JP2007319782A - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method Download PDF

Info

Publication number
JP2007319782A
JP2007319782A JP2006153014A JP2006153014A JP2007319782A JP 2007319782 A JP2007319782 A JP 2007319782A JP 2006153014 A JP2006153014 A JP 2006153014A JP 2006153014 A JP2006153014 A JP 2006153014A JP 2007319782 A JP2007319782 A JP 2007319782A
Authority
JP
Japan
Prior art keywords
absorbent
exhaust gas
detoxifier
fluorine
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006153014A
Other languages
Japanese (ja)
Inventor
Toshiki Manabe
俊樹 真鍋
Makoto Morisawa
誠 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2006153014A priority Critical patent/JP2007319782A/en
Publication of JP2007319782A publication Critical patent/JP2007319782A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment method for recovering a reaction product as a valuable recovered matter as a fluorine raw material. <P>SOLUTION: The exhaust gas treatment method uses an exhaust gas treatment apparatus provided with an absorbent transfer type reactor (5) and an absorbent fixed type detoxifier (10). The reactor (5) causes decomposition product gas formed by the decomposition of PFC gas to act on the absorbent to allow them to react with each other. The absorbent after the reaction is separated into a surface layer part rich in a reacted portion and a core part rich in the unreacted portion. The core part after the separation is returned to the reactor (5). The surface layer part after the separation is classified into fine particles and medium particles by a classification means (7), the fine particles after the classification is recovered, and calcium-based powder is mixed with the medium particles to form a fluorine absorbent. The fluorine absorbent is supplied to the detoxifier (10). The decomposition product gas which is formed by the decomposition of PFC gas and is to be introduced into the detoxifier (10) is diluted, water is added in a controlled quantity to the diluted decomposition product gas, and the decomposition product gas added with water is reacted with the fluorine absorbent in the detoxifier (10). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体デバイスや液晶ディスプレイ用デバイスなどの製造工程等で使用されるPFCガス(Perfluoro Compounds gas)の分解(燃焼)により生成するフッ化水素(HF)とカルシウム系吸収剤とを反応させ、その反応物(CaF)を回収する排ガス処理方法に関する。 The present invention reacts hydrogen fluoride (HF) produced by decomposition (combustion) of PFC gas (Perfluoro Compounds gas) used in the manufacturing process of semiconductor devices and liquid crystal display devices with a calcium-based absorbent. The present invention also relates to an exhaust gas treatment method for recovering the reaction product (CaF 2 ).

半導体デバイスや液晶ディスプレイ用デバイスなどの製造工程を始めとする半導体製造工程などで使用されるPFCガスは、地球温暖化防止の観点から使用量の削減並びに大気への放出量を低減する必要があり、近年では大気放出量を低減する為にPFCガスの分解装置を導入し、分解排ガスからフッ化水素(HF)を除去する排ガス処理技術により、無害化処理が実施されている。   PFC gas used in semiconductor manufacturing processes such as manufacturing processes for semiconductor devices and liquid crystal display devices needs to be reduced in use and reduced to the atmosphere from the viewpoint of preventing global warming. In recent years, in order to reduce atmospheric emissions, detoxification treatment has been carried out by an exhaust gas treatment technology that introduces a PFC gas decomposition device and removes hydrogen fluoride (HF) from the decomposition exhaust gas.

PFCガスを分解し、この分解排ガスを処理する排ガス処理装置として、特許文献1に示すものが知られている。この排ガス処理装置は、吸収剤移送式の反応器に分解排ガスを通し、分解排ガス中のフッ化水素(HF)と反応器内の吸収剤である石灰石とを反応させて排ガスからフッ化水素を除去する。そして上述の反応器の底部から前記石灰石を取出して、分離機により既反応分に富む表層部分と、未反応分に富む芯部分とを分離し、この芯部分は、前記反応器に返送して再利用し、表層部分は振動篩を利用した分級装置を用いて、0.1〜1.5mmを程度を篩い分けの粒径としてその粒径より小径の細粒と、その粒径より大径の中粒とに分粒して、別々に回収するようにしている。
特開2005−28241
As an exhaust gas treatment apparatus for decomposing PFC gas and treating the decomposed exhaust gas, one disclosed in Patent Document 1 is known. This exhaust gas treatment apparatus passes cracked exhaust gas through an absorbent transfer type reactor, reacts hydrogen fluoride (HF) in the cracked exhaust gas with limestone, which is an absorbent in the reactor, to generate hydrogen fluoride from the exhaust gas. Remove. Then, the limestone is taken out from the bottom of the reactor described above, and the surface layer portion rich in the reacted portion and the core portion rich in the unreacted portion are separated by a separator, and the core portion is returned to the reactor. Reuse the surface layer using a classifier using a vibrating sieve, and fine particles with a diameter smaller than the particle diameter of 0.1 to 1.5 mm and a diameter larger than the particle diameter. It is divided into medium grains and collected separately.
JP 2005-28241

ところが、前述の特許文献1で開示された従来の吸収剤移送式の排ガス処理装置では、排ガスと接触反応した石灰石(吸収剤)を表層部分と芯部分とに分離し、芯部分を処理装置に返送して再利用するとともに、表層部分を振動篩手段で細粒と中粒とに分離して回収するようにしているが、直径0.15mm未満を細粒、0.15mm以上から2.5mm未満を中粒とすると、細粒と中粒との重量比が1:9となり、しかも、細粒(10%)中のフッ化カルシウム(CaF)の割合が40wt%、酸化カルシウム(CaCO)の割合が60wt%、中粒(90%)中のフッ化カルシウム(CaF)の割合が5wt%以下、酸化カルシウム(CaCO)の割合が95wt%以上となる。この場合、中粒のみであれば、廃フッ酸処理用の石灰石として再利用することが可能であるが、細粒中のフッ化カルシウムの割合が40wt%もあると、この細粒を製鉄工程での脱燐・脱硫用として用いることができず、この細粒は多量の産業廃棄物となり、フッ素原料としての有価回収物とするのが困難である。 However, in the conventional absorbent transfer type exhaust gas treatment device disclosed in Patent Document 1, the limestone (absorbent) that has reacted with the exhaust gas is separated into a surface layer portion and a core portion, and the core portion is used as the treatment device. It is returned and reused, and the surface layer portion is separated into fine particles and medium particles by means of a vibrating sieve, and recovered, but the diameter less than 0.15 mm is fine, from 0.15 mm to 2.5 mm When the content is less than medium, the weight ratio of fine particles to medium particles is 1: 9, and the proportion of calcium fluoride (CaF 2 ) in fine particles (10%) is 40 wt%, calcium oxide (CaCO 3 ) Is 60 wt%, the ratio of calcium fluoride (CaF 2 ) in the middle grains (90%) is 5 wt% or less, and the ratio of calcium oxide (CaCO 3 ) is 95 wt% or more. In this case, if there is only a medium grain, it can be reused as limestone for waste hydrofluoric acid treatment. However, if the proportion of calcium fluoride in the fine grain is as high as 40 wt%, this fine grain is produced in the iron making process. It cannot be used for dephosphorization / desulfurization in Japan, and this fine granule becomes a large amount of industrial waste, and it is difficult to make it a valuable recovery as a fluorine raw material.

本発明は、このような点に着目し、フッ素原料としての有価回収物として回収する方法を提供することを目的とする。   This invention pays attention to such a point, and it aims at providing the method of collect | recovering as valuable collection | recovery as a fluorine raw material.

上述の目的を達成するために、請求項1に開示の発明は、吸収剤移送式の反応器と吸収剤固定式の除害器とを具備する排ガス処理装置を使用して排ガスを処理するにあたり、吸収剤移送式の反応器では、該反応器内を移動している吸収剤にPFCガスの分解により生成した分解生成ガスを作用させて吸収剤と反応させ、その反応した吸収剤を既反応分に富む表層部分と、未反応分に富む芯部分とに分離し、この芯部分を吸収剤移送式の反応器に返送して再利用し、上記表層部分を分級手段で細粒と中粒とに分級し、この分級後の細粒を回収するとともに、中粒にカルシウム系粉末を混合してフッ素吸収剤とし、このフッ素吸収剤を上述の吸収剤固定式の除害器に供給し、吸収剤固定式の除害器に導入するPFCガスの分解により生成した分解生成ガスを空気あるいは窒素で希釈し、この希釈した分解生成ガスに水分を調量添加し、この水分を添加した分解生成ガスと吸収剤固定式の除害器内のフッ素吸収剤とを反応させることにより、その反応生成物を蛍石代替品として回収することを特徴としている。   In order to achieve the above-described object, the invention disclosed in claim 1 is directed to treating exhaust gas using an exhaust gas treatment apparatus including an absorbent-transfer reactor and an absorbent-fixed detoxifier. In the absorbent transfer type reactor, the decomposition product gas generated by the decomposition of the PFC gas is allowed to act on the absorbent moving in the reactor to react with the absorbent, and the reacted absorbent is already reacted. The surface layer portion is separated into a core portion rich in unreacted content and the core portion rich in unreacted components, and the core portion is returned to the absorbent transfer reactor and reused. The fine particles after classification are collected, and the calcium-based powder is mixed with the middle particles to form a fluorine absorbent, and this fluorine absorbent is supplied to the above-described absorbent-fixed detoxifier. Decomposition produced by decomposition of PFC gas introduced into absorbent-type abatement device The produced gas is diluted with air or nitrogen, and moisture is added to the diluted decomposition product gas, and the decomposition product gas to which the moisture is added reacts with the fluorine absorbent in the absorber-fixed detoxifier. Thus, the reaction product is recovered as a substitute for fluorite.

また、請求項2に開示の発明は、請求項1の発明において分級手段を振動篩で構成し、篩い分けの粒径を0.15mmとし、直径0.15mm未満を細粒、直径0.15mm以上2.5mm未満を中粒として分級することを特徴としている。さらに、請求項3に開示の発明では、請求項1又は2の発明において、中粒とカルシウム系粉末との混合物を粒状に造粒してフッ素吸収剤とすることを特徴とするものである。   The invention disclosed in claim 2 is the invention of claim 1, wherein the classifying means is constituted by a vibration sieve, the particle size of the sieving is 0.15 mm, the diameter is less than 0.15 mm, and the diameter is 0.15 mm. More than 2.5 mm is classified as a medium grain. Furthermore, the invention disclosed in claim 3 is characterized in that, in the invention of claim 1 or 2, the mixture of the medium grains and the calcium-based powder is granulated into granules to obtain a fluorine absorbent.

本発明では、PFCガスの分解により生成した分解生成ガスを吸収剤移送式反応器に導入することにより反応した吸収剤を既反応分に富む表層部分と未反応分に富む芯部分とに分離し、このうちの芯部分を吸収剤移送式反応器に返送し、表層部分を分級手段に供給して所定の粒径よりも細かい細粒と所定の粒径よりも粗い中粒とに分級し、分級後の細粒を回収しているが、吸収剤移送式反応器での吸収剤の移送速度を調整することにより、細粒と中粒との重量比を15wt%:85wt%、細粒中でのフッ化カルシウムの割合を60wt%以上とすることができるから、この回収した細粒を製鉄工程での脱燐・脱硫用として用いることができ、細粒を有価回収物とすることができる。   In the present invention, the decomposed product gas generated by the decomposition of the PFC gas is introduced into the absorbent transfer reactor, so that the reacted absorbent is separated into a surface layer portion rich in already reacted components and a core portion rich in unreacted components. The core part is returned to the absorbent transfer reactor, and the surface layer part is supplied to the classifying means, and classified into fine grains finer than the predetermined particle diameter and medium grains coarser than the predetermined particle diameter, Fine particles after classification are recovered. By adjusting the transfer rate of the absorbent in the absorbent transfer reactor, the weight ratio of fine particles to medium particles is 15 wt%: 85 wt%. Since the ratio of calcium fluoride in the steel can be 60 wt% or more, the recovered fine particles can be used for dephosphorization / desulfurization in the iron making process, and the fine particles can be used as valuable recovery products. .

また、分級後の中粒にカルシウム系粉末を混合したのち吸収剤固定式の除害器に導入して、吸収剤固定式の除害器内の吸収剤と反応させているが、このとき吸収剤固定式の除害器に導入するPFCガスの分解により生成した分解生成ガスを空気あるいは窒素で希釈し、この希釈した分解生成ガスに水分を調量添加し、この水分を添加した分解生成ガスと吸収剤固定式の除害器内のフッ素吸収剤とを反応させるようにしてあるので、分解生成ガス中のフッ素化合物と吸収剤との反応性が高まり、吸収剤表層で止まっていた反応が吸収剤内部まで進行することになる。これにより、従来反応性が低かった100℃から150℃の温度域において特に反応効率が向上し、導入ガス温度に左右されないで安定的にフッ素を回収することが可能となる。これに伴って、フッ素回収能力が向上し、反応後の吸収剤の工業的な再利用が容易になる。
つまり、固定式吸収剤での排ガス処理により、希釈した分解生成ガスと反応した吸収剤(石灰石)は高純度のフッ化カルシウムになり、PFCガスの製造原料として再利用可能で工業的に利用価値の高い原料となる。したがって、フッ素原料(蛍石代替品)としての有価回収物として100%回収することができる。
In addition, after mixing the calcium-based powder into the middle particles after classification, it is introduced into the absorbent-fixed type detoxifier and reacted with the absorbent in the absorbent-fixed type detoxifier. The decomposition product gas generated by the decomposition of the PFC gas introduced into the agent-fixed type detoxifier is diluted with air or nitrogen, and moisture is added to the diluted decomposition product gas. And the fluorine absorbent in the absorber-fixed detoxifier, the reactivity between the fluorine compound in the decomposition product gas and the absorbent increases, and the reaction that has stopped at the surface of the absorbent It will proceed to the inside of the absorbent. As a result, the reaction efficiency is improved particularly in the temperature range of 100 ° C. to 150 ° C., which has been low in reactivity, and fluorine can be stably recovered regardless of the temperature of the introduced gas. Along with this, the fluorine recovery capability is improved, and the industrial reuse of the absorbent after the reaction is facilitated.
In other words, due to the exhaust gas treatment with the fixed absorbent, the absorbent (limestone) that reacted with the diluted decomposition product gas becomes high-purity calcium fluoride, which can be reused as a raw material for producing PFC gas and has industrial utility value. High raw material. Therefore, 100% can be recovered as a valuable recovery material as a fluorine raw material (fluorite substitute).

図1は本発明の實氏形態にかかる排ガス処理系統図である。
半導体デバイス製造工程における例えば成膜工程では、CVD装置(1)にシランガス(SiH4)等の原料ガスを導入管(L1)から供給し、CVD装置(1)内で分解して基材の表面にシリコン皮膜等を形成するようにしてあることから、CVD装置(1)内ではアモルファスシリコン等の反応性シリコン化合物やその他の副反応生成物が発生する。これらのシリコン化合物がCVD装置(1)内の表面に付着堆積し、この堆積物が基板の成膜面に付着すると、製品の品質低下を招くおそれがあることから、通常定期的に該CVD装置(1)内にNFのようなPFCガスを供給してクリーニングを行なう。
FIG. 1 is an exhaust gas treatment system diagram according to the embodiment of the present invention.
For example, in the film formation process in the semiconductor device manufacturing process, a raw material gas such as silane gas (SiH 4 ) is supplied to the CVD apparatus (1) from the introduction pipe (L1), and decomposed in the CVD apparatus (1) to decompose the surface of the substrate. Since a silicon film or the like is formed on the substrate, a reactive silicon compound such as amorphous silicon and other side reaction products are generated in the CVD apparatus (1). Since these silicon compounds adhere to and deposit on the surface of the CVD apparatus (1) and this deposit adheres to the film-forming surface of the substrate, the quality of the product may be deteriorated. Cleaning is performed by supplying a PFC gas such as NF 3 into (1).

クリーニング工程では、クリーニングガスとしてのPFCガスは、クリーニングガス導入管(L2)から上記CVD装置(1)に供給され、当該CVD装置(1)内に堆積した前記反応性シリコン化合物と反応し、未反応のPFCガスとともに窒素ガスで希釈されて後述する吸収剤移送式の排ガス処理装置(2)と吸収剤固定式の排ガス処理装置(3)とにそれぞれ送給されるようにしてある。   In the cleaning process, PFC gas as a cleaning gas is supplied from the cleaning gas introduction pipe (L2) to the CVD apparatus (1), reacts with the reactive silicon compound deposited in the CVD apparatus (1), It is diluted with nitrogen gas together with the PFC gas of the reaction, and is sent to an absorbent transfer type exhaust gas treatment device (2) and an absorber fixed type exhaust gas treatment device (3) described later.

吸収剤移送式の排ガス処理装置(2)は、前記PFCガスを分解処理する燃焼部(4)と、吸収剤を内部で移動させる反応器(5)と、吸収剤の表層部と芯部とを分離させる表層剥離手段(6)と、分離した表層部を導入して分級する振動篩で構成した分級手段(7)とを有している。   The absorbent transfer type exhaust gas treatment device (2) includes a combustion part (4) for decomposing the PFC gas, a reactor (5) for moving the absorbent inside, a surface layer part and a core part of the absorbent. A surface layer peeling means (6) for separating the water and a classifying means (7) composed of a vibrating sieve for introducing and classifying the separated surface layer portion.

吸収剤固定式の排ガス処理装置(3)は、前記PFCガスを分解処理する燃焼部(8)と、除塵部(9)と、吸収剤固定式の乾式除害器(10)とを有しており、燃焼部(8)、除塵部(9)との間に窒素ガス等の希釈ガス導入手段(11)が、また除塵部(9)と乾式除害器(10)との間に水分供給手段(12)が設けてある。   The absorbent-fixed exhaust gas treatment device (3) has a combustion part (8) for decomposing the PFC gas, a dust removing part (9), and an absorbent-fixed dry detoxifier (10). And a diluting gas introducing means (11) such as nitrogen gas is provided between the combustion section (8) and the dust removal section (9), and moisture is provided between the dust removal section (9) and the dry detoxifier (10). Supply means (12) is provided.

そして、吸収剤移送式の排ガス処理装置(2)の分級手段(7)の吸収剤導出口(13)から取出された吸収剤は混合器(14)及び造粒機(15)を介して吸収剤固定式の排ガス処理装置(3)の乾式除害器(10)に供給されるようにしてある。   The absorbent taken out from the absorbent outlet (13) of the classifying means (7) of the absorbent transfer type exhaust gas treatment device (2) is absorbed through the mixer (14) and the granulator (15). It is supplied to the dry type detoxifier (10) of the exhaust gas treatment device (3) of the agent fixed type.

CVD装置(1)から排出されるPFCガスは吸収剤移送式の排ガス処理装置(2)と吸収剤固定式の排ガス処理装置(3)とに供給して処理するようにしている。
吸収剤移送式の排ガス処理装置(2)では、燃焼部(4)での燃焼ガスの燃焼によって生じる水とPFCガスとの反応により分解生成ガスとしてのフッ化水素(HF)が生成される。この分解生成ガスを反応器(5)に導入し、反応器(5)内を流動する吸収剤と接触反応させ、処理された排ガスは、誘引ファン(16)を経て図示を省略した煙突に送給される。
The PFC gas discharged from the CVD apparatus (1) is supplied to the absorbent transfer type exhaust gas treatment apparatus (2) and the absorbent fixed type exhaust gas treatment apparatus (3) for processing.
In the absorbent transfer type exhaust gas treatment device (2), hydrogen fluoride (HF) as a decomposition product gas is generated by a reaction between water and PFC gas generated by combustion of combustion gas in the combustion section (4). This decomposition product gas is introduced into the reactor (5), brought into contact reaction with the absorbent flowing in the reactor (5), and the treated exhaust gas is sent to a chimney (not shown) via an induction fan (16). Be paid.

一方、反応器(5)内で前記分解生成ガスと接触して反応する吸収剤は、反応器(5)内を下降移動する石灰石で構成してあり、その移動は作動期と停止期とが所定間隔で繰り返される間歇作動で、かつ作動期においても移動と停止とを指定の間隔で繰り返す脈動となるように制御してある。そして、吸収剤(石灰石)は分解生成ガス(HF)と反応することでその表層にフッ化カルシウムを生成する。   On the other hand, the absorbent that contacts and reacts with the cracked gas in the reactor (5) is composed of limestone that moves downward in the reactor (5), and the movement has an operation period and a stop period. The intermittent operation is repeated at a predetermined interval, and the pulsation is controlled so that the movement and the stop are repeated at a specified interval even in the operation period. The absorbent (limestone) reacts with the decomposition product gas (HF) to generate calcium fluoride on the surface layer.

反応器(5)内で分解生成ガスと接触した吸収剤は表層部分は反応分に富んでいるが、その芯部分は未反応分に富んでいる。そして、フッ化水素等と反応した石灰石の表層は未反応の芯部分に比べて軟らかくなっているので、この吸収剤を穴開き円筒の回転体で構成した表層剥離手段(6)に導入して、回転移動させる間に、吸収剤の表層同士が擦れ合って、既反応分に富む表層部分と未反応分に富む芯部分とに分離する。この分離した吸収剤の内、直径2.5mm以上の芯部分を上記反応器(5)の上部に返送して再利用するとともに、既反応分に富む表層部分を分級手段(7)に送給する。   The absorbent in contact with the cracked product gas in the reactor (5) is rich in the reaction portion in the surface layer portion, but rich in the unreacted portion in the core portion. And since the surface layer of limestone reacted with hydrogen fluoride etc. is softer than the unreacted core part, this absorbent is introduced into the surface peeling means (6) constituted by a perforated cylindrical rotating body. During the rotational movement, the surface layers of the absorbent rub against each other and separate into a surface layer portion rich in the reacted components and a core portion rich in the unreacted components. Of the separated absorbent, the core part with a diameter of 2.5 mm or more is returned to the upper part of the reactor (5) and reused, and the surface layer part rich in the existing reaction is sent to the classifying means (7). To do.

分級手段(7)は、図示を省略した加振装置と、約100メッシュの篩分け具とで構成してあり、表層剥離手段(6)から送り込まれた表層部分を、0.15mmを篩い分け粒径として分級し、直径0.15mm未満を細粒、直径0.15mm〜2.5mmのものを中粒としている。この場合、細粒は中粒よりフッ素含有量が高くなっている。ちなみに反応器(5)での吸収剤の移送速度を8min/Hrから8min/1.5Hr程度で間歇作動し、かつ吸収剤を6m/Hrから3.6m/Hr程度の移送速度で移動させることより、回収した細粒と中粒との重量比率は細粒が15wt%、中粒が85wt%となり、細粒中のフッ化カルシウム(CaF)は60wt%以上、中粒中のフッ化カルシウム(CaF)は10wt%前後となった。この細粒中のフッ化カルシウム(CaF)は60wt%以上であることから、回収した細粒は、製鉄工程での脱燐・脱硫用原料として利用することのできる有価回収物となる。 The classifying means (7) is composed of a vibration device (not shown) and an approximately 100 mesh sieving tool. The surface layer portion fed from the surface peeling means (6) is screened by 0.15 mm. The particles are classified as a particle size. Fine particles having a diameter of less than 0.15 mm and medium particles having a diameter of 0.15 to 2.5 mm are used. In this case, the fine particles have a higher fluorine content than the medium particles. By the way, the absorbent transfer rate in the reactor (5) is intermittently operated at 8min / Hr to 8min / 1.5Hr, and the absorbent is moved at a transfer rate of 6m / Hr to 3.6m / Hr. Further, the weight ratio of the recovered fine particles to the medium particles is 15 wt% for the fine particles and 85 wt% for the medium particles, and the calcium fluoride (CaF 2 ) in the fine particles is 60 wt% or more, and the calcium fluoride in the medium particles (CaF 2 ) was around 10 wt%. Since the calcium fluoride (CaF 2 ) in the fine particles is 60 wt% or more, the recovered fine particles become a valuable recovered material that can be used as a raw material for dephosphorization / desulfurization in the iron making process.

分級手段(7)で分級して送り出された中粒は、混合器(14)に供給され、ここで炭酸カルシウム(CaCO)や水酸化カルシウム(Ca(OH))などのカルシウム系の粉末と混合してフッ素吸収剤とし、このフッ素吸収剤を造粒機(15)に送給して粒状に造粒し、この造粒されたフッ素吸収剤を吸収剤固定式の排ガス処理装置(3)の乾式除害器(10)に供給する。なお、本例では中粒とカルシウム系の粉末との混合物であるフッ素吸収剤を造粒して粒状体としているが、造粒を省略した中粒と粉体との混合物であってもよいが、乾式除害器での使用の利便性から造粒することが望ましい。 The intermediate grains classified and sent out by the classification means (7) are supplied to the mixer (14), where calcium-based powders such as calcium carbonate (CaCO 3 ) and calcium hydroxide (Ca (OH) 2 ) And mixed into a fluorine absorbent, and this fluorine absorbent is fed to a granulator (15) to be granulated, and the granulated fluorine absorbent is used as an absorbent-fixed exhaust gas treatment device (3 ) Is supplied to the dry detoxifier (10). In this example, the fluorine absorbent, which is a mixture of medium grains and calcium-based powder, is granulated to form granules, but may be a mixture of medium grains and powder without granulation. It is desirable to granulate from the convenience of use in a dry type abatement device.

吸収剤固定式の排ガス処理装置(3)では、燃焼部(8)での燃焼ガスの燃焼によって生じる水とPFCガスとの反応により分解生成ガスとしてのフッ化水素(HF)が生成される。
この分解生成ガスを除塵部(9)に窒素ガス等の希釈ガスとともに導入して、分解生成ガスから塵埃を除去し、この塵埃を除去した分解生成ガスに噴霧器などの水分供給手段(12)から水分を調量添加し、この水分が添加された分解生成ガスを乾式除害器(10)に送給し、この分解生成ガスを乾式除害器(10)内のフッ素吸収剤と反応させて、その反応生成物であるフッ化カルシウム(CaF)を蛍石代替物として回収する。
In the absorbent-fixed exhaust gas treatment device (3), hydrogen fluoride (HF) as a decomposition product gas is generated by a reaction between water and PFC gas generated by combustion of combustion gas in the combustion section (8).
This decomposition product gas is introduced into the dust removal section (9) together with a diluent gas such as nitrogen gas, dust is removed from the decomposition product gas, and the decomposition product gas from which the dust has been removed is supplied from a water supply means (12) such as a sprayer. A moisture is added in a metered amount, and the decomposition product gas to which the moisture has been added is sent to the dry detoxifier (10), and this decomposition product gas is reacted with the fluorine absorbent in the dry detoxifier (10). The reaction product, calcium fluoride (CaF 2 ), is recovered as a fluorite substitute.

なお乾式除害器(10)は、切換え使用される複数(図では3基)の反応筒(10a)(10b)(10c)で構成してあり、各反応筒(10a)(10b)(10c)にはフッ素吸収剤がペレット、ブリケット、顆粒状あるいはハニカム状に成形されて充填されている。   The dry type abatement device (10) is composed of a plurality (three in the figure) of reaction tubes (10a), (10b), and (10c) that are used for switching, and each reaction tube (10a) (10b) (10c ) Is filled with a fluorine absorbent formed into pellets, briquettes, granules or honeycombs.

乾式除害器(10)では各反応筒(10a)(10b)(10c)内で生成されたフッ化カルシウムは、所定の反応率に達すると各反応筒(10a)(10b)(10c)から取り出して回収容器(16)に回収し、この回収したフッ化カルシウムと新規なフッ化カルシウムとを混合器(17)に送給して混合し、この回収フッ化カルシウムと新規なフッ化カルシウムとをPFCガス(NF)製造装置(18)に供給してPFCガスを製造することで、乾式除害器(10)での反応生成物ををPFCガスの原料であるフッ素源として再利用する。なお、乾式除害器(10)で処理された分解生成ガスは無害なガスとして排出路(19)から系外に排出される。 In the dry detoxifier (10), the calcium fluoride produced in each reaction tube (10a), (10b), and (10c) is removed from each reaction tube (10a), (10b), and (10c) when a predetermined reaction rate is reached. Take out and collect in the recovery container (16), feed the recovered calcium fluoride and new calcium fluoride to the mixer (17) and mix them, and combine the recovered calcium fluoride with the new calcium fluoride. Is supplied to the PFC gas (NF 3 ) production device (18) to produce PFC gas, and the reaction product in the dry detoxifier (10) is reused as a fluorine source that is a raw material of PFC gas . Note that the decomposition product gas treated by the dry abatement device (10) is discharged out of the system from the discharge passage (19) as a harmless gas.

上述の排ガス処理系では、PFCガスを使用する装置としてCVD装置を例に説明したが、本発明はこれに限られるものではなく、エッチング装置その他のPFCガスを使用する装置におけるPFCガスの分解反応ガスの処理技術として適用できることは言うまでもない。   In the above-described exhaust gas treatment system, a CVD apparatus has been described as an example of an apparatus using PFC gas. However, the present invention is not limited to this, and PFC gas decomposition reaction in an etching apparatus or other apparatus using PFC gas. Needless to say, it can be applied as a gas processing technique.

また、吸収剤固定式の排ガス処理装置(3)において、希釈された処理ガス(分解生成ガス)に水分を添加する水分供給手段(12)として噴霧器を例に説明したが、このようなシャワーヘッドを用いたミスト状水分の添加のほかに、必要に応じて水蒸気発生器による高温度下での水蒸気の添加を行なわせるものであってもよい。このように乾式除害器(10)に導入するPFC希釈分解生成ガスに水分を量的制御して添加することにより、フッ素化合物と吸収剤との反応性を高めることができる。   Also, in the absorbent-fixed exhaust gas treatment device (3), the sprayer has been described as an example of the moisture supply means (12) for adding moisture to the diluted process gas (decomposition product gas). In addition to the addition of mist-like water using, water vapor may be added at a high temperature by a water vapor generator as necessary. Thus, the reactivity of a fluorine compound and an absorbent can be enhanced by adding water in a quantitatively controlled manner to the PFC dilution decomposition product gas introduced into the dry type detoxifier (10).

図2は、水分添加量をパラメータとした導入ガス温度と反応率との関係を調べる試験装置の概略構成図を示す。この試験装置は、フッ素吸収剤を充填した反応筒(20)の入口(21)にブロア(22)、流量計(23)、熱風発生器(24)が直列に配置される温風ライン(25)を接続し、熱風発生器(24)の出口側での温風ライン(25)に、HF貯蔵ボンベ(26)と流量計(27)を備えるHF供給ライン(28)と、噴霧器(29)を備える水分添加ライン(30)とを接続してなる構成とし、反応筒(20)の出口(31)側でHFガスの分析を行なうようにしている。   FIG. 2 shows a schematic configuration diagram of a test apparatus for examining the relationship between the introduced gas temperature and the reaction rate using the amount of water added as a parameter. This test apparatus is a hot air line (25) in which a blower (22), a flow meter (23), and a hot air generator (24) are arranged in series at an inlet (21) of a reaction tube (20) filled with a fluorine absorbent. ), An HF supply line (28) having an HF storage cylinder (26) and a flow meter (27) on the hot air line (25) on the outlet side of the hot air generator (24), and an atomizer (29) The HF gas is analyzed at the outlet (31) side of the reaction tube (20).

この試験装置での試験条件としては、HF供給ライン(28)を流動させるHFの流量は5L/minとした。一方温風ラインを通じて加える希釈空気量は1m/minとした。したがって、導入ガス中のHF濃度は0.5%となる。なお、この場合における希釈空気中の絶対湿度は8g/mであった。 As test conditions in this test apparatus, the flow rate of HF for flowing the HF supply line (28) was 5 L / min. On the other hand, the amount of dilution air added through the hot air line was 1 m 3 / min. Therefore, the HF concentration in the introduced gas is 0.5%. In this case, the absolute humidity in the diluted air was 8 g / m 3 .

上記の希釈HFガスに対して水分を添加しない乾燥状態C(温度20℃における相対湿度50%の状態。絶対湿度では8g/m)と、添加水分量が12g/minの水分添加状態B(絶対湿度:20g/min)と、添加水分量が22g/minの水分添加状態A(絶対湿度:30g/min)の3種類の希釈HFガスを発生させ、かつその温度条件を50℃、100℃、150℃、250℃にそれぞれ設定してなる12種類の各被試験希釈HFガスを反応筒(20)に導入して、反応率について調べた。 A dry state C in which moisture is not added to the diluted HF gas (a relative humidity of 50% at a temperature of 20 ° C., an absolute humidity of 8 g / m 3 ), and a water addition state B in which the amount of added water is 12 g / min ( Absolute humidity: 20 g / min) and water addition state A (absolute humidity: 30 g / min) with an added water amount of 22 g / min. Three types of diluted HF gas are generated, and the temperature conditions are 50 ° C. and 100 ° C. Twelve types of each diluted HF gas to be tested, each set at 150 ° C. and 250 ° C., were introduced into the reaction cylinder (20), and the reaction rate was examined.

その結果を図3に示す。各希釈HFガスは折れ線A、B、Cで示される通りであり、乾燥状態Cのものに比べて、水分添加状態Bでは100〜150℃の温度領域で反応率が10%程度高くなり、水分添加状態Aでは同じく20%程度高くなる結果が得られた。このように、水分を量的制御して添加することによって、吸収剤とHFガスとの反応性をより高め得ることが立証された。   The result is shown in FIG. Each diluted HF gas is as indicated by the polygonal lines A, B, and C. Compared to those in the dry state C, the reaction rate increases by about 10% in the temperature range of 100 to 150 ° C. in the moisture addition state B, In the addition state A, the result was also increased by about 20%. As described above, it has been proved that the reactivity between the absorbent and the HF gas can be further increased by adding moisture under quantitative control.

なお、本実施例に示すように、反応率向上には絶対湿度として20〜30g/mの範囲に制御すれば充分であるが、絶対湿度を30g/mを超える範囲に制御するようにしてもよい。但し、絶対湿度が高くなりすぎるとHFによる腐食度合いが加速することから、絶対湿度の上限としては、50g/m程度が望ましい。 Note that, as shown in this embodiment, although the increase reaction rate is sufficient to control the range of 20 to 30 g / m 3 as an absolute humidity, so as to control the absolute humidity in the range of greater than 30 g / m 3 May be. However, since the degree of corrosion by HF is accelerated when the absolute humidity becomes too high, the upper limit of the absolute humidity is preferably about 50 g / m 3 .

本発明は、半導体デバイスや液晶ディスプレー用デバイス等の製造工程での除害技術に使用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an abatement technique in a manufacturing process of a semiconductor device, a liquid crystal display device or the like.

本発明の実施形態にかかる排ガス処理系統図である。It is an exhaust gas treatment system diagram concerning the embodiment of the present invention. 水分添加量をパラメータとした導入ガス温度と反応率との関係を調べる試験装置の概略構成図である。It is a schematic block diagram of the test apparatus which investigates the relationship between the introductory gas temperature and reaction rate which made the moisture addition amount the parameter. 導入ガス温度と反応率との関係を示すグラフである。It is a graph which shows the relationship between introduction gas temperature and reaction rate.

符号の説明Explanation of symbols

5…吸収剤移送式反応器、7…分級手段、10…吸収剤固定式除害器。
5 ... Absorber transfer type reactor, 7 ... Classifying means, 10 ... Absorber fixed type abatement device.

Claims (3)

吸収剤移送式の反応器(5)と吸収剤固定式の除害器(10)とを具備する排ガス処理装置での排ガス処理方法であって、
吸収剤移送式の反応器(5)では、該反応器(5)内を移動している吸収剤にPFCガスの分解により生成した分解生成ガスを作用させて吸収剤と反応させ、その反応した吸収剤を既反応分に富む表層部分と、未反応分に富む芯部分とに分離し、この芯部分を吸収剤移送式の反応器(5)に返送して再利用し、上記表層部分を分級手段(7)で細粒と中粒とに分級し、この分級後の細粒を回収するとともに、中粒にカルシウム系粉末を混合してフッ素吸収剤とし、このフッ素吸収剤を上述の吸収剤固定式の除害器(10)に供給し、吸収剤固定式の除害器(10)に導入するPFCガスの分解により生成した分解生成ガスを空気あるいは窒素で希釈し、この希釈した分解生成ガスに水分を調量添加し、この水分を添加した分解生成ガスと吸収剤固定式の除害器(10)内のフッ素吸収剤とを反応させることにより、その反応生成物を蛍石代替品として回収することを特徴とする排ガス処理方法。
An exhaust gas treatment method in an exhaust gas treatment apparatus comprising an absorbent transfer type reactor (5) and an absorbent fixed type detoxifier (10),
In the absorbent transfer type reactor (5), the absorbent moving in the reactor (5) is caused to react with the absorbent by the decomposition product gas generated by the decomposition of the PFC gas, and the reaction is performed. The absorbent is separated into a surface layer portion rich in already reacted components and a core portion rich in unreacted components, and this core portion is returned to the absorbent transfer reactor (5) and reused, and the surface layer portion is reused. Classifying means (7) classifies fine particles and medium particles, collects the fine particles after classification, mixes calcium powder with the intermediate particles to form a fluorine absorbent, and absorbs the fluorine absorbent as described above. The decomposition product gas generated by the decomposition of the PFC gas supplied to the agent-fixed detoxifier (10) and introduced into the absorbent-fixed detoxifier (10) is diluted with air or nitrogen, and the diluted decomposition Water is added to the product gas in a metered amount, and the decomposition product gas to which this water is added and the absorbent fixed detoxifier (10) By reacting a fluorine absorber, exhaust gas treatment method characterized by recovering the reaction product as fluorite replacement.
分級手段(7)が振動篩であり、篩い分けの粒径を0.15mmとし、直径0.15mm未満を細粒、直径0.15mm以上2.5mm未満を中粒として分級する請求項1に記載の排ガス処理方法。 The classification means (7) is a vibrating sieve, wherein the particle size of the sieve is 0.15 mm, the diameter is less than 0.15 mm, and the diameter is 0.15 mm or more and less than 2.5 mm as the middle grain. The exhaust gas treatment method described. 前記中粒とカルシウム系粉末との混合物を粒状に造粒してフッ素吸収剤とした請求項1又は2に記載の排ガス処理方法。

The exhaust gas treatment method according to claim 1 or 2, wherein a mixture of the medium grains and the calcium-based powder is granulated into a fluorine absorbent.

JP2006153014A 2006-06-01 2006-06-01 Exhaust gas treatment method Pending JP2007319782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153014A JP2007319782A (en) 2006-06-01 2006-06-01 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153014A JP2007319782A (en) 2006-06-01 2006-06-01 Exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2007319782A true JP2007319782A (en) 2007-12-13

Family

ID=38853013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153014A Pending JP2007319782A (en) 2006-06-01 2006-06-01 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2007319782A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162859A (en) * 2006-12-28 2008-07-17 Toyo Denka Kogyo Co Ltd Manufacture method of synthetic fluorite, and manufacturing apparatus for synthetic fluorite
JP2009242215A (en) * 2008-04-01 2009-10-22 Iwatani Internatl Corp Method for recovering fluorine and method for purifying calcium fluoride
JP2009540126A (en) * 2006-06-16 2009-11-19 エドワーズ リミテッド Method and apparatus for removing fluorine from a gas stream
JP2011025180A (en) * 2009-07-28 2011-02-10 Iwatani Internatl Corp Method and apparatus for recovering fluorine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540126A (en) * 2006-06-16 2009-11-19 エドワーズ リミテッド Method and apparatus for removing fluorine from a gas stream
JP2008162859A (en) * 2006-12-28 2008-07-17 Toyo Denka Kogyo Co Ltd Manufacture method of synthetic fluorite, and manufacturing apparatus for synthetic fluorite
JP4523936B2 (en) * 2006-12-28 2010-08-11 東洋電化工業株式会社 Synthetic fluorite manufacturing method and synthetic fluorite manufacturing apparatus
JP2009242215A (en) * 2008-04-01 2009-10-22 Iwatani Internatl Corp Method for recovering fluorine and method for purifying calcium fluoride
JP2011025180A (en) * 2009-07-28 2011-02-10 Iwatani Internatl Corp Method and apparatus for recovering fluorine

Similar Documents

Publication Publication Date Title
EP3272414B1 (en) Method for removing nitrogen oxides from a gas stream
CA2856974C (en) Method of removing sulfur trioxide from a flue gas stream
CN101797466A (en) Wet flue gas desulphurizing method utilizing carbide slag slurry and device thereof
WO2005089909A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
CN110124507A (en) A kind of method and device thereof of multi-pollutant flue gas cleaning treatment
CA2622549A1 (en) Sulfur trioxide removal from a flue gas stream
CN109731450B (en) Two-section type flue gas post-treatment process
CN109569251B (en) By using a gas containing SO2Device and method for preparing dilute sulfuric acid from flue gas
CN110124490A (en) A kind of active carbon handles the method and device thereof of multi-pollutant flue gas and waste water reuse
JP2007319782A (en) Exhaust gas treatment method
WO2017024247A1 (en) Use of clinker kiln dust for gas scrubbing
JP2007191670A (en) System for producing alkaline soil-improving material, combined with flue-gas desulfurization
CN114213251B (en) Process for catalytic synthesis of dimethyl carbonate
US6749820B2 (en) Chloride/sulfate removal system
JP2001017831A (en) Treating agent for halogen gas
JP2004082103A (en) Method of treating gas containing so2
CN110124491A (en) A kind of multi-pollutant flue gas cooperates with the method and device thereof of processing and wastewater zero discharge
JP4344536B2 (en) Fluorine recovery method and apparatus
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
JP2006225219A (en) Method for recovering fluorine
JP4188815B2 (en) Perfluorocompound decomposition method and apparatus
CN214991194U (en) Ammonium phosphate production system
JPH07116451A (en) Process and device for fluid purification
JPH04156920A (en) Method for removing mercury in exhaust gas
KR100482818B1 (en) Gas cleaning system equipped with reactant recycling system to reduce Dioxine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023