JPH0889785A - Treatment of solid particle powder - Google Patents

Treatment of solid particle powder

Info

Publication number
JPH0889785A
JPH0889785A JP25442194A JP25442194A JPH0889785A JP H0889785 A JPH0889785 A JP H0889785A JP 25442194 A JP25442194 A JP 25442194A JP 25442194 A JP25442194 A JP 25442194A JP H0889785 A JPH0889785 A JP H0889785A
Authority
JP
Japan
Prior art keywords
gas
particle powder
solid particle
solid
harmful component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25442194A
Other languages
Japanese (ja)
Other versions
JP3091372B2 (en
Inventor
Osamu Nakajima
修 中島
Masao Ishimaru
正夫 石丸
Masahiro Watanabe
雅洋 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP06254421A priority Critical patent/JP3091372B2/en
Publication of JPH0889785A publication Critical patent/JPH0889785A/en
Application granted granted Critical
Publication of JP3091372B2 publication Critical patent/JP3091372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE: To efficiently remove a harmful gas stuck to a solid particle by intro ducing the solid granular particle powder containing the harmful component gas into a solid-gas contact vessel, allowing to contact countercurrently with an inert gas stream to release the harmful component gas and next, introducing into a stirring fluidized bed to remove the residual harmful component gas. CONSTITUTION: At the time of producing a titanium dioxide pigment by the gas phase oxidation reaction of titanium tetrachloride, a reaction gas A is separated into the solid particle and a by-product gas B in a solid-gas separation device 1. The solid-gas contact vessel 2 is connected to the bottom of the separation device 1 and chlorine gas is roughly replaced by allowing the solid particle containing a chlorine gas component to contact countercurrently with the inert gas flow. And in the case that the oxidation reaction is executed by a high pressure system, the reaction system is isolated by a pressure reducing vessel and is exhausted up to the atmospheric pressure. After that, the solid particle is fluidized with a fluidizing gas D in the stirring fluidized bed to reduce the concn. of chlorine gas. After that, the solid particle powder is supplied to a pressure roll type compactor 11 and is taken out as an intermediate product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有害成分ガスを含有する
金属粒子、金属酸化物など、とりわけハロゲンガス含有
二酸化チタンの固体粒子粉末から、有害成分ガスを、向
流固−気接触器と攪拌流動層とを用いて有害成分ガスを
効率的に除去処理する方法、さらに該除去処理した固体
粒子粉末を高密度化処理する方法に関する。
FIELD OF THE INVENTION The present invention relates to stirring a harmful component gas from a solid particle powder of metal dioxide, a metal oxide, etc. containing a harmful component gas, particularly a halogen gas-containing titanium dioxide, with a countercurrent solid-gas contactor. The present invention relates to a method for efficiently removing harmful component gas using a fluidized bed, and a method for densifying the solid particle powder after the removal processing.

【0002】[0002]

【発明の技術的背景と課題】一般的に気相反応によって
製造された金属粒子、金属酸化物粒子などの固体粒子粉
末は、サイクロン、バッグフィルターなどの固−気分離
捕集装置によって、副生ガス、未反応ガス、キャリヤー
ガスなどのガス流体から分離捕集される。
BACKGROUND OF THE INVENTION Solid particle powders such as metal particles and metal oxide particles, which are generally produced by a gas phase reaction, are by-produced by a solid-gas separation collector such as a cyclone or a bag filter. It is separated and collected from gas fluid such as gas, unreacted gas and carrier gas.

【0003】しかしながら、気相反応で発生する副生ガ
スや未反応ガスなどの有害成分ガスは、分離捕集された
固体粒子表面に付着されているほか、該固体粒子粉末中
に吸蔵されて取込まれ易く、このため有害成分の実質的
全部を固−気分離することはきわめて困難とされてい
る。
However, the harmful component gases such as by-product gas and unreacted gas generated in the gas phase reaction are attached to the surface of the separated and collected solid particles, and are also occluded and collected in the powder of the solid particles. Therefore, it is extremely difficult to perform solid-gas separation of substantially all harmful components.

【0004】ところで例えばハロゲン化チタンを気相で
酸化して二酸化チタンの粒子粉末を製造する気相系合成
法は、古くから行われてきているいわゆる硫酸法という
液相系合成法に対して、高白色度の分散性の優れた二酸
化チタン顔料を比較的小型の装置構成で大量生産が可能
で、かつ生産効率的にも、またコスト的にも有利であ
り、さらに工程より副生されるいわゆる廃棄物の発生量
が少ないなど、近年急速に工業的実施普及がはかられつ
つある。
By the way, for example, the vapor phase synthesis method for producing titanium dioxide particle powder by oxidizing titanium halide in the vapor phase is different from the liquid phase synthesis method called the sulfuric acid method which has been performed for a long time. The titanium dioxide pigment with high whiteness and excellent dispersibility can be mass-produced with a relatively small device configuration, and it is advantageous in terms of production efficiency and cost, and the so-called by-product of the process In recent years, industrial implementation and diffusion have been rapidly being promoted due to the small amount of waste generated.

【0005】しかして例えば前記気相系合成法におい
て、四塩化チタンを気相酸化することによって、生成す
る二酸化チタン微粒子粉末は、副生する刺激性臭気の塩
素ガスや未反応四塩化チタンガスなどの有害成分ガスか
らサイクロンやバッグフィルターで分離捕集される。分
離捕集された二酸化チタン微粉末には、塩素系不純物の
有害成分ガスが、約65〜75%程度(該二酸化チタン
微粉末含有ガス容積基準)残留しており、このものは種
々の適用媒体系で分散性などをはじめ顔料特性をいちじ
るしく損ねるとともに、腐食性や環境汚染性などから禁
忌されており、種々の除去方法が提案されている。
However, for example, in the gas phase synthesis method, titanium dioxide fine particle powder produced by gas phase oxidation of titanium tetrachloride is chlorine gas, which is a pungent odor produced as a by-product, and unreacted titanium tetrachloride gas. It is separated and collected by the cyclone and bag filter from the harmful component gas of. The titanium dioxide fine powder separated and collected contains about 65 to 75% of the harmful component gas of chlorine-based impurities (based on the volume of gas containing the titanium dioxide fine powder). In addition to impairing pigment properties such as dispersibility in the system, it is contraindicated from corrosiveness and environmental pollution, and various removal methods have been proposed.

【0006】例えば、前記のようにして固−気分離捕集
された二酸化チタン微粒子粉末は、水中に投入してスラ
リー状とし、水酸化ナトリウム、アンモニアなどのアル
カリで中和して残留している塩素系不純物を湿式系で除
去処理している。しかしながら前記のように湿式系処理
する場合は該処理後、濾過、洗浄、乾燥し、さらには粉
砕などの処理を必要とし、コスト高となるのみならず、
処理過程で二次的凝集などが惹起し易かったりする。と
りわけ分離捕集された二酸化チタン微粒子粉末を、次段
で表面仕上処理を施用せず、例えば遠隔地へスラリー輸
送し当該地で表面仕上処理を行う場合は、輸送コンテナ
ーの腐食性の問題とともに大量の水性媒液を輸送するた
めのコスト面の負担が大きく、また濾過、洗浄、乾燥、
粉砕などの処理を行った後、遠隔地へ輸送する場合は、
表面仕上処理時に、再度、スラリー化して該表面仕上処
理を施し、その後、濾過、洗浄、乾燥、粉砕などの処理
を繰返す必要があり、一層コスト面の負担が大きくな
る。
For example, the fine particles of titanium dioxide finely separated and collected as described above are put into water to form a slurry, which is neutralized with an alkali such as sodium hydroxide or ammonia and remains. Chlorine impurities are removed by a wet process. However, in the case of the wet system treatment as described above, after the treatment, filtration, washing, drying, and further treatment such as pulverization are required, which not only increases the cost,
Secondary agglomeration may easily occur during the treatment process. Especially when the titanium dioxide fine particles separated and collected are not subjected to the surface finishing treatment in the next stage, for example, when the slurry is transported to a remote place and the surface finishing treatment is carried out at that place, a large amount of the corrosiveness of the transportation container is generated. There is a large cost burden for transporting the aqueous medium, and filtration, washing, drying,
After transporting to a remote place after processing such as crushing,
At the time of the surface finishing treatment, it is necessary to re-slurry and perform the surface finishing treatment again, and then repeat the treatments such as filtration, washing, drying, and pulverization, which further increases the cost burden.

【0007】一方、前記固−気分離捕集された塩素系不
純物の有害成分ガスを含有する二酸化チタン微粒子粉末
を、いわゆる乾式系で除去処理する方法としては、例え
ば、(イ)気相反応で生成した二酸化チタン微粒子粉末
を、500〜800℃で加熱処理する方法、(ロ)前記
(イ)の処理において、水蒸気あるいは水蒸気とホウ酸
などのガスと反応させる方法、(ハ)前記(イ)におい
て、水蒸気や酸素などのガス流体を、二酸化チタン微粒
子粉末を含有するガス流体の流れに対して十字流となる
ように音速または超音速で噴射する方法などが提案され
ている。しかしながら、前記のこれらの方法による場合
には、有害成分ガスの除去が十分でなかったり、多量の
洗浄用ガスを必要とするため副生ガスの再利用が難しか
ったり、また高温での処理の場合には、エネルギーコス
トの増大を来たすのみならず、微粒子粉末が、粒子成長
したり、焼結して粗大化したりして顔料特性が損なわれ
易すかったりし、さらには前記水蒸気処理を行う場合に
は、生成した塩化水素ガスが設備の腐食を惹起するな
ど、いずれも未だ満足されるには至っておらず、その改
善が強く希求されている。
On the other hand, as a method for removing the titanium dioxide fine particle powder containing the harmful component gas of chlorine-based impurities collected by the solid-gas separation by a so-called dry system, for example, (a) a gas phase reaction A method of heat-treating the produced titanium dioxide fine particle powder at 500 to 800 ° C., (b) a method of reacting with water vapor or a gas such as boric acid in the treatment of (a) above, (c) the above (a) In JP-A-2004-242, there is proposed a method of injecting a gas fluid such as water vapor or oxygen at a sonic velocity or a supersonic velocity so as to form a cross flow with respect to the flow of the gas fluid containing titanium dioxide fine particles. However, in the case of these methods described above, the removal of harmful component gas is not sufficient, or it is difficult to reuse the by-product gas because a large amount of cleaning gas is required, and in the case of treatment at high temperature In addition to increasing the energy cost, the fine particle powder is likely to be impaired in the pigment properties due to particle growth, sintering and coarsening, and further, when performing the steam treatment. However, the hydrogen chloride gas generated has not yet been satisfied, such as causing corrosion of equipment, and its improvement is strongly desired.

【0008】[0008]

【課題を解決するための手段】本発明者等は、かねてよ
り、固体粒子粉末を含有したガス流体を固−気分離捕集
器で該固体粒子を分離捕集した有害成分ガスが残留した
固体粒子微粉末より、有害成分ガスを、比較的簡便な処
理手段で効率よく、工業的有利にその実質的全部を除去
し得る方法を提供することを目的として、種々検討を進
めた結果、固−気分離捕集器で分離捕集された有害成分
ガスを残留する固体粒子粉末を、先ず副生ガスの再利用
を阻害しない程度の比較的少量の不活性ガスで有害成分
ガスを置換洗浄して大半の有害成分ガスを除去した後、
次いで攪拌機構付流動層中で、なお残留吸蔵している有
害成分ガスを放出除去処理することによって、固体粒子
のチャンネリングや閉塞を惹起することなく、比較的簡
潔な手段で工業的有利に有害成分ガスの実質的大部分を
洗浄除去し得ること、さらにその際、高密度化処理を前
記処理に引続いて行うことによって、有害成分ガスが除
去された固体粒子微粉末の移送、貯蔵、包装、輸送など
における粉体の取扱い作業性がいちじるしく容易となる
とともに、とりわけ固体粒子微粉末の有害成分ガスの除
去処理と該処理微粉末の取出し移送等の連続システム化
が容易となり、またバルク輸送作業等の効率化、安全
性、コスト軽減化を図る上でもきわめて好適なものとな
し得ることの知見を得、本発明を完成するに至ったもの
である。
The inventors of the present invention have long been involved in the solid-gas separation collector collecting a gas fluid containing a solid particle powder to collect the solid particles. As a result of various studies aimed at providing a method capable of efficiently removing substantially no harmful component gas from fine particle powder with a relatively simple treatment means, and industrially advantageously, a solid- The solid particle powder that remains the harmful component gas separated and collected by the gas separation collector is first cleaned by replacing the harmful component gas with a relatively small amount of inert gas that does not hinder the reuse of the byproduct gas. After removing most harmful gas,
Then, in the fluidized bed with a stirring mechanism, the residual component toxic gas which is still stored is released and removed, thereby causing no industrially advantageous harmful effect by relatively simple means without causing channeling or clogging of solid particles. Transfer, storage and packaging of solid fine particle powder from which harmful component gas has been removed by being able to wash away substantially all of the component gas, and by further performing a densification treatment subsequent to said treatment. In addition to the ease of handling of powder during transportation, it is easy to perform continuous system operation such as removal of harmful gas from solid particles and removal and transfer of the processed fine powder. The present invention has been completed on the basis of the finding that it can be made extremely suitable for improving efficiency, safety, and cost reduction.

【0009】すなわち本発明は、(1)有害成分ガスを
含有する固体粒子粉末を、固−気接触器に導入して不活
性ガス流と向流接触させて有害成分ガスを放出させ、次
いで攪拌流動層に導入して残留有害成分ガスを除去処理
することを特徴とする固体粒子粉末の処理方法、(2)
有害成分ガスを含有する固体粒子粉末を、固−気接触器
に導入して不活性ガス流と向流接触させて有害成分ガス
を放出させ、次いで攪拌流動層に導入して残留有害成分
ガスを除去処理し、しかる後該処理固体粒子粉末を高密
度化処理することを特徴とする固体粒子粉末の処理方
法、(3)固体粒子粉末が、ハロゲン化チタンを気相酸
化して得られる二酸化チタン粒子粉末である前1項また
は2項の固体粒子粉末の処理方法、(4)ハロゲン化チ
タンが、四塩化チタンである前3項の固体粒子粉末の固
体粉末の処理方法、(5)有害成分ガスが、ハロゲンガ
スである前1項または2項の固体粉末の処理方法、
(6)ハロゲンガスが、塩素ガスである前5項の固体粉
末の処理方法、(7)固−気接触器における不活性ガス
流が、吹出し速度が5〜30m/秒でかつ空塔速度が1
〜10cm/秒である前1項または2項に固体粒子粉末の
処理方法、(8)攪拌流動層の流動化ガス速度が、5〜
30cm/秒である。前1項または2項の固体粒子粉末の
処理方法、(9)攪拌流動層中の攪拌翼の速度が、周端
で同一地点を通過する間隔が1〜5秒である前1項また
は2項の固体粒子粉末の処理方法、(10)攪拌翼が、縦
型形状である前9項の固体粒子粉末の処理方法、(11)
嵩密度を、0.8g/cm3 以上に高密度化処理する前2
項の固体粒子粉末の処理方法、(12)高密度化処理を、
加圧ロール成形機で行なう前2項の固体粒子粉末の処理
方法および、(13)高密度化処理を、加圧ロール成形機
のロール圧縮荷重が0.5〜4ton/cm2 以上で行なう
前2項の固体粒子粉末の処理方法である。
That is, according to the present invention, (1) a solid particle powder containing a harmful component gas is introduced into a solid-gas contactor and countercurrently contacted with an inert gas flow to release the harmful component gas, followed by stirring. A method for treating solid particle powder, which comprises introducing into a fluidized bed to remove residual harmful component gas, (2)
Solid particle powder containing harmful component gas is introduced into a solid-gas contactor to make countercurrent contact with the inert gas flow to release the harmful component gas, and then introduced into a stirred fluidized bed to remove residual harmful component gas. A method for treating solid particle powder, which comprises removing and then densifying the treated solid particle powder; (3) Titanium dioxide obtained by subjecting titanium halide to vapor phase oxidation The method for treating the solid particle powder as described in the above item 1 or 2 which is a particle powder, (4) The method for treating a solid powder as the solid particle powder as described in the above item 3 in which the titanium halide is titanium tetrachloride, (5) a harmful component The method for treating a solid powder as described in 1 or 2 above, wherein the gas is a halogen gas,
(6) The halogen gas is chlorine gas, the method for treating the solid powder as described in the preceding 5 items, (7) The inert gas flow in the solid-gas contactor has a blowing rate of 5 to 30 m / sec and a superficial velocity of 1
The method for treating solid particle powder as described in 1 or 2 above, which is 10 cm / sec, and (8) the fluidizing gas velocity of the stirred fluidized bed is 5 to
30 cm / sec. Item 1. The method for treating solid particle powder according to Item 1 or 2 above, wherein (9) the speed of the stirring blade in the stirring fluidized bed is such that the interval at which the same point at the peripheral edge passes is 1 to 5 seconds. Solid particle powder treatment method of (10), the stirring blade has a vertical shape, the solid particle powder treatment method of the preceding 9 items, (11)
Before densifying the bulk density to 0.8 g / cm 3 or more 2
Item 12, solid particle powder treatment method, (12) densification treatment,
Before carrying out the method for treating solid particle powder of the preceding 2 performed by a pressure roll molding machine and (13) densification treatment at a roll compression load of the pressure roll molding machine of 0.5 to 4 ton / cm 2 or more. This is the method for treating solid particle powder according to item 2.

【0010】本発明は、気相反応によって得られる一般
的な金属粒子、金属酸化物粒子、金属窒化物粒子、金属
炭化物粒子などの固体粒子に含有される有害成分ガスの
除去処理に適用し得るものであるが、とりわけ塩素系不
純物などの有害ハロゲンガスが副生される気相反応系に
よって固体粒子を製造するような、例えば四塩化チタン
を気相反応させて二酸化チタン微粒子粉末を製造した
り、四塩化ケイ素を気相反応させて二酸化ケイ素微粒子
粉末を製造したりする場合には特に好適である。
INDUSTRIAL APPLICABILITY The present invention can be applied to the treatment for removing harmful component gas contained in solid particles such as general metal particles, metal oxide particles, metal nitride particles and metal carbide particles obtained by gas phase reaction. In particular, such as producing solid particles by a vapor phase reaction system in which harmful halogen gas such as chlorine impurities is by-produced, for example, titanium tetrachloride is vapor-phase reacted to produce fine particles of titanium dioxide. In particular, it is particularly suitable when the silicon dioxide fine powder is produced by subjecting silicon tetrachloride to a gas phase reaction.

【0011】本発明の適用にあたって、種々の気相反応
によって発生する固体粒子を含有したガス流体を固−気
分離器に導入して該固体粒子とガスとを分離する。固−
気分離器としては、粉体工業で一般的に用いられている
種々の乾式の分離器、例えばサイクロンなどの遠心分離
器、バッグフィルターなどの濾過分離器、電気集塵機な
ど静電分離器などが挙げられる。
In applying the present invention, a gas fluid containing solid particles generated by various gas phase reactions is introduced into a solid-gas separator to separate the solid particles and the gas. Solid-
Examples of the gas separator include various dry separators generally used in the powder industry, such as a centrifugal separator such as a cyclone, a filter separator such as a bag filter, and an electrostatic separator such as an electric dust collector. To be

【0012】前記のようにして固−気分離器でガス流体
から分離捕集された有害成分ガス含有固体粒子微粉末
を、本発明方法によって処理するには、種々の態様を適
用し得るが、次下、本発明方法を実施するための装置構
成の一例を示す図1にもとづいて、説明する。
Various modes can be applied to the treatment of the fine powder of the harmful component gas-containing solid particles separated and collected from the gas fluid by the solid-gas separator as described above by the method of the present invention. The following description will be made with reference to FIG. 1, which shows an example of a device configuration for carrying out the method of the present invention.

【0013】固−気分離器1で分離捕集された有害成分
ガスを含有する固体粒子微粉末は、先ず1の底部から降
下管状の向流固−気接触器2に導入される。他方2の底
部よりは不活性ガスが導入され、固体粒子は2を降下し
ながら不活性ガスの上向流と向流接触することによっ
て、固体粒子微粉末に含有される有害成分ガスは、置換
洗浄される。前記不活性ガス流は、副生ガスの再利用が
阻害されないようになるべく少量であるのが望ましく、
また流速としては、吹出し速度が5〜30m/秒程度で
ありかつ空塔速度1〜10cm/秒程度である。前記範囲
より低きに過ぎすると有害成分ガスの置換洗浄が十分に
なされず、一方前記範囲より高きに過ぎる副生ガスの再
利用が阻害され易くまた固体粒子微粉末の所望量の抜出
し移送が損なわれたりする。なお気相反応系が高圧系で
操作される場合は、前記固体粒子微粉末の抜出し移送に
際してバルブの開閉操作を繰り返しながら大気圧迄減圧
する。固体粒子や気相反応系の種類、有害成分ガスの種
類、装置の構成や大きさなどにより異なり一概に言えな
いが、前記の処理によって、被処理固体粒子が含有する
有害成分ガスの約90〜96%程度を置換除去すること
ができる。
The fine powder of solid particles containing the harmful component gas separated and collected by the solid-gas separator 1 is first introduced into the countercurrent solid-gas contactor 2 in the form of a falling tube from the bottom of 1. On the other hand, an inert gas is introduced from the bottom of 2, and the solid particles come into contact with the upward flow of the inert gas while descending 2 so that the harmful component gas contained in the solid particle fine powder is replaced. To be washed. The inert gas flow is desirably as small as possible so that the reuse of the by-product gas is not hindered,
As for the flow velocity, the blowing velocity is about 5 to 30 m / sec and the superficial velocity is about 1 to 10 cm / sec. If it is lower than the above range, replacement cleaning of harmful component gas is not sufficiently performed, and on the other hand, the reuse of byproduct gas that is higher than the above range is likely to be hindered, and the extraction and transfer of a desired amount of solid fine particles is impaired. Get drunk. When the gas phase reaction system is operated at a high pressure, the pressure is reduced to atmospheric pressure by repeating the opening / closing operation of the valve when the solid particle fine powder is extracted and transferred. It depends on the type of solid particles and gas-phase reaction system, the type of harmful component gas, the configuration and size of the device, etc., and cannot be generally stated. About 96% can be replaced and removed.

【0014】前記のようにして不活性ガス流による処理
を行った固体微粒子粉末は、次いで攪拌機構付きの流動
層8に導入し、他方8の底部より多孔板10を介して気
体を吹込むことによって流動化させるとともに攪拌機に
よる強制的な剪断作用により、固体粒子の表面に付着し
たり、粒子間隙に吸蔵されたりしている残留有害成分ガ
スを、きわめて効率よくガス洗浄して除去することがで
きる。前記吹込み気体としては種々のものを使用し得る
が、例えば空気、酸素、窒素ガスなどを使用し得る。攪
拌流動層の流動化速度および、攪拌翼の速度は、それぞ
れ5〜30cm/秒程度でありまた周端速度が1〜5秒(同
一地点を通過する間隔)程度であるのがよい。前記攪拌
翼の形状は種々の型式のものを使用し得るがなるべく縦
方向に固体粒子を剪断するような形状のもので、縦形の
種々型式のものが好ましい。前記流動化速度が前記範囲
より、小さ過ぎると有害成分ガスの所望の除去効果がも
たらされず、一方前記範囲より大き過ぎるといわゆるピ
ストンフローを惹起し流動層の均一性が損なわれ効率的
なガス洗浄効果がもたらされなくなる。
The solid fine particle powder treated by the inert gas flow as described above is then introduced into the fluidized bed 8 with a stirring mechanism, and the gas is blown from the bottom of the other 8 through the porous plate 10. It is possible to remove the residual harmful component gas that adheres to the surface of the solid particles or is occluded in the interstices of the particles by gas cleaning with extremely efficient gas cleaning due to the fluidization and the forced shearing action by the stirrer. . Various kinds of gas can be used as the blowing gas, and for example, air, oxygen, nitrogen gas or the like can be used. The fluidization speed of the stirring fluidized bed and the speed of the stirring blade are preferably about 5 to 30 cm / sec, and the peripheral edge speed is preferably about 1 to 5 seconds (interval passing through the same point). Although various types of stirring blades can be used, the stirring blades are shaped to shear the solid particles in the vertical direction as much as possible, and various vertical types are preferable. If the fluidization rate is lower than the above range, the desired effect of removing harmful component gases cannot be obtained, while if it is higher than the above range, so-called piston flow is induced and the uniformity of the fluidized bed is impaired, and efficient gas cleaning is performed. It has no effect.

【0015】残留有害成分ガスを含有した固体粒子は、
攪拌流動層8の上部もしくは側部から連続的にあるいは
間欠的に供給され所定時間洗浄ガスと混合接触した後排
出される。排気ガスは、有害成分ガスを含んでいるので
吸収設備に導入して無害処理後排出される。
Solid particles containing residual harmful component gas are
It is continuously or intermittently supplied from the upper part or the side part of the agitated fluidized bed 8, and is mixed with the cleaning gas for a predetermined time, and is then discharged. Since the exhaust gas contains the harmful component gas, it is introduced into the absorption equipment and is harmlessly discharged.

【0016】本発明においては、前記のようにして攪拌
流動層中で残留有害成分ガスが除去処理された固体粒子
微粉末を、さらに高密度化処理して嵩密度を高め当該粉
体の移送、包装、保管、輸送などにおける取扱作業性を
一層容易にするとともに、コスト面でも工業的優位性を
さらに高めることができる。前記の高密度化処理は、種
々の方法によっておこなうことができるが、例えば加圧
ロール式の圧縮成形機を用いて嵩密度を0.8g/cm3 以上
に高めることによって、フレーク状の解れ易い粉粒体を
得ることができる。このものは前記取扱い作業性が良好
なものであって、かつその後の水性スラリー化において
容易に優れた分散懸濁系とし得るものである。
In the present invention, the solid particulate fine powder from which the residual harmful component gas has been removed in the stirred fluidized bed as described above is further densified to increase the bulk density, and the powder is transferred, The handling workability in packaging, storage, transportation and the like can be further facilitated, and the industrial superiority in cost can be further enhanced. The above-mentioned densification treatment can be carried out by various methods. For example, by increasing the bulk density to 0.8 g / cm 3 or more by using a compression roll type compression molding machine, a flake-like easily crushed powder is obtained. Granules can be obtained. This product has a good handling workability and can be easily used as an excellent dispersion-suspension system in the subsequent formation of an aqueous slurry.

【0017】[0017]

【実施例】実施例について図1を参照して説明すると、
四塩化チタンの気相酸化反応によって二酸化チタン顔料
を製造する工程で、反応ガスAを固−気分離装置1で固
体粒子と副生ガスBとに分離する。固−気分離装置1の
下部に向流固−気接触器2を接続し、塩素ガス成分を含
有した固体粒子と不活性ガスを向流接触させ、塩素ガス
を粗置換する。この接触器は内径30cmで長さ2mであ
る。固体粒子の見掛け降下速度は1〜5cm/秒である。
この接触器下部管壁に4mm径の孔を周16個開け、不活
性ガスCを5〜20cm/秒の速度で固体粒子に吹付け、
上昇流も含めて塩素ガスを粗置換する。この時700,000p
pmの入口塩素ガス濃度が約30,000ppm迄除去される。こ
こでの除去率は90%以上である。減圧容器4は、酸化
反応が高圧系で行なわれる場合、ここで反応系との遮断
を行なうと同時に次の操作のため大気圧に下げる装置で
ある。操作はバルブ3,5,6の開閉で次のようにバル
ブ5,6閉−3開−3閉−6開−6閉−5開−5閉の順
で行なう。減圧容器の大きさは攪拌流動層の大きさ及び
固体粒子の供給方法によって決定される。減圧時排気さ
れるガスは、塩素ガスを含んでいるので吸収塔12で吸
収処理する。次の攪拌流動層は内径500mm、高さ2,50
0mm の透明塩ビで作られており、下部分散盤は2mm径の
孔がピッチ12mm(開口比2.5%)で開けられてい
る。攪拌機翼形は門型で、外径は485mm 、高さは500mm
、翼巾は75mmの2枚羽根であり、5〜30回転/分で
回転する。固体粒子の静置層高さを500 〜1000mmとし、
流動ガスDとして空気を用い、空塔速度5〜30cm/秒
で該固体粒子を流動化させると、20〜150秒の滞留
時間で塩素ガス濃度を固体取扱い上支障のない0.05
ppm 以下に除去することができる。次に塩素ガスが除去
された固体粒子は一般的な加圧ロール型圧縮機11に供
給され、バインダーの添加なしで、操作圧力0.5〜4
ton/cm2 で該固体粒子の嵩密度を0.8g/cm2 以上と
し、中間製品として取出される。
EXAMPLES Examples will be described with reference to FIG.
In the step of producing a titanium dioxide pigment by a gas phase oxidation reaction of titanium tetrachloride, the reaction gas A is separated into solid particles and a byproduct gas B by the solid-gas separation device 1. A countercurrent solid-gas contactor 2 is connected to the lower part of the solid-gas separator 1, and the solid particles containing the chlorine gas component are brought into countercurrent contact with the inert gas to roughly replace the chlorine gas. This contactor has an inner diameter of 30 cm and a length of 2 m. The apparent descending velocity of solid particles is 1 to 5 cm / sec.
16 holes of 4 mm diameter were made in the lower tube wall of this contactor, and an inert gas C was sprayed on the solid particles at a speed of 5 to 20 cm / sec.
Roughly replace chlorine gas including the upward flow. At this time 700,000p
The chlorine gas concentration at the inlet of pm is removed up to about 30,000 ppm. The removal rate here is 90% or more. When the oxidation reaction is carried out in a high pressure system, the decompression container 4 is a device that shuts off the reaction system here and simultaneously lowers it to atmospheric pressure for the next operation. The operation is performed by opening and closing the valves 3, 5 and 6 in the order of valves 5 and 6 closed-3 opened-3 closed-6 opened-6 closed-5 opened-5 closed. The size of the vacuum vessel is determined by the size of the stirred fluidized bed and the method of supplying solid particles. The gas exhausted at the time of decompression contains chlorine gas, and therefore is absorbed in the absorption tower 12. The next stirred fluidized bed has an inner diameter of 500 mm and a height of 2,50
It is made of 0 mm transparent PVC, and the lower dispersion plate has 2 mm diameter holes with a pitch of 12 mm (opening ratio 2.5%). Stirrer airfoil is gate type, outer diameter is 485 mm, height is 500 mm
, Has a blade width of 75 mm, and rotates at 5 to 30 rpm. The height of the stationary layer of solid particles is 500-1000 mm,
When air is used as the flowing gas D and the solid particles are fluidized at a superficial velocity of 5 to 30 cm / sec, the chlorine gas concentration is 0.05 at the residence time of 20 to 150 seconds, which does not hinder solid handling.
It can be removed below ppm. Next, the solid particles from which the chlorine gas has been removed are supplied to a general pressure roll type compressor 11, and the operating pressure is 0.5 to 4 without addition of a binder.
The bulk density of the solid particles is 0.8 g / cm 2 or more at ton / cm 2 , and the solid particles are taken out as an intermediate product.

【0018】[0018]

【発明の効果】本発明は、有害ガスを含有する金属粒
子、金属酸化物などの固体粒子を固−気分離装置で分離
し、該固体粒子を向流固−気接触器を用いて不活性ガス
で有害ガスを粗置換し、該固体粒子を洗浄する。次に均
一で安定な流動層を形成する縦型攪拌機付流動層を用い
て、該固体粒子に付着する有害ガスを除去する方法であ
って、上記有害ガスを含有する金属粒子、金属酸化物な
どの固体粒子に付着する有害ガスを、取扱い上支障のな
い濃度まで除去することができる。さらに、該固体粒子
を加圧ロール成形機を用いて嵩密度を上げることによっ
て、取扱いが容易な乾燥粉末として取り出すことができ
る。このものは、残留有害成分ガスによる装置腐食や、
例えば顔料特性などの物性阻害を排除し得る安定した嵩
密度もコンパクトな固体粒子粉末であり、遠隔地などへ
のバルク輸送や、当該地での仕上処理や加工処理での生
産性の向上や高品質化を図る上で、工業的にきわめて有
用なものである。
INDUSTRIAL APPLICABILITY The present invention separates solid particles such as metal particles and metal oxides containing harmful gas by a solid-gas separator, and the solid particles are inertized by using a countercurrent solid-gas contactor. The harmful gas is roughly replaced with gas to wash the solid particles. Next, a method of removing harmful gas adhering to the solid particles by using a fluidized bed with a vertical stirrer to form a uniform and stable fluidized bed, including metal particles and metal oxides containing the harmful gas. The harmful gas adhering to the solid particles can be removed to a concentration that does not hinder the handling. Further, the solid particles can be taken out as a dry powder which can be easily handled by increasing the bulk density by using a pressure roll molding machine. This is due to equipment corrosion due to residual harmful component gas,
For example, it is a solid particle powder that has a stable bulk density that can eliminate physical properties such as pigment properties and is compact, and can be used for bulk transportation to remote areas, improving productivity in finishing processing and processing at that location, and improving high productivity. It is industrially very useful for quality improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の固体粒子粉末の処理方法の実
施に好適な処理装置構成の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of a processing apparatus configuration suitable for carrying out the method for processing solid particle powder of the present invention.

【符号の説明】[Explanation of symbols]

A 気相反応ガス(含固体粒子) B 副生ガス C 不活性ガス D 流動ガス 1 固−気分離装置 2 向流固−気接触器 3,5,6 バルブ 4 減圧容器 7 定量供給装置 8 攪拌流動層 9 攪拌翼 10 分散盤 11 加圧ロール圧縮成形機 12 吸収塔 A gas-phase reaction gas (containing solid particles) B by-product gas C inert gas D flowing gas 1 solid-gas separator 2 countercurrent solid-gas contactor 3, 5, 6 valve 4 decompression container 7 quantitative supply device 8 stirring Fluidized bed 9 Stirring blade 10 Disperser 11 Pressure roll compression molding machine 12 Absorption tower

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】有害成分ガスを含有する固体粒子粉末を、
固−気接触器に導入して不活性ガス流と向流接触させて
有害成分ガスを放出させ、次いで攪拌流動層に導入して
残留有害成分ガスを除去処理することを特徴とする固体
粒子粉末の処理方法。
1. A solid particle powder containing a harmful component gas,
Solid particle powder characterized by being introduced into a solid-gas contactor to cause countercurrent contact with an inert gas flow to release harmful component gas, and then introduced into a stirred fluidized bed to remove residual harmful component gas. Processing method.
【請求項2】有害成分ガスを含有する固体粒子粉末を、
固−気接触器に導入して不活性ガス流と向流接触させて
有害成分ガスを放出させ、次いで攪拌流動層に導入して
残留有害成分ガスを除去処理し、しかる後該処理固体粒
子粉末を高密度化処理することを特徴とする固体粒子粉
末の処理方法。
2. A solid particle powder containing a harmful component gas,
It is introduced into a solid-gas contactor and countercurrently contacted with an inert gas flow to release a harmful component gas, and then introduced into a stirred fluidized bed to remove residual harmful component gas, and then the treated solid particle powder. A method for treating a solid particle powder, which comprises subjecting a solid to a densification treatment.
【請求項3】固体粒子粉末が、ハロゲン化チタンを気相
酸化して得られる二酸化チタン粒子粉末である請求項1
または2の固体粒子粉末の処理方法。
3. The solid particle powder is titanium dioxide particle powder obtained by vapor-phase oxidation of titanium halide.
Alternatively, the method for treating solid particle powder according to item 2.
【請求項4】ハロゲン化チタンが、四塩化チタンである
請求項3の固体粒子粉末の処理方法。
4. The method for treating solid particle powder according to claim 3, wherein the titanium halide is titanium tetrachloride.
【請求項5】有害成分ガスが、ハロゲンガスである請求
項1または2の固体粒子粉末の処理方法。
5. The method for treating solid particle powder according to claim 1, wherein the harmful component gas is a halogen gas.
【請求項6】ハロゲンガスが、塩素ガスである請求項5
の固体粒子粉末の処理方法。
6. The halogen gas is chlorine gas.
Method for treating solid particle powder of.
【請求項7】固−気接触器における不活性ガス流の吹出
し速度が5〜30m/秒で、かつ空塔速度が1〜10cm
/秒である請求項1または2の固体粒子粉末の処理方
法。
7. A solid-gas contactor with an inert gas flow having a blowing rate of 5 to 30 m / sec and a superficial velocity of 1 to 10 cm.
/ Sec. The method for treating solid particle powder according to claim 1 or 2.
【請求項8】攪拌流動層の流動化ガス速度が、5〜30
cm/秒である請求項1または2の固体粒子粉末の処理方
法。
8. The fluidizing gas velocity of the stirred fluidized bed is 5 to 30.
The method for treating a solid particle powder according to claim 1 or 2, wherein the method is cm / sec.
【請求項9】攪拌流動層中の攪拌翼の速度が、周端で同
一地点を通過する間隔が1〜5秒である請求項1または
2の固体粒子粉末の処理方法。
9. The method for treating solid particle powder according to claim 1, wherein the speed of the stirring blade in the stirring fluidized bed is such that the intervals at which the blades pass through the same point at the peripheral edge are 1 to 5 seconds.
【請求項10】攪拌翼が、縦型形状である請求項9の固
体粒子粉末の処理方法。
10. The method for treating solid particle powder according to claim 9, wherein the stirring blade has a vertical shape.
【請求項11】嵩密度を、0.8g/cm3 以上に高密度
化処理する請求項2の固体粒子粉末の処理方法。
11. The method for treating solid particle powder according to claim 2, wherein the bulk density is densified to 0.8 g / cm 3 or more.
【請求項12】高密度化処理を、加圧ロール成形機で行
なう請求項2の固体粒子粉末の処理方法。
12. The method for treating solid particle powder according to claim 2, wherein the densification treatment is performed by a pressure roll molding machine.
【請求項13】高密度化処理を、加圧ロール成形機のロ
ール圧縮荷重が0.5〜4ton/cm2 以上で行なう請求項
2の固体粒子粉末の処理方法。
13. The method for treating solid particle powder according to claim 2, wherein the densification treatment is carried out at a roll compression load of a pressure roll forming machine of 0.5 to 4 ton / cm 2 or more.
JP06254421A 1994-09-21 1994-09-21 Solid particle powder treatment method Expired - Fee Related JP3091372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06254421A JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06254421A JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP36489997A Division JP3169351B2 (en) 1994-09-21 1997-12-19 Flake-like titanium dioxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0889785A true JPH0889785A (en) 1996-04-09
JP3091372B2 JP3091372B2 (en) 2000-09-25

Family

ID=17264752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06254421A Expired - Fee Related JP3091372B2 (en) 1994-09-21 1994-09-21 Solid particle powder treatment method

Country Status (1)

Country Link
JP (1) JP3091372B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076876A (en) * 2004-08-11 2006-03-23 Showa Denko Kk Particulate titanium dioxide, its manufacturing method and its application
US8298507B2 (en) 2004-08-11 2012-10-30 Showa Denko K.K. Fine particulate titanium dioxide, and production process and use thereof
JP2012211076A (en) * 2004-08-11 2012-11-01 Showa Denko Kk Fine particle titanium dioxide, and production method and application of the same
EP3653291A1 (en) * 2018-11-19 2020-05-20 Hamilton Sundstrand Corporation Powder cleaning systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076876A (en) * 2004-08-11 2006-03-23 Showa Denko Kk Particulate titanium dioxide, its manufacturing method and its application
US8298507B2 (en) 2004-08-11 2012-10-30 Showa Denko K.K. Fine particulate titanium dioxide, and production process and use thereof
JP2012211076A (en) * 2004-08-11 2012-11-01 Showa Denko Kk Fine particle titanium dioxide, and production method and application of the same
EP3653291A1 (en) * 2018-11-19 2020-05-20 Hamilton Sundstrand Corporation Powder cleaning systems and methods
US11097340B2 (en) 2018-11-19 2021-08-24 Hamilton Sundstrand Corporation Powder cleaning systems and methods
US11980880B2 (en) 2018-11-19 2024-05-14 Hamilton Sundstrand Corporation Powder cleaning systems and methods

Also Published As

Publication number Publication date
JP3091372B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US4246242A (en) Method of removing gaseous pollutants from flue gas
JP5676471B2 (en) Process and system for producing silicon tetrafluoride from fluorosilicate in a fluidized bed reactor
US4552734A (en) Fluidization process for removing total reduced sulfur compounds from industrial gases
JP2019502890A (en) Aluminum melting and black dross recycling system and method
US5219543A (en) Process and apparatus for removing dust, sulfur compounds and nitrogen oxides from combustion exhaust gases
CN105648241A (en) Method for comprehensively recovering valuable metal including tungsten, vanadium and titanium in waste vanadium, tungsten and titanium denitration catalyst
US4847054A (en) Process for catalytically reducing NO contained in a gas
CA1099245A (en) Method and apparatus for removing zinc type metals and compounds in dust recovery process in iron manufacture
CN102787011A (en) Comprehensive treatment technology of waste mortar processing by crystalline silicon with no sewage and solid waste discharge
JPS6234684B2 (en)
JP3169351B2 (en) Flake-like titanium dioxide powder and method for producing the same
JPH0889785A (en) Treatment of solid particle powder
US3745207A (en) Process for the recovery of waste pickle liquor
JPS5933878B2 (en) How to dispose of radioactive solid waste
JP3148334B2 (en) Dry collection method of solid particles from gas fluid containing solid particles
US4296079A (en) Method of manufacturing aluminum sulfate from flue gas
US5383940A (en) Process of producing solid sodium cyanide
JP3120679B2 (en) Removal method of chloride from sintering machine dust
US5854161A (en) Process for the regeneration of a catalyst
US3418074A (en) Process for chlorinating titaniferous ores
AU623821B2 (en) Method for removal of carbon compounds from circulating liquor of bayer process
JP3120680B2 (en) Removal method of chloride from sintering machine dust
US3264800A (en) Process of discharging pulverulent materials, especially very fine dust, from cyclones
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
EP0679291A1 (en) Physical and physico-chemical method for processing used batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees