車若しくはホームに到着する上り下りのいずれかの電車を待つものであって、その待ち時間は駅間の走行時間からのものとなり、停車からの乗客の乗降は、座席を無くして乗客の流れがスムーズとなる床からの手すりスタンド(19)を設けて、ドアの開閉に自動連動の乗降ステップ(11、11a)を設けてホームとの隙間と段差をなくして、車椅子、乳母車等の不自由の無い速やかな乗降のものにして、停車から発車の時間的な余裕を持てるものとなって、そして単線路運行のため停車ホーム(4)のレール(5)には、駅間トンネルに一電車しか入れない仕組みの安全装置を設けて、地表駅間をほぼ同じ下り、水平区間、上りの距離構成と広いレール幅の単線の駅間を直線路とする小口径大深度トンネル(2)で結び、前記下り区間の回生電力を有効利用の複数の圧力負荷装置を有する天秤使用の重力発電装置(A)は、交流高出力回転誘導モータ駆動の複数の低床形電車(7)の走行電力の大半を賄うことが出来る高速地下電気鉄道。
    In high-speed underground electric railways that straddle urban areas, public land under the seabed and private land,
    A large-depth, small-diameter tunnel (2) with a single rail between the single-track stations, or a rail width larger than that, and multiple stations per station at the first and last stations and multiple intermediate stations on the surface. Each station where the platform (4) is installed has the same descending (2) gradient from the platform, the same distance and the same depth and length in the horizontal section , and some of the platforms are connected to the ground tram It can be used as a home or commuter platform for local buses, and it can be operated in business by completing one station because it is based on the return service between single stations.
    The train uses a low-floor train (7) driven by an AC high-output rotation vector control inverter VVVF induction motor equipped with each control device capable of 400km / h acceleration in the downward acceleration section (smaller) To make a tunnel tunnel, use a low-floor linear motor train with magnetic levitation), accelerate to the maximum speed with a downward slope, and brake the potential energy in that section as a regenerative brake ,
    Then, the regenerative power is returned to the substation equipment (31a) installed at a plurality of stations, and the balance-use gravity power generation device (A) having a pressure load device that is driven by each control device at a low voltage is used. Vector of the main hydraulic pump (50, 50a) for each cylinder of the reciprocating hydraulic transmission device and pressure load device and the multiple hydraulic pump (38) that combines the oil increase and flushing auxiliary pumps (50b, 50c). Input to the drive power of the control inverter motor (31),
    The pressure load device is an air-hydro cylinder (46) that alternately loads left and right weights (47) installed on the left and right load balance (22) with one closed circuit hydraulic variable displacement piston pump (50a), or hydraulic pressure A unit, a pneumatic cylinder, or a hydraulic cylinder that uses hydraulic pressure from a high place is loaded with the attractive force and repulsive force of the permanent magnet (34a) and electromagnet (34),
    The reciprocating hydraulic transmission device has a load balance (22) and a reciprocating balance (24) that is symmetrically linked with the left and right rod cylinders (25) with a fulcrum in between. 25), the upper and lower chambers are reciprocally driven by two closed circuit hydraulic variable displacement piston pumps (50), and are supported on the left and right load balances and gradually input to the ground of the device. The increased force from the discharge of the installed single-acting air cylinder (30) is gradually input, and at the same time, the variable capacity corresponding to the increased force from the auxiliary pump (50b) is gradually increased to increase the oil amount. The output is increased and the flywheel (28) of the intermediate gear shaft engaged with the left and right crank gears of the speed increasing gear case (27) of the crank mechanism connected to the reciprocating balance (24) and interlocking with both rod cylinders (25). ) And vector control As the output from the input to the inverter generator (32), the power generation amount by electricity in the overhead line to the transformer again AC high voltage to those commensurate with the power usage of a plurality of trains, or power to the commercial power As a matter of course, it is possible to run between the horizontal section and the platform from the ascending slope to the home on the surface with the regenerative power of the descending slope section and the power generation amount of the gravitational power generator (A), and the single line is spaced at intervals of about 3 to 4 minutes. The electric energy of multiple trains between stations that depart at
    As for the service, the train at the first station (1a) arrives at the next station (1b) from the multiple platforms (4) at each station, and the standby train at the next station (1b) leaves at the first station (1a) The arrival train at the next station (1b) immediately departs to the intermediate station (1c), and the train that waits at the intermediate station (1c) after arrival arrives at the next station (1b) as a single track running between the first station and the last station Each station stop and return operation schedule of each station, and the departure station as the first departure, the departure form at the same time as the departure of the first departure station (1a), and departure from the first departure station (1a) Those who get off at the station or those who depart from the terminal station will stop at each station without transfer, and those who get on at each station will always be on the waiting train or going up and down the platform The waiting time is based on the travel time between stations. Boarding passengers from the vehicle is stopped by providing a handrail stand (19) from the floor where the passenger flow without the seat becomes smooth, Home and provided boarding step automatic interlock (11, 11a) of the opening and closing of the door eliminating the gap and the step, a wheelchair, and those handicapped without rapid boarding of such baby carriage, so as-held temporal margin departure from stop, and single-line stop for travel home (4 Rail (5) is equipped with a safety device that allows only one train to enter the station-to-station tunnel, and the distance between the surface stations is approximately the same down, horizontal, and up, and between the single-line stations with a wide rail width. A gravitational power generator (A) using a balance having a plurality of pressure load devices that effectively use the regenerative power in the descending section is connected with a small-diameter large-depth tunnel (2) having a straight path as an AC high-power rotation induction motor Driving multiple low floor trains (7) High-speed underground electric railway that can cover the majority of the running power.
  2. 請求項1に記載する市街地、海底下等の公有地、民有地をまたぐ高速地下電気鉄道において、
    前記、磁気浮上低床形リニアモータ電車(6)は、地表部に設ける始発駅と終着駅と複数の中間駅に1駅当たり複数のホーム(4)を設けて、各駅間はホームから前記と同じ下り、上りの(2)勾配、同距離で水平区間も同じ深さ、長さの構造の大深度単線路トンネルから、小型で高速走行と成る車上一次方式磁気浮上リニアモータ電車(6)にして、前記モータ回転駆動の低床形電車(7)より小口径シールドトンネルに出来て高速安定運行の出来る磁気浮上低床形リニアモータ電車(6)と上下分割の複線路走行の大きくしたシールドトンネルからの磁気浮上低床形リニアモータ電車(6a)は、車体の天井の冷房設備と制御機器を床と接する側壁の座席(21b)下に配置して、前記磁気浮上低床形リニアモータ電車(6)より上下幅を圧縮して、トンネルのコンクリートセグメント(8)の一部を鋼製セグメント(8a)にして、そのトンネル中央部分の鋼製セグメント(8a)と接合固定の磁気浮上構成材(8c)を一体にした薄い鋼構造材(8b)で分割遮断して、そして上下線の複線路トンネル内の歪な構造から高速走行車体の揺れを風圧で圧さえる構造の風圧板(54)をセグメントと鋼構造材(8b)を支える鋼構造材に一定の任意の間隔に設けて、その車体屋根にも風圧板(55)を設けて、車体の上と左右から空気の流れを車体に向けて一定の流れにして揺れを抑える構造にして、地表駅のホーム(4)も上下二階の運行形態にしての磁気浮上低床形リニアモータ電車(6a)にし、
    そして、その単線、複線路走行の磁気浮上低床形リニアモータ電車(6、6a)は、共に下り勾配で最大速度に加速してその区間の回生ブレーキによる回生電力は、変電所設備(31a)の各制御機器から圧力負荷装置を有する天秤使用の重力発電装置の多連油圧ポンプ(38)のベクトル制御インバータ電動機(31)の駆動電力に入力して、そしてベクトル制御インバータ発電機(32)の発電量は、前記モータ回転低床形電車(7)と同様の構成から再び交流高電圧に変圧して架線にき電して、又は商用電力に送電するものであり、その磁気浮上低床形リニアモータ電車(6、6a)の駆動は、交流高出力ベクトル制御インバータVVVF誘導リニアモータを使用して、そして各駅間をより長くしてよりスピードを必要とする場合には、超電導浮上リニアモータ電車を採用とする小口径大深度トンネルから成る高速地下電気鉄道。
    In the high-speed underground electric railway that straddles the urban area, the public land under the seabed, and the private land described in claim 1,
    The magnetically levitated low-floor linear motor train (6) is provided with a plurality of platforms (4) per station at the first station, the final station, and a plurality of intermediate stations provided on the ground surface. (1) On- vehicle primary magnetic levitation linear motor train that is compact and capable of high-speed running from a deep single-track tunnel with the same descending and ascending (2) slope, the same distance and the same depth and length in the horizontal section (6) Thus, a magnetically levitated low-floor linear motor train (6) that can be operated in a smaller-diameter shield tunnel than the low-floor train (7) driven by the motor rotation and capable of high-speed stable operation, and a shield that has a large number of upper and lower split lines. The magnetically levitated low-floor linear motor train (6a) from the tunnel has the above-mentioned magnetically levitated low-floor linear motor train arranged under the seat (21b) on the side wall in contact with the floor with cooling equipment and control equipment on the ceiling of the vehicle body. (6) Compress the top and bottom width to make the tunnel A thin steel structural material in which a part of the concrete segment (8) is made of steel (8a), and the steel segment (8a) at the center of the tunnel and the magnetically levitated component (8c) for joint fixation are integrated. Supports the segment and the steel structure (8b) with the wind pressure plate (54) that is divided and cut off at (8b) , and from the distorted structure inside the upper and lower double-track tunnels, and that suppresses the shaking of the high-speed vehicle body by wind pressure. The steel structure is provided at regular intervals, and the wind roof (55) is also provided on the roof of the car body, so that the air flow from the top and left and right of the car body is directed toward the car body to suppress shaking. Then, the platform (4) of the surface station is also a magnetically levitated low floor linear motor train (6a) that operates in the upper and lower two floors ,
    The single-line and double-lined magnetically levitated low-floor linear motor trains (6, 6a) both accelerate to the maximum speed with a downward slope, and the regenerative power generated by the regenerative brake in that section is substation equipment (31a) Input the driving power of the vector control inverter motor (31) of the multiple hydraulic pump (38) of the balance-use gravity power generator with pressure load device from each control equipment, and the vector control inverter generator (32) The amount of power generation is the same as that of the motor-rotating low-floor train (7), and is transformed again to an AC high voltage and sent to the overhead line or transmitted to commercial power. driving the linear motor train (6, 6a), using the high AC output vector control inverter VVVF linear induction motor, and if you need more speed and longer between each station, a superconducting levitation linear motor electrostatic High-speed underground electric railway, which consists of small-diameter deep tunnel to the adoption.
  3. 請求項1に記載の高速地下電気鉄道において、
    前記、乗客の乗降ステップ(11、11a)は、乗降を速やかで安全確実に行うものであって、その構成はスライドドア(8)下部の収納部分を固定メスネジ部にして、ステップ(11)が車体床に接する左右の側部を軸受(14a)にして、左右オスネジシャフトを嵌入してからシャフトに左右ステップ(11)部を接合して、ドアの開閉に連動するメスネジ(14)はオスネジシャフト(13)を上下に回動させて適宜の幅のステップはホーム床に接して、電車の揺れ等には遊び部を設けて、スライドドア前面の格納とホーム床設置を繰り返す機械式の簡単で確実なものにして、若しくは全ホームの段差と隙間がほぼ一定の車両では、電気、空気圧機器を使用してドアの開閉に連係して乗降ステップ(11a)をドア床下に出入する装置として、二つのステップ装備(11、11a)は、ホーム(10)と乗降ドア(12、12a)床との隙間(15)と段差を無くす金属部とゴム、プラスチック等の弾性材であって、幅と厚みは適宜の滑らない乗降ステップにして、大きなキャリーバック所持者、車椅子、乳母車、身障者が安心して確実安全に乗降させる乗降ステップ(11、11a)となり、前記リニアモータ電車、地上路面電車、若しくは路線バスの仕様にして、又自動車にも応用出来るものであって、高速電車の運行においての乗降時間を安全確実に短縮出来る乗降ステップ(11、11a)を具える高速地下電気鉄道。
    In the high-speed underground electric railway according to claim 1,
    The passenger boarding / exiting step (11, 11a) is to perform boarding / exiting promptly and safely, and the structure is such that the storage part at the lower part of the sliding door (8) is a fixed female screw part, and step (11) The left and right sides that contact the vehicle floor are the bearings (14a), the left and right male screw shafts are inserted, the left and right step (11) parts are joined to the shaft, and the female screw (14) that is linked to the opening and closing of the door is the male screw shaft (13) Rotate up and down, the step of appropriate width is in contact with the platform floor, a play section is provided for shaking the train, etc. in the reliable ones, or in the entire home stepped and substantially constant vehicle gap, electrical, as a device to and from the passenger in conjunction with the opening and closing of the door step (11a) to the door under the floor using pneumatic equipment, two One step equipment 11, 11a) is a home (10) and passenger doors (12, 12a) metal part and the rubber to eliminate the step and gap (15) between the floor, elastic material such as plastic, the slip of the appropriate width and thickness There is no boarding / exiting step, it becomes a boarding / exiting step (11, 11a) for large carry-back holders, wheelchairs, prams, and handicapped people to get on and off safely and safely, with the specifications of the linear motor train, ground tram, or route bus It can also be applied to automobiles, and it is a high-speed underground electric railway with a boarding step (11, 11a) that can safely and reliably reduce boarding times for high-speed trains.
  4. 請求項1に記載の高速地下電気鉄道において、
    前記、停車から乗客の乗降の流れをスムーズにする床からの手すりスタンド(19)を設ける高速地下電気鉄道は、ほぼ3乃至4分間隔で発車する短時間のトンネル内走行から窓の必要が無くて、前記低床形回転モータ電車(7)の車輪のカバー床部分等を身障者用の必要数の座席(21、21a)にして、又磁気浮上低床形リニアモータ電車の天井の各冷房設備と制御機器等を床と接する側壁の座席(21b)下に配置して、以外のフロアは座席を無くして、吊り手等と左右側壁に手すり(19b)(ハンドレール)とフロアを側壁から平行の中央部、若しくは平行の2列の手すりスタンド(19)を配置して、適宜の長さと床から腰高程の手すりスタンド(19)は、乗降ドア(12、12a)近辺を除いた位置に適宜の本数を設けて、或いはフロアの乗降に支障にならない部分に座席の替わりとなる手すりスタンド(19a)を走行に正対する方向に設けるものとして、
    そのスタンド(19a)は、腰高程の高さにして高速走行の加速をスタンド(19a)に体をあてがって、吊り手を持って受け流すものとして、通勤電車、身障者用の自動車、路線バスに応用出来て、座席を無くした乗客の乗降の流れをスムーズにする手すりスタンドから成る高速地下電気鉄道。

    In the high-speed underground electric railway according to claim 1,
    The high-speed underground electric railway provided with a handrail stand (19) from the floor that smoothes the flow of passengers getting on and off from the stop eliminates the need for windows from short-time tunnel runs that depart almost every 3 to 4 minutes. The lower floor type rotary motor train (7) has a wheel cover floor portion, etc., which is necessary for the disabled (21, 21a) , and each cooling system on the ceiling of the magnetically levitated low floor type linear motor train. And control equipment, etc., are placed under the seat (21b) on the side wall that touches the floor, and the other floors have no seat, and the handrails (19b) (hand rail) and the floor are parallel to the side wall from the suspension hand and the left and right side walls. Place the handrail stand (19) in the center of the parallel or two rows, and the handrail stand (19) with the appropriate length and waist height from the floor, as appropriate at the position excluding the vicinity of the entrance door (12, 12a) It will not interfere with getting on and off the floor. As minute provided directly opposite to the direction traveling railing stand (19a) serving as a replacement for the seat,
    The stand (19a) is placed at the height of the waist and the acceleration of high-speed driving is applied to the stand (19a), and it is applied to a commuter train, a car for the disabled, and a route bus. A high-speed underground electric railway consisting of a handrail stand that smoothes the flow of passengers getting on and off without seats.

JP2009260651A 2009-11-16 2009-11-16 Single and straight roads and deep tunnel high-speed underground electric railways Expired - Fee Related JP4544545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260651A JP4544545B1 (en) 2009-11-16 2009-11-16 Single and straight roads and deep tunnel high-speed underground electric railways

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009260651A JP4544545B1 (en) 2009-11-16 2009-11-16 Single and straight roads and deep tunnel high-speed underground electric railways
US13/261,179 US20130341934A1 (en) 2009-08-24 2010-08-20 Hybrid power generator coupled to gravity power generator using balance which has pressure load device
PCT/JP2010/064539 WO2011024928A1 (en) 2009-08-24 2010-08-20 Hybrid power generator coupled to gravity power generator using balance which has pressure load device

Publications (2)

Publication Number Publication Date
JP4544545B1 true JP4544545B1 (en) 2010-09-15
JP2011109763A JP2011109763A (en) 2011-06-02

Family

ID=42824800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260651A Expired - Fee Related JP4544545B1 (en) 2009-11-16 2009-11-16 Single and straight roads and deep tunnel high-speed underground electric railways

Country Status (1)

Country Link
JP (1) JP4544545B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174271B1 (en) * 2012-08-16 2013-04-03 川西 英治 Power generation cylinder device
CN103661491A (en) * 2013-12-03 2014-03-26 中国铁道科学研究院电子计算技术研究所 System and method for intelligently controlling platform shielding gate
CN103661406A (en) * 2013-12-20 2014-03-26 南京康尼机电股份有限公司 Turnover plate type platform compensator
KR101403696B1 (en) * 2012-09-05 2014-06-05 한국철도기술연구원 Tube railroad system using propellant activate device of magneto hydro-dynamics using non-contacting quick charge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063556A (en) * 1999-08-31 2001-03-13 Agency Of Ind Science & Technol Superconductive magnetic levitation transporting system
JP2006238652A (en) * 2005-02-25 2006-09-07 Toshiba Corp Railroad energy refilling system
JP4333930B1 (en) * 2009-02-23 2009-09-16 英治 川西 Gravity generator using balance with pressure load device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885699A (en) * 1981-11-17 1983-05-23 Matsushita Electric Ind Co Ltd Ultrasonic transmitter and receiver
JP3099086B2 (en) * 1988-05-30 2000-10-16 周作 原 Subway of shield tunnel which becomes double-layered double track
JPH0285057A (en) * 1988-09-21 1990-03-26 Hitachi Ltd Operation control system for train
JPH0811714A (en) * 1994-07-01 1996-01-16 Doumon Kensetsu:Kk Transport of passenger or load
JPH1035486A (en) * 1996-07-24 1998-02-10 Yuzo Yoshikawa High speed travelling road apparatus for overland transportation engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063556A (en) * 1999-08-31 2001-03-13 Agency Of Ind Science & Technol Superconductive magnetic levitation transporting system
JP2006238652A (en) * 2005-02-25 2006-09-07 Toshiba Corp Railroad energy refilling system
JP4333930B1 (en) * 2009-02-23 2009-09-16 英治 川西 Gravity generator using balance with pressure load device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174271B1 (en) * 2012-08-16 2013-04-03 川西 英治 Power generation cylinder device
KR101403696B1 (en) * 2012-09-05 2014-06-05 한국철도기술연구원 Tube railroad system using propellant activate device of magneto hydro-dynamics using non-contacting quick charge
CN103661491A (en) * 2013-12-03 2014-03-26 中国铁道科学研究院电子计算技术研究所 System and method for intelligently controlling platform shielding gate
CN103661491B (en) * 2013-12-03 2015-10-21 中国铁道科学研究院电子计算技术研究所 Platform shield door intelligent control system and method
CN103661406A (en) * 2013-12-20 2014-03-26 南京康尼机电股份有限公司 Turnover plate type platform compensator
CN103661406B (en) * 2013-12-20 2016-08-17 南京康尼机电股份有限公司 Turnover plate type platform compensator

Also Published As

Publication number Publication date
JP2011109763A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
US4075948A (en) Rapid transit system
JP4446659B2 (en) Monorail system
CN1048216C (en) Switch system for personal rapid transit
US20080223666A1 (en) Traction Arrangements
US20100025160A1 (en) Gravity Powered Rail, Road and Runway transportation systems
CN107839696B (en) Permanent magnet shaft type direct-drive air-ground sharing three-dimensional rapid rail transit system
JP4544545B1 (en) Single and straight roads and deep tunnel high-speed underground electric railways
US20110220445A1 (en) Fully automatic traffic system
CN110576752A (en) Personal automatic control light variable-rail magnetic suspension rail transit system
CN206734302U (en) Bogie and there is its rail vehicle and Rail Transit System
CN212670151U (en) Superconducting magnetic suspension embedded track traffic line and train system
CN108423008A (en) A kind of high capacity sky iron rail system and operation method
Siu Innovative lightweight transit technologies for sustainable transportation
KR101075083B1 (en) Wide area high-speed express-subway and car equipment
WO2010023500A4 (en) Gravity powered rail, road and runway transportation system
Najafi et al. Comparison of high-speed rail and maglev systems
CN2521245Y (en) Whole distance closed giant roll sliding platform conveyor
CN109532851B (en) Railway vehicle platform
Han et al. Railway Applications
CN109532904B (en) Rail vehicle
RU2752036C1 (en) High speed metro
JP2021116055A (en) Mini rail transportation system
CN211032545U (en) Efficient non-stop operation public transportation system
CN212529626U (en) Rail-mounted electrically-driven vehicle system
CN212529329U (en) Superconducting magnetic suspension and guiding internal-mounted low-span air rail traffic system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees