JP3091372B2 - Solid particle powder treatment method - Google Patents

Solid particle powder treatment method

Info

Publication number
JP3091372B2
JP3091372B2 JP06254421A JP25442194A JP3091372B2 JP 3091372 B2 JP3091372 B2 JP 3091372B2 JP 06254421 A JP06254421 A JP 06254421A JP 25442194 A JP25442194 A JP 25442194A JP 3091372 B2 JP3091372 B2 JP 3091372B2
Authority
JP
Japan
Prior art keywords
gas
particle powder
solid particle
harmful component
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06254421A
Other languages
Japanese (ja)
Other versions
JPH0889785A (en
Inventor
修 中島
正夫 石丸
雅洋 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP06254421A priority Critical patent/JP3091372B2/en
Publication of JPH0889785A publication Critical patent/JPH0889785A/en
Application granted granted Critical
Publication of JP3091372B2 publication Critical patent/JP3091372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有害成分ガスを含有する
金属粒子、金属酸化物など、とりわけハロゲンガス含有
二酸化チタンの固体粒子粉末から、有害成分ガスを、向
流固−気接触器と攪拌流動層とを用いて有害成分ガスを
効率的に除去処理する方法、さらに該除去処理した固体
粒子粉末を高密度化処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stirring a harmful component gas from a solid particle powder of titanium dioxide containing a halogen gas by mixing metal particles and metal oxides containing the harmful component gas with a countercurrent solid-gas contactor. The present invention relates to a method for efficiently removing a harmful component gas using a fluidized bed and a method for densifying the solid particle powder subjected to the removal treatment.

【0002】[0002]

【発明の技術的背景と課題】一般的に気相反応によって
製造された金属粒子、金属酸化物粒子などの固体粒子粉
末は、サイクロン、バッグフィルターなどの固−気分離
捕集装置によって、副生ガス、未反応ガス、キャリヤー
ガスなどのガス流体から分離捕集される。
BACKGROUND OF THE INVENTION In general, solid particles such as metal particles and metal oxide particles produced by a gas phase reaction are produced as by-products by a solid-gas separation and collection device such as a cyclone or a bag filter. Separated and collected from gas fluids such as gas, unreacted gas and carrier gas.

【0003】しかしながら、気相反応で発生する副生ガ
スや未反応ガスなどの有害成分ガスは、分離捕集された
固体粒子表面に付着されているほか、該固体粒子粉末中
に吸蔵されて取込まれ易く、このため有害成分の実質的
全部を固−気分離することはきわめて困難とされてい
る。
However, harmful component gases such as by-product gas and unreacted gas generated in the gas phase reaction adhere to the surfaces of the separated and collected solid particles, and are absorbed and absorbed in the solid particle powder. Therefore, it is extremely difficult to perform solid-gas separation of substantially all of the harmful components.

【0004】ところで例えばハロゲン化チタンを気相で
酸化して二酸化チタンの粒子粉末を製造する気相系合成
法は、古くから行われてきているいわゆる硫酸法という
液相系合成法に対して、高白色度の分散性の優れた二酸
化チタン顔料を比較的小型の装置構成で大量生産が可能
で、かつ生産効率的にも、またコスト的にも有利であ
り、さらに工程より副生されるいわゆる廃棄物の発生量
が少ないなど、近年急速に工業的実施普及がはかられつ
つある。
By the way, for example, a gas-phase synthesis method in which titanium halide is oxidized in a gas phase to produce titanium dioxide particle powder is different from a so-called sulfuric acid method which has been practiced for a long time. It is possible to mass-produce titanium dioxide pigments with high whiteness and excellent dispersibility in a relatively small apparatus configuration, and it is advantageous in terms of production efficiency and cost, and furthermore, what is called by-product produced by the process In recent years, industrial implementation has been rapidly spreading due to the small amount of waste generated.

【0005】しかして例えば前記気相系合成法におい
て、四塩化チタンを気相酸化することによって、生成す
る二酸化チタン微粒子粉末は、副生する刺激性臭気の塩
素ガスや未反応四塩化チタンガスなどの有害成分ガスか
らサイクロンやバッグフィルターで分離捕集される。分
離捕集された二酸化チタン微粉末には、塩素系不純物の
有害成分ガスが、約65〜75%程度(該二酸化チタン
微粉末含有ガス容積基準)残留しており、このものは種
々の適用媒体系で分散性などをはじめ顔料特性をいちじ
るしく損ねるとともに、腐食性や環境汚染性などから禁
忌されており、種々の除去方法が提案されている。
For example, in the above-mentioned vapor phase synthesis method, titanium dioxide fine particle powder produced by vapor phase oxidation of titanium tetrachloride produces irritating odorous chlorine gas or unreacted titanium tetrachloride gas by-produced. Harmful component gas is separated and collected by cyclone and bag filter. In the separated and collected titanium dioxide fine powder, about 65 to 75% (based on the volume of the titanium dioxide fine powder-containing gas) of harmful component gases of chlorine-based impurities remains. Pigment properties such as dispersibility are significantly impaired in the system and are contraindicated due to corrosiveness and environmental pollution, and various removal methods have been proposed.

【0006】例えば、前記のようにして固−気分離捕集
された二酸化チタン微粒子粉末は、水中に投入してスラ
リー状とし、水酸化ナトリウム、アンモニアなどのアル
カリで中和して残留している塩素系不純物を湿式系で除
去処理している。しかしながら前記のように湿式系処理
する場合は該処理後、濾過、洗浄、乾燥し、さらには粉
砕などの処理を必要とし、コスト高となるのみならず、
処理過程で二次的凝集などが惹起し易かったりする。と
りわけ分離捕集された二酸化チタン微粒子粉末を、次段
で表面仕上処理を施用せず、例えば遠隔地へスラリー輸
送し当該地で表面仕上処理を行う場合は、輸送コンテナ
ーの腐食性の問題とともに大量の水性媒液を輸送するた
めのコスト面の負担が大きく、また濾過、洗浄、乾燥、
粉砕などの処理を行った後、遠隔地へ輸送する場合は、
表面仕上処理時に、再度、スラリー化して該表面仕上処
理を施し、その後、濾過、洗浄、乾燥、粉砕などの処理
を繰返す必要があり、一層コスト面の負担が大きくな
る。
[0006] For example, the titanium dioxide fine particles collected by solid-gas separation and collection as described above are put into water to form a slurry, which is neutralized with an alkali such as sodium hydroxide or ammonia and remains. Chlorine impurities are removed by a wet system. However, in the case of performing wet processing as described above, after the processing, filtration, washing, drying, and further require processing such as pulverization, not only increases the cost,
Secondary agglomeration and the like are likely to occur during the treatment process. In particular, when the titanium dioxide fine particles separated and collected are not subjected to surface finishing treatment in the next step, for example, when the slurry is transported to a remote location and the surface finishing treatment is performed in that location, a large amount of the titanium dioxide fine particles are added together with the corrosiveness of the transport container. The cost burden for transporting the aqueous medium is large, and filtration, washing, drying,
When transporting to a remote location after processing such as crushing,
At the time of the surface finishing treatment, it is necessary to re-slurry and perform the surface finishing treatment, and thereafter, it is necessary to repeat processes such as filtration, washing, drying, and pulverization, which further increases the burden on costs.

【0007】一方、前記固−気分離捕集された塩素系不
純物の有害成分ガスを含有する二酸化チタン微粒子粉末
を、いわゆる乾式系で除去処理する方法としては、例え
ば、(イ)気相反応で生成した二酸化チタン微粒子粉末
を、500〜800℃で加熱処理する方法、(ロ)前記
(イ)の処理において、水蒸気あるいは水蒸気とホウ酸
などのガスと反応させる方法、(ハ)前記(イ)におい
て、水蒸気や酸素などのガス流体を、二酸化チタン微粒
子粉末を含有するガス流体の流れに対して十字流となる
ように音速または超音速で噴射する方法などが提案され
ている。しかしながら、前記のこれらの方法による場合
には、有害成分ガスの除去が十分でなかったり、多量の
洗浄用ガスを必要とするため副生ガスの再利用が難しか
ったり、また高温での処理の場合には、エネルギーコス
トの増大を来たすのみならず、微粒子粉末が、粒子成長
したり、焼結して粗大化したりして顔料特性が損なわれ
易すかったりし、さらには前記水蒸気処理を行う場合に
は、生成した塩化水素ガスが設備の腐食を惹起するな
ど、いずれも未だ満足されるには至っておらず、その改
善が強く希求されている。
On the other hand, a method of removing the titanium dioxide fine particle powder containing a harmful component gas of chlorine-based impurities collected by solid-gas separation by a so-called dry system includes, for example, (a) a gas phase reaction. A method of heat-treating the generated titanium dioxide fine particle powder at 500 to 800 ° C., (b) a method of reacting steam or a gas such as boric acid in the treatment of (a), (c) a method of (a) Has proposed a method of injecting a gas fluid such as water vapor or oxygen at a sonic or supersonic speed so as to form a cross flow with respect to the flow of the gas fluid containing titanium dioxide fine particle powder. However, in the case of the above-described methods, the removal of harmful component gases is not sufficient, or a large amount of cleaning gas is required, so that it is difficult to reuse by-product gas. In addition to the increase in energy cost, fine particle powder, particle growth, or sintering and coarsening or pigment properties are easily damaged, furthermore, when performing the steam treatment However, none of these methods have yet been satisfied, for example, the generated hydrogen chloride gas causes corrosion of equipment, and there is a strong demand for improvement.

【0008】[0008]

【課題を解決するための手段】本発明者等は、かねてよ
り、固体粒子粉末を含有したガス流体を固−気分離捕集
器で該固体粒子を分離捕集した有害成分ガスが残留した
固体粒子微粉末より、有害成分ガスを、比較的簡便な処
理手段で効率よく、工業的有利にその実質的全部を除去
し得る方法を提供することを目的として、種々検討を進
めた結果、固−気分離捕集器で分離捕集された有害成分
ガスを残留する固体粒子粉末を、先ず副生ガスの再利用
を阻害しない程度の比較的少量の不活性ガスで有害成分
ガスを置換洗浄して大半の有害成分ガスを除去した後、
次いで攪拌機構付流動層中で、なお残留吸蔵している有
害成分ガスを放出除去処理することによって、固体粒子
のチャンネリングや閉塞を惹起することなく、比較的簡
潔な手段で工業的有利に有害成分ガスの実質的大部分を
洗浄除去し得ること、さらにその際、高密度化処理を前
記処理に引続いて行うことによって、有害成分ガスが除
去された固体粒子微粉末の移送、貯蔵、包装、輸送など
における粉体の取扱い作業性がいちじるしく容易となる
とともに、とりわけ固体粒子微粉末の有害成分ガスの除
去処理と該処理微粉末の取出し移送等の連続システム化
が容易となり、またバルク輸送作業等の効率化、安全
性、コスト軽減化を図る上でもきわめて好適なものとな
し得ることの知見を得、本発明を完成するに至ったもの
である。
Means for Solving the Problems The inventors of the present invention have been working on a solid-gas separation / collection device which separates and collects a solid-particle-containing gaseous fluid containing solid particle powder. After conducting various studies with the aim of providing a method capable of efficiently removing harmful component gases from fine particle powders with relatively simple processing means, and industrially advantageously removing substantially all of them, solid- The solid particle powder remaining with the harmful component gas separated and collected by the gas separation trap is first washed by replacing the harmful component gas with a relatively small amount of inert gas that does not hinder the reuse of by-product gas. After removing most harmful component gases,
Then, in a fluidized bed equipped with a stirring mechanism, the remaining harmful component gas which has been occluded is discharged and removed, thereby causing no channeling or clogging of the solid particles, and harmful to industrial advantage by relatively simple means. Transfer, storage, and packaging of fine solid particle powder from which harmful component gases have been removed by being able to wash and remove substantially the majority of component gases, and then performing a densification process subsequent to the process. In addition, the workability of handling the powder in transportation and the like is remarkably easy, and in particular, the continuous system such as the removal processing of the harmful component gas of the solid particle fine powder and the removal and transfer of the processed fine powder becomes easy, and the bulk transportation work is also facilitated. The present inventors have found that the present invention can be made extremely suitable in terms of efficiency, safety, and cost reduction, and have completed the present invention.

【0009】すなわち本発明は、(1)有害成分ガスを
含有する固体粒子粉末を、固−気接触器に導入して不活
性ガス流と向流接触させて有害成分ガスを放出させ、次
いで攪拌流動層に導入して残留有害成分ガスを除去処理
することを特徴とする固体粒子粉末の処理方法、(2)
有害成分ガスを含有する固体粒子粉末を、固−気接触器
に導入して不活性ガス流と向流接触させて有害成分ガス
を放出させ、次いで攪拌流動層に導入して残留有害成分
ガスを除去処理し、しかる後該処理固体粒子粉末を高密
度化処理することを特徴とする固体粒子粉末の処理方
法、(3)固体粒子粉末が、ハロゲン化チタンを気相酸
化して得られる二酸化チタン粒子粉末である前1項また
は2項の固体粒子粉末の処理方法、(4)ハロゲン化チ
タンが、四塩化チタンである前3項の固体粒子粉末の固
体粉末の処理方法、(5)有害成分ガスが、ハロゲンガ
スである前1項または2項の固体粉末の処理方法、
(6)ハロゲンガスが、塩素ガスである前5項の固体粉
末の処理方法、(7)固−気接触器における不活性ガス
流が、吹出し速度が5〜30m/秒でかつ空塔速度が1
〜10cm/秒である前1項または2項に固体粒子粉末の
処理方法、(8)攪拌流動層の流動化ガス速度が、5〜
30cm/秒である。前1項または2項の固体粒子粉末の
処理方法、(9)攪拌流動層中の攪拌翼の速度が、周端
で同一地点を通過する間隔が1〜5秒である前1項また
は2項の固体粒子粉末の処理方法、(10)攪拌翼が、縦
型形状である前9項の固体粒子粉末の処理方法、(11)
嵩密度を、0.8g/cm3 以上に高密度化処理する前2
項の固体粒子粉末の処理方法、(12)高密度化処理を、
加圧ロール成形機で行なう前2項の固体粒子粉末の処理
方法および、(13)高密度化処理を、加圧ロール成形機
のロール圧縮荷重が0.5〜4ton/cm2 以上で行なう
前2項の固体粒子粉末の処理方法である。
That is, according to the present invention, (1) a solid particle powder containing a harmful component gas is introduced into a solid-gas contactor and brought into countercurrent contact with an inert gas stream to release the harmful component gas, and then stirred. (2) a method for treating solid particle powder, which comprises introducing a fluidized bed to remove residual harmful component gases;
The solid particle powder containing the harmful component gas is introduced into a solid-gas contactor and brought into countercurrent contact with the inert gas stream to release the harmful component gas, and then introduced into the stirred fluidized bed to remove the residual harmful component gas. A method for treating solid particle powder, which comprises removing and then subjecting the treated solid particle powder to high-density treatment; (3) titanium dioxide obtained by subjecting the solid particle powder to gas-phase oxidation of titanium halide 3. The method for treating the solid particle powder according to the above item 1 or 2, which is a particle powder; (4) the method for treating the solid particle powder, wherein the titanium halide is titanium tetrachloride; 3. The method for treating a solid powder according to the above item 1 or 2, wherein the gas is a halogen gas;
(6) The method for treating solid powder according to the preceding item 5, wherein the halogen gas is chlorine gas. (7) The inert gas flow in the solid-gas contactor has a blowing speed of 5 to 30 m / sec and a superficial velocity of 1
The method for treating solid particle powder according to the above item 1 or 2, wherein (8) the fluidizing gas velocity of the stirred fluidized bed is 5 to 10 cm / sec.
30 cm / sec. (1) The method for treating solid particle powder according to the above (1) or (2), wherein (9) the speed of the stirring blade in the stirred fluidized bed is 1 to 5 seconds at an interval of passing the same point at the peripheral end. (10) The method for treating solid particle powder according to item 9, wherein the stirring blade has a vertical shape, (11)
Before bulk density is increased to 0.8 g / cm 3 or more 2
The method for treating solid particle powder in item (12),
The method for treating solid particles according to the above item 2, which is performed by a pressure roll molding machine, and the method (13), wherein the densification treatment is performed when the roll compression load of the pressure roll molding machine is 0.5 to 4 ton / cm 2 or more. A method for treating solid particle powder according to item 2.

【0010】本発明は、気相反応によって得られる一般
的な金属粒子、金属酸化物粒子、金属窒化物粒子、金属
炭化物粒子などの固体粒子に含有される有害成分ガスの
除去処理に適用し得るものであるが、とりわけ塩素系不
純物などの有害ハロゲンガスが副生される気相反応系に
よって固体粒子を製造するような、例えば四塩化チタン
を気相反応させて二酸化チタン微粒子粉末を製造した
り、四塩化ケイ素を気相反応させて二酸化ケイ素微粒子
粉末を製造したりする場合には特に好適である。
The present invention can be applied to a process for removing harmful component gases contained in solid particles such as general metal particles, metal oxide particles, metal nitride particles, and metal carbide particles obtained by a gas phase reaction. However, in particular, such as producing solid particles by a gas phase reaction system in which harmful halogen gas such as chlorine-based impurities is produced as by-products, for example, producing titanium dioxide fine powder by reacting titanium tetrachloride in a gas phase. It is particularly suitable when silicon tetrachloride is subjected to a gas phase reaction to produce fine particles of silicon dioxide.

【0011】本発明の適用にあたって、種々の気相反応
によって発生する固体粒子を含有したガス流体を固−気
分離器に導入して該固体粒子とガスとを分離する。固−
気分離器としては、粉体工業で一般的に用いられている
種々の乾式の分離器、例えばサイクロンなどの遠心分離
器、バッグフィルターなどの濾過分離器、電気集塵機な
ど静電分離器などが挙げられる。
In applying the present invention, a gas fluid containing solid particles generated by various gas-phase reactions is introduced into a solid-gas separator to separate the solid particles from a gas. Solid
Examples of the gas separator include various dry separators generally used in the powder industry, for example, a centrifugal separator such as a cyclone, a filter separator such as a bag filter, and an electrostatic separator such as an electric dust collector. Can be

【0012】前記のようにして固−気分離器でガス流体
から分離捕集された有害成分ガス含有固体粒子微粉末
を、本発明方法によって処理するには、種々の態様を適
用し得るが、次下、本発明方法を実施するための装置構
成の一例を示す図1にもとづいて、説明する。
In order to treat the fine particles of harmful component gas-containing solid particles separated and collected from the gas fluid by the solid-gas separator as described above, various modes can be applied. Hereinafter, description will be given based on FIG. 1 showing an example of an apparatus configuration for carrying out the method of the present invention.

【0013】固−気分離器1で分離捕集された有害成分
ガスを含有する固体粒子微粉末は、先ず1の底部から降
下管状の向流固−気接触器2に導入される。他方2の底
部よりは不活性ガスが導入され、固体粒子は2を降下し
ながら不活性ガスの上向流と向流接触することによっ
て、固体粒子微粉末に含有される有害成分ガスは、置換
洗浄される。前記不活性ガス流は、副生ガスの再利用が
阻害されないようになるべく少量であるのが望ましく、
また流速としては、吹出し速度が5〜30m/秒程度で
ありかつ空塔速度1〜10cm/秒程度である。前記範囲
より低きに過ぎすると有害成分ガスの置換洗浄が十分に
なされず、一方前記範囲より高きに過ぎる副生ガスの再
利用が阻害され易くまた固体粒子微粉末の所望量の抜出
し移送が損なわれたりする。なお気相反応系が高圧系で
操作される場合は、前記固体粒子微粉末の抜出し移送に
際してバルブの開閉操作を繰り返しながら大気圧迄減圧
する。固体粒子や気相反応系の種類、有害成分ガスの種
類、装置の構成や大きさなどにより異なり一概に言えな
いが、前記の処理によって、被処理固体粒子が含有する
有害成分ガスの約90〜96%程度を置換除去すること
ができる。
[0013] The fine solid particles containing harmful component gases separated and collected by the solid-gas separator 1 are first introduced into the descending tubular countercurrent solid-gas contactor 2 from the bottom of 1. On the other hand, an inert gas is introduced from the bottom of the solid particles 2, and the harmful component gas contained in the fine particles of the solid particles is replaced by the solid particles coming into contact with the upward flow of the inert gas while descending the solid particles 2. Washed. The inert gas stream is desirably as small as possible so that the recycling of by-product gas is not hindered,
The flow velocity is about 5 to 30 m / sec and the superficial velocity is about 1 to 10 cm / sec. When the temperature is lower than the above range, the replacement cleaning of the harmful component gas is not sufficiently performed.On the other hand, the reuse of the by-product gas which is higher than the range is easily hindered, and the extraction and transfer of a desired amount of the fine solid particle powder is impaired. Or When the gas-phase reaction system is operated in a high-pressure system, the pressure is reduced to the atmospheric pressure while repeating the opening and closing operations of the valve during the extraction and transfer of the fine solid particles. The type of solid particles and gas phase reaction system, the type of harmful component gas, the configuration and size of the device, etc., cannot be described unconditionally, but by the above treatment, about 90 to 90% of the harmful component gas contained in the solid particles to be treated. About 96% can be replaced and removed.

【0014】前記のようにして不活性ガス流による処理
を行った固体微粒子粉末は、次いで攪拌機構付きの流動
層8に導入し、他方8の底部より多孔板10を介して気
体を吹込むことによって流動化させるとともに攪拌機に
よる強制的な剪断作用により、固体粒子の表面に付着し
たり、粒子間隙に吸蔵されたりしている残留有害成分ガ
スを、きわめて効率よくガス洗浄して除去することがで
きる。前記吹込み気体としては種々のものを使用し得る
が、例えば空気、酸素、窒素ガスなどを使用し得る。攪
拌流動層の流動化速度および、攪拌翼の速度は、それぞ
れ5〜30cm/秒程度でありまた周端速度が1〜5秒(同
一地点を通過する間隔)程度であるのがよい。前記攪拌
翼の形状は種々の型式のものを使用し得るがなるべく縦
方向に固体粒子を剪断するような形状のもので、縦形の
種々型式のものが好ましい。前記流動化速度が前記範囲
より、小さ過ぎると有害成分ガスの所望の除去効果がも
たらされず、一方前記範囲より大き過ぎるといわゆるピ
ストンフローを惹起し流動層の均一性が損なわれ効率的
なガス洗浄効果がもたらされなくなる。
The solid fine powder treated with the inert gas flow as described above is then introduced into a fluidized bed 8 equipped with a stirring mechanism, and gas is blown from the bottom of the other 8 through a porous plate 10. The harmful component gas adhering to the surface of the solid particles or occluded in the particle gap can be removed by gas washing extremely efficiently by fluidizing and forced shearing action by the stirrer. . Various types of blowing gas can be used, and for example, air, oxygen, nitrogen gas and the like can be used. The fluidization speed of the stirring fluidized bed and the speed of the stirring blade are preferably about 5 to 30 cm / sec, respectively, and the peripheral speed is preferably about 1 to 5 seconds (interval passing through the same point). The shape of the stirring blade may be of various types, but is preferably such that the solid particles are sheared in the vertical direction as much as possible, and various types of vertical type are preferable. If the fluidization speed is lower than the above range, the desired removal effect of the harmful component gas will not be obtained. On the other hand, if the fluidization speed is higher than the above range, so-called piston flow will be caused, and uniformity of the fluidized bed will be impaired and efficient gas cleaning will be performed. No effect.

【0015】残留有害成分ガスを含有した固体粒子は、
攪拌流動層8の上部もしくは側部から連続的にあるいは
間欠的に供給され所定時間洗浄ガスと混合接触した後排
出される。排気ガスは、有害成分ガスを含んでいるので
吸収設備に導入して無害処理後排出される。
The solid particles containing the residual harmful component gas are as follows:
It is supplied continuously or intermittently from the upper or side portion of the stirred fluidized bed 8 and is discharged after being mixed and contacted with the cleaning gas for a predetermined time. Since the exhaust gas contains harmful component gas, it is introduced into an absorption facility and discharged after harmless treatment.

【0016】本発明においては、前記のようにして攪拌
流動層中で残留有害成分ガスが除去処理された固体粒子
微粉末を、さらに高密度化処理して嵩密度を高め当該粉
体の移送、包装、保管、輸送などにおける取扱作業性を
一層容易にするとともに、コスト面でも工業的優位性を
さらに高めることができる。前記の高密度化処理は、種
々の方法によっておこなうことができるが、例えば加圧
ロール式の圧縮成形機を用いて嵩密度を0.8g/cm3 以上
に高めることによって、フレーク状の解れ易い粉粒体を
得ることができる。このものは前記取扱い作業性が良好
なものであって、かつその後の水性スラリー化において
容易に優れた分散懸濁系とし得るものである。
In the present invention, the solid particle fine powder from which the residual harmful component gas has been removed in the stirred fluidized bed as described above is further densified to increase the bulk density and transfer the powder. In addition to facilitating handling workability in packaging, storage, transportation, and the like, it is possible to further enhance the industrial advantage in terms of cost. The above-mentioned densification treatment can be performed by various methods. For example, by increasing the bulk density to 0.8 g / cm 3 or more using a pressure roll type compression molding machine, the flake-like powder is easily melted. Granules can be obtained. This has good handling operability and can easily be used as an excellent suspension in an aqueous slurry.

【0017】[0017]

【実施例】実施例について図1を参照して説明すると、
四塩化チタンの気相酸化反応によって二酸化チタン顔料
を製造する工程で、反応ガスAを固−気分離装置1で固
体粒子と副生ガスBとに分離する。固−気分離装置1の
下部に向流固−気接触器2を接続し、塩素ガス成分を含
有した固体粒子と不活性ガスを向流接触させ、塩素ガス
を粗置換する。この接触器は内径30cmで長さ2mであ
る。固体粒子の見掛け降下速度は1〜5cm/秒である。
この接触器下部管壁に4mm径の孔を周16個開け、不活
性ガスCを5〜20cm/秒の速度で固体粒子に吹付け、
上昇流も含めて塩素ガスを粗置換する。この時700,000p
pmの入口塩素ガス濃度が約30,000ppm迄除去される。こ
こでの除去率は90%以上である。減圧容器4は、酸化
反応が高圧系で行なわれる場合、ここで反応系との遮断
を行なうと同時に次の操作のため大気圧に下げる装置で
ある。操作はバルブ3,5,6の開閉で次のようにバル
ブ5,6閉−3開−3閉−6開−6閉−5開−5閉の順
で行なう。減圧容器の大きさは攪拌流動層の大きさ及び
固体粒子の供給方法によって決定される。減圧時排気さ
れるガスは、塩素ガスを含んでいるので吸収塔12で吸
収処理する。次の攪拌流動層は内径500mm、高さ2,50
0mm の透明塩ビで作られており、下部分散盤は2mm径の
孔がピッチ12mm(開口比2.5%)で開けられてい
る。攪拌機翼形は門型で、外径は485mm 、高さは500mm
、翼巾は75mmの2枚羽根であり、5〜30回転/分で
回転する。固体粒子の静置層高さを500 〜1000mmとし、
流動ガスDとして空気を用い、空塔速度5〜30cm/秒
で該固体粒子を流動化させると、20〜150秒の滞留
時間で塩素ガス濃度を固体取扱い上支障のない0.05
ppm 以下に除去することができる。次に塩素ガスが除去
された固体粒子は一般的な加圧ロール型圧縮機11に供
給され、バインダーの添加なしで、操作圧力0.5〜4
ton/cm2 で該固体粒子の嵩密度を0.8g/cm2 以上と
し、中間製品として取出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to FIG.
In the step of producing a titanium dioxide pigment by a gas phase oxidation reaction of titanium tetrachloride, the reaction gas A is separated into solid particles and by-product gas B by the solid-gas separation device 1. A countercurrent solid-gas contactor 2 is connected to the lower part of the solid-gas separation device 1 to make the solid particles containing the chlorine gas component and the inert gas come into countercurrent contact to roughly replace the chlorine gas. This contactor has an inner diameter of 30 cm and a length of 2 m. The apparent descent speed of the solid particles is 1-5 cm / sec.
In the lower part of the contactor, 16 holes each having a diameter of 4 mm were opened in the lower tube wall, and inert gas C was sprayed on the solid particles at a speed of 5 to 20 cm / sec.
The chlorine gas is roughly replaced, including the upward flow. At this time 700,000p
The chlorine gas concentration at the inlet of pm is removed up to about 30,000 ppm. Here, the removal rate is 90% or more. When the oxidation reaction is performed in a high-pressure system, the pressure-reducing container 4 is a device that shuts off the reaction system and lowers the pressure to the atmospheric pressure for the next operation. The operation is performed by opening and closing the valves 3, 5, and 6, in the order of closing the valves 5, 6 closed-3 open-3 closed-6 open-6 closed-5 open-5 closed as follows. The size of the decompression vessel is determined by the size of the stirred fluidized bed and the method of supplying solid particles. Since the gas exhausted at the time of pressure reduction contains chlorine gas, it is subjected to absorption treatment in the absorption tower 12. The next stirred fluidized bed has an inner diameter of 500 mm and a height of 2,50
It is made of 0 mm transparent PVC, and the lower dispersing plate has holes of 2 mm diameter with a pitch of 12 mm (opening ratio 2.5%). Stirrer airfoil is portal type, outer diameter is 485mm, height is 500mm
Are two blades having a wing span of 75 mm and rotate at 5 to 30 rotations / minute. Set the stationary layer height of the solid particles to 500 to 1000 mm,
When the solid particles are fluidized at a superficial velocity of 5 to 30 cm / sec by using air as the fluid gas D, the chlorine gas concentration can be adjusted to 0.05 at a residence time of 20 to 150 seconds without any trouble in handling the solid.
It can be removed to below ppm. Next, the solid particles from which the chlorine gas has been removed are supplied to a general pressurized roll type compressor 11, where the operating pressure is 0.5 to 4 without adding a binder.
The bulk density of the solid particles is 0.8 g / cm 2 or more at ton / cm 2 , and the solid particles are taken out as an intermediate product.

【0018】[0018]

【発明の効果】本発明は、有害ガスを含有する金属粒
子、金属酸化物などの固体粒子を固−気分離装置で分離
し、該固体粒子を向流固−気接触器を用いて不活性ガス
で有害ガスを粗置換し、該固体粒子を洗浄する。次に均
一で安定な流動層を形成する縦型攪拌機付流動層を用い
て、該固体粒子に付着する有害ガスを除去する方法であ
って、上記有害ガスを含有する金属粒子、金属酸化物な
どの固体粒子に付着する有害ガスを、取扱い上支障のな
い濃度まで除去することができる。さらに、該固体粒子
を加圧ロール成形機を用いて嵩密度を上げることによっ
て、取扱いが容易な乾燥粉末として取り出すことができ
る。このものは、残留有害成分ガスによる装置腐食や、
例えば顔料特性などの物性阻害を排除し得る安定した嵩
密度もコンパクトな固体粒子粉末であり、遠隔地などへ
のバルク輸送や、当該地での仕上処理や加工処理での生
産性の向上や高品質化を図る上で、工業的にきわめて有
用なものである。
According to the present invention, solid particles such as metal particles and metal oxides containing harmful gases are separated by a solid-gas separator, and the solid particles are inertized by using a countercurrent solid-gas contactor. The harmful gas is roughly replaced with a gas, and the solid particles are washed. Next, using a fluidized bed with a vertical stirrer to form a uniform and stable fluidized bed, a method for removing harmful gas adhering to the solid particles, wherein the metal particles containing the harmful gas, metal oxides and the like The harmful gas adhering to the solid particles can be removed to a concentration that does not hinder handling. Furthermore, by raising the bulk density of the solid particles using a pressure roll molding machine, it is possible to take out the solid particles as dry powder that is easy to handle. This is due to equipment corrosion due to residual harmful component gases,
For example, it is a compact solid particle powder with a stable bulk density that can eliminate physical property impairment such as pigment properties, and can be used for bulk transportation to remote places, improvement of productivity in finishing and processing at such places, and high productivity. It is industrially very useful for quality improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の固体粒子粉末の処理方法の実
施に好適な処理装置構成の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of a configuration of a processing apparatus suitable for carrying out a method for processing solid particle powder of the present invention.

【符号の説明】[Explanation of symbols]

A 気相反応ガス(含固体粒子) B 副生ガス C 不活性ガス D 流動ガス 1 固−気分離装置 2 向流固−気接触器 3,5,6 バルブ 4 減圧容器 7 定量供給装置 8 攪拌流動層 9 攪拌翼 10 分散盤 11 加圧ロール圧縮成形機 12 吸収塔 Reference Signs List A Gas-phase reaction gas (solid-containing particles) B By-product gas C Inert gas D Flowing gas 1 Solid-gas separator 2 Countercurrent solid-gas contactor 3,5,6 Valve 4 Decompression container 7 Quantitative supply device 8 Stirring Fluidized bed 9 Stirrer blade 10 Dispersion plate 11 Pressure roll compression molding machine 12 Absorption tower

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−294945(JP,A) 特開 昭53−73474(JP,A) 特開 昭64−4221(JP,A) 特開 平5−186512(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 8/00 - 8/46 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-294945 (JP, A) JP-A-53-73474 (JP, A) JP-A-64-4221 (JP, A) 186512 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 8/00-8/46

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有害成分ガスを含有する固体粒子粉末を、
固−気接触器に導入して不活性ガス流と向流接触させて
有害成分ガスを放出させ、次いで攪拌流動層に導入して
攪拌及び流動化ガスとの接触によって残留有害成分ガス
放出させることを特徴とする固体粒子粉末の処理方
法。
Claims: 1. A solid particle powder containing a harmful component gas,
It is introduced into a solid-gas contactor and brought into countercurrent contact with an inert gas stream to release harmful component gases, and then introduced into a stirred fluidized bed.
A method for treating solid particle powder, wherein a residual harmful component gas is released by stirring and contact with a fluidizing gas .
【請求項2】有害成分ガスを含有する固体粒子粉末を、
固−気接触器に導入して不活性ガス流と向流接触させて
有害成分ガスを放出させ、次いで攪拌流動層に導入して
攪拌及び流動化ガスとの接触によって残留有害成分ガス
放出させ、しかる後該処理固体粒子粉末を高密度化処
理することを特徴とする固体粒子粉末の処理方法。
2. A solid particle powder containing a harmful component gas,
It is introduced into a solid-gas contactor and brought into countercurrent contact with an inert gas stream to release harmful component gases, and then introduced into a stirred fluidized bed.
A method for treating solid particle powder, comprising releasing residual harmful component gas by stirring and contacting with a fluidizing gas, and thereafter subjecting the treated solid particle powder to a high-density treatment.
【請求項3】固体粒子粉末が、ハロゲン化チタンを気相
酸化して得られる二酸化チタン粒子粉末である請求項1
または2の固体粒子粉末の処理方法。
3. The titanium dioxide particle powder obtained by subjecting a titanium halide to gas-phase oxidation in a solid state.
Or 2) the method for treating solid particle powder.
【請求項4】ハロゲン化チタンが、四塩化チタンである
請求項3の固体粒子粉末の処理方法。
4. The method according to claim 3, wherein the titanium halide is titanium tetrachloride.
【請求項5】有害成分ガスが、ハロゲンガスである請求
項1または2の固体粒子粉末の処理方法。
5. The method for treating solid particle powder according to claim 1, wherein the harmful component gas is a halogen gas.
【請求項6】ハロゲンガスが、塩素ガスである請求項5
の固体粒子粉末の処理方法。
6. The method according to claim 5, wherein the halogen gas is chlorine gas.
The method for treating solid particle powders.
【請求項7】固−気接触器における不活性ガス流の吹出
し速度が5〜30m/秒で、かつ空塔速度が1〜10cm
/秒である請求項1または2の固体粒子粉末の処理方
法。
7. The blowing speed of the inert gas stream in the solid-gas contactor is 5 to 30 m / sec, and the superficial velocity is 1 to 10 cm.
3. The method for treating solid particle powder according to claim 1 or 2, wherein
【請求項8】攪拌流動層の流動化ガス速度が、5〜30
cm/秒である請求項1または2の固体粒子粉末の処理方
法。
8. The fluidized gas velocity of the stirred fluidized bed is 5 to 30.
The method for treating solid particle powder according to claim 1 or 2, wherein the rate is cm / sec.
【請求項9】攪拌流動層中の攪拌翼の速度が、周端で同
一地点を通過する間隔が1〜5秒である請求項1または
2の固体粒子粉末の処理方法。
9. The method for treating solid particle powder according to claim 1, wherein the speed of the stirring blades in the stirred fluidized bed is 1 to 5 seconds at an interval passing through the same point at the peripheral end.
【請求項10】攪拌翼が、縦型形状である請求項9の固
体粒子粉末の処理方法。
10. The method according to claim 9, wherein the stirring blade has a vertical shape.
【請求項11】嵩密度を、0.8g/cm3 以上に高密度
化処理する請求項2の固体粒子粉末の処理方法。
11. The method of claim 2, wherein the bulk density is increased to 0.8 g / cm 3 or more.
【請求項12】高密度化処理を、加圧ロール成形機で行
なう請求項2の固体粒子粉末の処理方法。
12. The method for treating solid particle powder according to claim 2, wherein the densification treatment is performed by a pressure roll molding machine.
【請求項13】高密度化処理を、加圧ロール成形機のロ
ール圧縮荷重が0.5〜4ton/cm 2 行う請求項2の固
体粒子粉末の処理方法。
13. The method for treating solid particle powder according to claim 2 , wherein the densification treatment is performed at a roll compression load of a pressure roll molding machine of 0.5 to 4 ton / cm 2 .
JP06254421A 1994-09-21 1994-09-21 Solid particle powder treatment method Expired - Fee Related JP3091372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06254421A JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06254421A JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP36489997A Division JP3169351B2 (en) 1994-09-21 1997-12-19 Flake-like titanium dioxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0889785A JPH0889785A (en) 1996-04-09
JP3091372B2 true JP3091372B2 (en) 2000-09-25

Family

ID=17264752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06254421A Expired - Fee Related JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Country Status (1)

Country Link
JP (1) JP3091372B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311707B2 (en) * 2004-08-11 2013-10-09 昭和電工株式会社 Method for producing fine particle titanium dioxide
US20080260625A1 (en) 2004-08-11 2008-10-23 Showa Denko K.K. Fine Particulate Titanium Dioxide, and Production Process and Use Thereof
TWI307679B (en) * 2004-08-11 2009-03-21 Showa Denko Kk Fine pariculate titanium dioxide, and production process and use thereof
US11097340B2 (en) * 2018-11-19 2021-08-24 Hamilton Sundstrand Corporation Powder cleaning systems and methods

Also Published As

Publication number Publication date
JPH0889785A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP5676471B2 (en) Process and system for producing silicon tetrafluoride from fluorosilicate in a fluidized bed reactor
EP0114477B2 (en) Method of and apparatus for removing sulfur oxides from hot flue gases
US4552735A (en) Process for removing total reduced sulfur compounds from industrial gases using manganese dioxide
US4552734A (en) Fluidization process for removing total reduced sulfur compounds from industrial gases
US5219543A (en) Process and apparatus for removing dust, sulfur compounds and nitrogen oxides from combustion exhaust gases
CN107699695A (en) It is a kind of that tungsten, the method for vanadium are reclaimed from useless SCR denitration
US4847054A (en) Process for catalytically reducing NO contained in a gas
US4004995A (en) Process for removing nitrogen oxides and sulfur dioxide from effluent gases
WO2021019564A1 (en) Energy efficient system and method for fluidized bed roasting of spent catalyst to recover metal values
JP3091372B2 (en) Solid particle powder treatment method
JP3169351B2 (en) Flake-like titanium dioxide powder and method for producing the same
JP2002507474A (en) Method for separating phthalic anhydride vapor from a gas stream
US3798310A (en) Method of removing sulfur oxide from gases
JPS5933878B2 (en) How to dispose of radioactive solid waste
US4462815A (en) Scrap glass recovery
US3773633A (en) Process for recovering gaseous hf from gaseous effluents
JP3120679B2 (en) Removal method of chloride from sintering machine dust
US5854161A (en) Process for the regeneration of a catalyst
JP2007319782A (en) Exhaust gas treatment method
US2351795A (en) Method of treating complex leadzinc ores
EP0441111A1 (en) Particulate material
EP0421629A1 (en) Sulphuric acid recovery process
JP3120680B2 (en) Removal method of chloride from sintering machine dust
JP6708038B2 (en) Method for producing nickel oxide
US3418074A (en) Process for chlorinating titaniferous ores

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees