JP3068814B2 - Method of manufacturing high voltage power device - Google Patents

Method of manufacturing high voltage power device

Info

Publication number
JP3068814B2
JP3068814B2 JP10291039A JP29103998A JP3068814B2 JP 3068814 B2 JP3068814 B2 JP 3068814B2 JP 10291039 A JP10291039 A JP 10291039A JP 29103998 A JP29103998 A JP 29103998A JP 3068814 B2 JP3068814 B2 JP 3068814B2
Authority
JP
Japan
Prior art keywords
oxide film
forming
well
conductivity type
power device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10291039A
Other languages
Japanese (ja)
Other versions
JPH11191624A (en
Inventor
種 大 金
相 基 金
珍 根 具
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH11191624A publication Critical patent/JPH11191624A/en
Application granted granted Critical
Publication of JP3068814B2 publication Critical patent/JP3068814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体技術に関
し、特にMOS型高電圧電力素子の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor technology, and more particularly to a method for manufacturing a MOS type high voltage power device.

【0002】[0002]

【従来の技術】一般に、100〜500V用P型高電圧
電力素子は、水平二重拡散型のMOS技術を利用して製
造し、ステップモーター(step motor)、FED(fiel
d emission display)、及びPDP(plasma display p
anel)の駆動IC(integratedcircuit)等に利用され
る。
2. Description of the Related Art In general, a P-type high-voltage power device for 100 to 500 V is manufactured by using a horizontal double diffusion type MOS technology, and a step motor, a FED (fiel) is used.
d emission display) and PDP (plasma display p)
Anel) is used for a drive IC (integrated circuit) or the like.

【0003】高い降伏電圧を持つ水平型電力素子を具現
するために、従来では、P型(あるいはN型)半導体基
板上に比抵抗の高いN型エピタキシャル層で形成された
N−ドリフト(drift)領域を利用して電力素子の降伏
電圧及びON−抵抗値を改善するために素子の構造的な
変化を図り工程を改善する技術が多く開発されてきた。
In order to implement a horizontal power device having a high breakdown voltage, conventionally, an N-drift formed of an N-type epitaxial layer having a high specific resistance on a P-type (or N-type) semiconductor substrate is used. In order to improve the breakdown voltage and the ON-resistance value of the power device by using the region, many techniques for improving the process by changing the structure of the device have been developed.

【0004】このような従来の方法は、エピタキシャル
層の厚さ及び不純物濃度、ドリフト領域の厚さ及び不純
物の濃度によって垂直及び水平方向の降伏電圧値を決定
して、金属電界版(field plate)またはドレーン領域
に金属電極(metal electrode)を長く形成して電場の
強さを緩和させることで降伏電圧を改善している。
In such a conventional method, the breakdown voltage in the vertical and horizontal directions is determined according to the thickness and the impurity concentration of the epitaxial layer, the thickness of the drift region and the impurity concentration, and a metal field plate is used. Alternatively, the breakdown voltage is improved by forming a long metal electrode in the drain region to relax the strength of the electric field.

【0005】これまでP−型電力素子の降伏電圧及びO
N−抵抗値において多くの改善がなされたが、さらに改
善されなければならなく、降伏電圧を低めればそれに従
ってON−抵抗値が増加するようになるのでこの2種類
の要素らの最適化のための技術の開発が要求されてい
る。
Heretofore, the breakdown voltage and O
Many improvements in N-resistance have been made, but they must be further improved, and lowering the breakdown voltage will increase the ON-resistance accordingly, thus optimizing the two elements. There is a demand for technology development.

【0006】図10は従来技術によって形成された水平
型P−チャンネル高電圧電力素子の断面構造を図示した
もので、以下、これを参照してその製造工程を概略的に
考察してみれば次の通りである。まず、半導体基板20
上に埋込酸化物層1、P型エピタキシャル層2、深いN
−ウェル3を順に形成して、深いN−ウェル3上にP型
ドリフト領域4とN−ウェル5とを形成する。その次
に、LOCOS(local oxidation of silicon)技術を
利用して素子の活性領域と非活性領域を定義するフィー
ルド酸化膜6を形成して、P型ドリフト領域4とN−ウ
ェル5とが接する領域の基板上にゲート酸化膜7及び多
結晶シリコンゲート8を形成する。
FIG. 10 shows a cross-sectional structure of a horizontal P-channel high-voltage power element formed by the prior art. Referring to FIG. It is as follows. First, the semiconductor substrate 20
Buried oxide layer 1, P-type epitaxial layer 2, deep N
Forming a well 3 in order, and forming a P-type drift region 4 and an N-well 5 on the deep N-well 3; Next, a field oxide film 6 defining an active region and a non-active region of the device is formed using LOCOS (local oxidation of silicon) technology, and a region where the P-type drift region 4 and the N-well 5 are in contact with each other is formed. A gate oxide film 7 and a polycrystalline silicon gate 8 are formed on the substrate.

【0007】続けて、P型ドリフト領域4とN−ウェル
5との所定領域にP型不純物イオン注入を実施してソー
ス領域10とドレーン領域9とを形成する。次いで、N
型不純物イオン注入を実施してソース領域10に接する
N+型ソースコンタクト13を形成した後、ソース領域
10及びドレーン領域9とN+型ソースコンタクト13
及びゲート電極8との一部を露出させる層間絶縁膜11
を形成して、全面に金属を塗布して、これをフォトリソ
グラフィー法でパターニングして金属電極12を形成す
ることによって素子の製造を完了する。
Subsequently, P-type impurity ions are implanted into predetermined regions of P-type drift region 4 and N-well 5 to form source region 10 and drain region 9. Then N
After forming an N + type source contact 13 in contact with the source region 10 by performing impurity ion implantation, the source region 10 and the drain region 9 are connected to the N + type source contact 13.
And interlayer insulating film 11 exposing a part of gate electrode 8
Is formed, a metal is applied to the entire surface, and is patterned by photolithography to form a metal electrode 12, thereby completing the manufacture of the element.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記の工程
中でフィールド酸化膜6を形成するためには1000℃
の高温で進行される長時間の熱酸化工程を必要とする。
これに伴いフィールド酸化膜6形成工程が進行される間
にドリフト領域4に注入された不純物の外部拡散が発生
することと同時に、フィールド酸化膜の側面部でのバー
ズビーク(bird'sbeak)効果による側面及び垂直方向へ
の酸化膜成長が発生して、フィールド酸化膜6を形成す
るためのマスクパターンの長さ(設計値)よりフィール
ド酸化膜6の形成領域の長さがAで示されるように設計
値より拡大されるのでON−抵抗値が増加するようにな
る問題点が誘発される。
However, in order to form the field oxide film 6 during the above steps, it is necessary to use a temperature of 1000.degree.
Requires a prolonged thermal oxidation step which is carried out at a high temperature.
As a result, the external diffusion of the impurities implanted into the drift region 4 occurs while the field oxide film 6 forming process proceeds, and at the same time, the side surface due to the bird's beak effect at the side surface portion of the field oxide film. The length of the region where the field oxide film 6 is formed is indicated by A from the length (design value) of the mask pattern for forming the field oxide film 6 due to the growth of the oxide film in the vertical direction. Since the ON-resistance value is increased, the ON-resistance value increases.

【0009】本発明は上述した従来例に係る問題点を解
消するためになされたもので、ドリフト領域の不純物外
部拡散を最小化してドリフト領域の長さを低減させてO
N−抵抗を改善できる高電圧電力素子の製造方法を提供
しようとする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems of the prior art, and minimizes the out-diffusion of impurities in the drift region to reduce the length of the drift region.
It is an object of the present invention to provide a method for manufacturing a high-voltage power device capable of improving N-resistance.

【0010】[0010]

【課題を解決するための手段】本発明に係る高電圧電力
素子の製造方法は、半導体基板上部のエピタキシャル層
に第1導電型の第1ウェルを形成する第1段階と、上記
第1ウェル内に第2導電型のドリフト領域及び第1導電
型の第2ウェルを形成する第2段階と、上記第2導電型
のドリフト領域及び第1導電型の第2ウェル上に所定厚
さのパッド酸化膜を形成する第3段階と、上記第段階
遂行後、全体構造上部に所定厚さの第1TEOS酸化膜
を形成する第段階と、上記第1TEOS酸化膜を熱処
理する第5段階と、上記第1TEOS酸化膜の熱処理
後、第1TEOS酸化膜上に所定厚さの第2TEOS酸
化膜を形成する第6段階と、上記第1TEOS酸化膜と
上記第2TEOS酸化膜を傾斜蝕刻して活性領域に予定
される領域を露出させるフィールド酸化膜を形成する
7段階と、上記第7段階遂行後、基板全面を酸化して酸
化膜を成長させる第8段階と、上記第8段階で成長され
た酸化膜上部に多結晶シリコン膜を形成する第9段階
と、上記第8及び第9段階で形成された多結晶シリコン
膜及び上記酸化膜を順に選択蝕刻してゲート酸化膜及び
ゲート電極を形成する第10段階と、上記第1導電型の
第2ウェル及び第2導電型のドリフト領域に第2導電型
のソース/ドレーン領域を形成する第11段階とを含む
ものである。
According to the present invention, there is provided a method of manufacturing a high-voltage power device, comprising: a first step of forming a first well of a first conductivity type in an epitaxial layer above a semiconductor substrate; Forming a drift region of the second conductivity type and a second well of the first conductivity type on the second conductive type;
A predetermined thickness on the drift region and the second well of the first conductivity type.
A third step of forming a pad oxide film having a predetermined thickness, a fourth step of forming a first TEOS oxide film having a predetermined thickness on the entire structure after performing the third step, and a heat treatment of the first TEOS oxide film.
And heat treatment of the first TEOS oxide film
Thereafter, a second TEOS acid having a predetermined thickness is formed on the first TEOS oxide film.
A sixth step of forming an oxide film, and the first TEOS oxide film
The second TEOS oxide film is inclined etched and is scheduled for the active region
The forming field oxide to expose the area to be
After performing the seventh step and the seventh step, the entire surface of the substrate is oxidized and acidified.
An eighth step of growing the oxide film; and
Ninth step of forming a polycrystalline silicon film on top of the damaged oxide film
And the polycrystalline silicon formed in the eighth and ninth steps.
Selectively etching the film and the oxide film sequentially to form a gate oxide film and
A tenth step of forming a gate electrode;
An eleventh step of forming a source / drain region of the second conductivity type in the second well and the drift region of the second conductivity type.

【0011】また、上記第7段階における傾斜蝕刻は、
稀釈されたHF溶液を使用した蝕刻法を利用することを
特徴とするものである。
The tilt etching in the seventh step is as follows.
An etching method using a diluted HF solution is used .

【0012】また、上記第1TEOS酸化膜の厚さは、
5000ないし8000Åであり、上記第2TEOS酸
化膜の厚さは、2000ないし3000Åであることを
特徴とするものである。
Further, the thickness of the first TEOS oxide film is as follows:
5000 to 8000 °, the second TEOS acid
The thickness of the passivation film is 2000 to 3000 ° .

【0013】また、上記第5段階における上記第1TE
OS酸化膜の熱処理は、850℃に熱処理することを特
徴とするものである。
Further, the first TE in the fifth stage
The heat treatment of the OS oxide film is characterized in that the heat treatment is performed at 850 ° C.

【0014】さらに、上記第3段階における上記パッド
酸化膜の厚さは200ないし500Åであることを特徴
とするものである。
Further, the pad in the third stage
The oxide film has a thickness of 200 to 500 ° .

【0015】[0015]

【発明の実施の形態】本発明に係る高電圧電力素子の製
造方法は、半導体基板上部のエピタキシャル層に第1導
電型の第1ウェルを形成する第1段階と、上記第1ウェ
ル内に第2導電型のドリフト領域及び第1導電型の第2
ウェルを形成する第2段階と、上記第2導電型のドリフ
ト領域及び第1導電型の第2ウェル上に所定厚さのパッ
ド酸化膜を形成する第3段階と、上記第段階遂行後、
全体構造上部に所定厚さの第1TEOS酸化膜を形成す
る第段階と、上記第1TEOS酸化膜を熱処理する第
5段階と、上記第1TEOS酸化膜の熱処理後、第1T
EOS酸化膜上に所定厚さの第2TEOS酸化膜を形成
する第6段階と、上記第1TEOS酸化膜と上記第2T
EOS酸化膜を傾斜蝕刻して活性領域に予定される領域
を露出させるフィールド酸化膜を形成する第7段階と、
上記第7段階遂行後、基板全面を酸化して酸化膜を成長
させる第8段階と、上記第8段階で成長された酸化膜上
部に多結晶シリコン膜を形成する第9段階と、上記第8
及び第9段階で形成された多結晶シリコン膜及び上記酸
化膜を順に選択蝕刻してゲート酸化膜及びゲート電極を
形成する第10段階と、上記第1導電型の第2ウェル及
び第2導電型のドリフト領域に第2導電型のソース/ド
レーン領域を形成する第11段階とを含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a high voltage power device according to the present invention includes a first step of forming a first well of a first conductivity type in an epitaxial layer on a semiconductor substrate, and a step of forming a first well in the first well. Drift region of two conductivity type and second region of first conductivity type
A second step of forming a well, and the second conductivity type drift
A predetermined thickness on the first region and the second well of the first conductivity type.
A third step of forming an oxide film, and after performing the third step,
A fourth step of forming a first TEOS oxide film having a predetermined thickness on the entire structure, and a fourth step of heat-treating the first TEOS oxide film .
After the heat treatment of the first TEOS oxide film, the first T
Form a second TEOS oxide film of a predetermined thickness on the EOS oxide film
The first TEOS oxide film and the second T
EOS oxide film is obliquely etched and is expected to be an active region
A seventh step of forming a field oxide film exposing
After performing the seventh step, the entire surface of the substrate is oxidized to grow an oxide film
An eighth step of forming, and on the oxide film grown in the eighth step
A ninth step of forming a polycrystalline silicon film in the portion;
And the polycrystalline silicon film formed in the ninth step and the acid
Gate oxide film and gate electrode by selective etching of
A tenth step of forming, a second well of the first conductivity type and
Each time drift region of a second conductivity type and a second 11 forming a source / drain region of the second conductivity type.

【0016】また、本発明は、高電圧電力素子の製造工
程中でフィールド酸化膜を形成する時に、ドリフト領域
上に既存のLOCOS技術を利用してフィールド酸化膜
を形成する代わりにTEOS酸化膜を蒸着して、これを
パターニングしてフィールド酸化膜を形成する。したが
って、ドリフト領域の長さが短縮されて、また低温でフ
ィールド酸化膜が形成されることによってドリフト領域
の不純物が外部拡散されないことによりON−抵抗が改
善される。
Further, according to the present invention, when a field oxide film is formed in a manufacturing process of a high voltage power element, a TEOS oxide film is formed on a drift region instead of forming a field oxide film using an existing LOCOS technique. It is deposited and patterned to form a field oxide film. Therefore, the length of the drift region is reduced, and the ON-resistance is improved by forming the field oxide film at a low temperature so that impurities in the drift region are not diffused out.

【0017】以下、本発明が属する技術分野で通常の知
識を持った者が本発明をより容易に実施できるように本
発明の望ましい実施の形態を説明する。
Hereinafter, preferred embodiments of the present invention will be described so that those skilled in the art to which the present invention pertains can more easily implement the present invention.

【0018】図1ないし図7は本発明の一実施の形態に
係るP−チャンネルの高電圧電力素子製造工程を図示し
たことで、以下、これを参照してその製造工程を説明す
る。
FIGS. 1 to 7 illustrate a process of manufacturing a P-channel high-voltage power device according to an embodiment of the present invention, and the manufacturing process will be described below with reference to FIG.

【0019】まず、図1に図示した通り、N型半導体基
板20上に埋込酸化物層21及びP−エピタキシャル層
22が形成された基板を利用する。
First, as shown in FIG. 1, a substrate having a buried oxide layer 21 and a P-epitaxial layer 22 formed on an N-type semiconductor substrate 20 is used.

【0020】次いで、図2に図示した通り、P−エピタ
キシャル層にリン(Phosphorus)イオンを注入した後、
1200℃で25時間熱処理を遂行して深いN−ウェル
23を形成して、深いN−ウェル23上に漂流領域を定
義するイオン注入マスク(図示せず)を形成した後、P
型不純物として硼素(B)をイオン注入して、イオン注
入マスクを除去した後、深いN−ウェル23上にN−ウ
ェルを定義するイオン注入マスク(図示せず)を形成し
て、N型不純物としてリン(P)を注入した後、120
0℃で15時間の間熱処理を遂行してP型ドリフト領域
24及びそれに接するN−ウェル25を形成する。
Next, as shown in FIG. 2, after implanting phosphorus (Phosphorus) ions into the P-epitaxial layer,
After performing a heat treatment at 1200 ° C. for 25 hours, a deep N-well 23 is formed, and an ion implantation mask (not shown) defining a drift region is formed on the deep N-well 23.
After boron (B) is ion-implanted as a type impurity and the ion implantation mask is removed, an ion implantation mask (not shown) for defining an N-well is formed on the deep N-well 23 to form an N-type impurity. After injecting phosphorus (P) as
A heat treatment is performed at 0 ° C. for 15 hours to form a P-type drift region 24 and an N-well 25 in contact therewith.

【0021】次に、図3に図示した通り、基板の全面に
200〜500Å厚さの酸化膜(図示せず)を成長させ
て、1次で5000〜8000Å厚さのTEOS酸化膜
を蒸着させた後850℃で熱処理を遂行して、2次で2
000〜3000Å厚さのTEOS酸化膜を蒸着した後
希釈された佛酸(HF)を利用してTEOS酸化膜を蝕
刻して電力素子の活性領域(ソース/ドレーン領域及び
ゲート領域)に予定された領域を露出させるフィールド
酸化膜26を形成する。この時、フィールド酸化膜26
の形成のために傾斜蝕刻工程を進行してフィールド酸化
膜26の側壁が傾斜するようにする。
Next, as shown in FIG. 3, an oxide film (not shown) having a thickness of 200 to 500.degree. Is grown on the entire surface of the substrate, and a TEOS oxide film having a thickness of 5000 to 8000.degree. After that, heat treatment is performed at 850 ° C.
After depositing a TEOS oxide film having a thickness of 2,000 to 3,000 mm, the TEOS oxide film is etched using diluted HF to form active regions (source / drain regions and gate regions) of the power device. A field oxide film 26 exposing the region is formed. At this time, the field oxide film 26
An oblique etching process is performed to form a sidewall of the field oxide film 26.

【0022】次いで、図4に図示した通り、基板の全面
を酸化して酸化膜を成長させて、その上部に多結晶シリ
コン膜を形成した後、ゲート電極形成用マスクを利用し
て多結晶シリコン膜と酸化膜とを順に選択蝕刻してゲー
ト酸化膜27及びゲート電極28とを形成する。
Next, as shown in FIG. 4, the entire surface of the substrate is oxidized to grow an oxide film, a polycrystalline silicon film is formed thereon, and then the polycrystalline silicon film is formed using a gate electrode forming mask. The gate oxide film 27 and the gate electrode 28 are formed by selectively etching the film and the oxide film in this order.

【0023】続けて、図5に図示した通り、露出された
基板の全面にP+型不純物として硼素(B)をイオン注
入して各々N−ウェル25とP型ドリフト領域24とに
ソース領域30及びドレーン領域29を形成して、ソー
ス領域30が一部露出されるようにマスキングした後N
+型不純物としてAsを注入してN+型ソースコンタク
ト33を形成する。ソース領域30に隣接したN+型ソ
ースコンタクト33はドレーン領域29に高い電界がか
かる場合、衝突イオン化現象によって発生した電子-正
孔対の中で電子を効果的に除去するために形成される。
Subsequently, as shown in FIG. 5, boron (B) is ion-implanted into the entire surface of the exposed substrate as a P + -type impurity, so that the source region 30 and the source region 30 are formed in the N-well 25 and the P-type drift region 24, respectively. After forming the drain region 29 and masking so that the source region 30 is partially exposed, N
As is implanted as a + type impurity to form an N + type source contact 33. The N + type source contact 33 adjacent to the source region 30 is formed to effectively remove electrons from the electron-hole pairs generated by the impact ionization phenomenon when a high electric field is applied to the drain region 29.

【0024】次いで、図6に図示した通り、基板の全面
に層間絶縁膜を形成した後、これをフォトリソグラフィ
ー法でパターニングして上記ゲート電極28、ソース領
域30、ドレーン領域29及びN+型ソースコンタクト
の一部を露出させる。
Next, as shown in FIG. 6, after forming an interlayer insulating film on the entire surface of the substrate, this is patterned by photolithography to form the gate electrode 28, the source region 30, the drain region 29 and the N + type source contact. Expose part of

【0025】次に、図7に図示した通り、基板の全面に
アルミニウムを蒸着した後、これをパターニングしてソ
ース/ドレーン及びゲートの金属電極32を形成する。
上記の工程を通じて製造された電力素子はフィールド酸
化膜26をTEOS膜で形成することによりドリフト領
域24の表面が酸化されなくて平坦な表面を維持するよ
うにして、LOCOS工程時必然的に現れるバーズビー
ク効果を根本的に防止することによってフィールド酸化
膜26の長さBがLOCOS工程を通した従来のフィー
ルド酸化膜の長さAに比べて短くなるようになる。この
ようなフィールド酸化膜26の長さの減少は結局ドリフ
ト領域の減少になって素子のON−抵抗値を改善するこ
とになる。
Next, as shown in FIG. 7, aluminum is deposited on the entire surface of the substrate and then patterned to form metal electrodes 32 for source / drain and gate.
In the power device manufactured through the above process, the field oxide film 26 is formed of a TEOS film so that the surface of the drift region 24 is not oxidized and is maintained flat, so that a bird's beak which appears in the LOCOS process is inevitable. By fundamentally preventing the effect, the length B of the field oxide film 26 becomes shorter than the length A of the conventional field oxide film through the LOCOS process. Such a decrease in the length of the field oxide film 26 eventually leads to a decrease in the drift region, thereby improving the ON-resistance value of the device.

【0026】図8は従来のLOCOS技術を利用してフ
ィールド酸化膜を形成した電力素子と本発明によってT
EOS酸化膜を利用してフィールド酸化膜を形成した電
力素子とのそれぞれの不純物の濃度分布を表したもの
で、図面を通じてLOCOS技術を利用してフィールド
酸化膜を形成した電力素子に比べて本発明に係る電力素
子のドリフト領域の不純物の濃度が非常に増加すること
が分かる。
FIG. 8 shows a power device in which a field oxide film is formed by using the conventional LOCOS technique and a T element according to the present invention.
FIG. 3 shows the impurity concentration distribution of each of a power element having a field oxide film formed using an EOS oxide film, and the present invention is compared with a power element having a field oxide film formed using a LOCOS technique throughout the drawings. It can be seen that the concentration of impurities in the drift region of the power element according to (1) greatly increases.

【0027】図9は従来のLOCOS技術を利用してフ
ィールド酸化膜を形成した電力素子と本発明によってT
EOS酸化膜を利用してフィールド酸化膜を形成した電
力素子とのそれぞれの電流−電圧特性を表したものであ
る。
FIG. 9 shows a power device in which a field oxide film is formed using a conventional LOCOS technique and a T element according to the present invention.
FIG. 4 shows current-voltage characteristics of a power device having a field oxide film formed by using an EOS oxide film.

【0028】図面から本発明によって製作された素子の
ドレーン電流値が2倍程度高いことを確認することがで
き、その結果素子のON−抵抗値も35〜40%程度改
善された。反面、本発明に係る電力素子の降伏電圧を測
定した結果従来の電力素子に比べて降伏電圧値の減少が
但し5%程度であることを確認した。
From the drawings, it can be confirmed that the drain current value of the device manufactured according to the present invention is about twice as high, and as a result, the ON-resistance value of the device is improved by about 35 to 40%. On the other hand, as a result of measuring the breakdown voltage of the power device according to the present invention, it was confirmed that the breakdown voltage value was reduced by about 5% as compared with the conventional power device.

【0029】また、本発明は上記実施の形態になんら限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種種の形態で実施することができる。
Further, the present invention is not limited to the above embodiment, and can be implemented in various forms without departing from the gist of the present invention.

【0030】[0030]

【発明の効果】上述したように、本発明によれば、MO
S型高電圧電力素子の製造工程中でフィールド酸化膜形
成時に低温工程が可能なTEOS酸化膜を利用すること
によって、ドリフト領域で発生する不純物外部拡散を最
小化して、フィールド酸化膜の形成領域が拡大されるこ
とを防止できるので電力素子のON−抵抗値を改善する
効果があり、また、電力素子の降伏電圧をほとんど減少
させない長所がある。
As described above, according to the present invention, the MO
By using the TEOS oxide film, which can be formed at a low temperature during the formation of the field oxide film during the manufacturing process of the S-type high voltage power device, the external diffusion of impurities generated in the drift region is minimized, and the field oxide film formation region is reduced. Since the expansion can be prevented, the ON-resistance value of the power element is improved, and the breakdown voltage of the power element is hardly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係るP−チャンネル
高電圧電力素子の製造工程の説明図である。
FIG. 1 is an explanatory diagram of a manufacturing process of a P-channel high-voltage power device according to one embodiment of the present invention.

【図2】 図1に続く製造工程の説明図である。FIG. 2 is an explanatory view of a manufacturing process following FIG. 1;

【図3】 図2に続く製造工程の説明図である。FIG. 3 is an explanatory view of a manufacturing process following FIG. 2;

【図4】 図3に続く製造工程の説明図である。FIG. 4 is an explanatory view of the manufacturing process following FIG. 3;

【図5】 図4に続く製造工程の説明図である。FIG. 5 is an explanatory view of the manufacturing process following FIG. 4;

【図6】 図5に続く製造工程の説明図である。FIG. 6 is an explanatory view of the manufacturing process following FIG. 5;

【図7】 図6に続く製造工程の説明図である。FIG. 7 is an explanatory view of the manufacturing process following FIG. 6;

【図8】 LOCOS技術を利用した従来の電力素子及
び本発明によってTEOS酸化膜を利用した電力素子そ
れぞれの不純物分布特性図である。
FIG. 8 is an impurity distribution characteristic diagram of a conventional power device using the LOCOS technology and a power device using a TEOS oxide film according to the present invention.

【図9】 LOCOS技術を利用した従来の電力素子及
び本発明によってTEOS酸化膜を利用した電力素子そ
れぞれの電流-電圧特性図である。
FIG. 9 is a current-voltage characteristic diagram of a conventional power device using a LOCOS technology and a power device using a TEOS oxide film according to the present invention.

【図10】 従来技術によって形成されたP−チャンネ
ル高電圧電力素子の断面図である。
FIG. 10 is a cross-sectional view of a P-channel high voltage power device formed according to the prior art.

【符号の説明】[Explanation of symbols]

20 基板、21 埋込酸化物層、22 P−エピタキ
シャル層、23 深いN−ウェル、24 P型ドリフト
領域、25 N−ウェル、26 フィールド酸化膜、2
7 ゲート酸化膜、28 多結晶シリコン膜、29 ド
レーン領域、30 ソース領域、31 層間絶縁膜、3
2 金属電極、33 N+型ソースコンタクト。
Reference Signs List 20 substrate, 21 buried oxide layer, 22 P-epitaxial layer, 23 deep N-well, 24 P-type drift region, 25 N-well, 26 field oxide film, 2
7 gate oxide film, 28 polycrystalline silicon film, 29 drain region, 30 source region, 31 interlayer insulating film, 3
2 Metal electrode, 33 N + type source contact.

フロントページの続き (72)発明者 具 珍 根 大韓民国大田市儒城區柯亭洞161 韓國 電子通信研究院内 (56)参考文献 特開 平8−316469(JP,A) 特開 平2−291166(JP,A) 特開 平8−236757(JP,A) 特開 昭63−173340(JP,A) 特開 平6−53502(JP,A) 特開 平9−223798(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 H01L 29/786 Continuation of the front page (72) Inventor Jin Jin, 161 Kejeong-dong, Yuseong-gu, Daejeon-si, Republic of Korea (56) References JP-A-8-316469 (JP, A) JP-A-2-291166 ( JP, A) JP-A-8-237557 (JP, A) JP-A-63-173340 (JP, A) JP-A-6-53502 (JP, A) JP-A-9-223798 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/336 H01L 29/786

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上部のエピタキシャル層に第
1導電型の第1ウェルを形成する第1段階と、 上記第1ウェル内に第2導電型のドリフト領域及び第1
導電型の第2ウェルを形成する第2段階と、上記第2導電型のドリフト領域及び第1導電型の第2ウ
ェル上に所定厚さのパッド酸化膜を形成する第3段階
と、 上記第段階遂行後、全体構造上部に所定厚さの第1
EOS酸化膜を形成する第段階と、上記第1TEOS酸化膜を熱処理する第5段階と、 上記第1TEOS酸化膜の熱処理後、第1TEOS酸化
膜上に所定厚さの第2TEOS酸化膜を形成する第6段
階と、 上記第1TEOS酸化膜と上記第2TEOS酸化膜を
斜蝕刻して活性領域に予定される領域を露出させるフィ
ールド酸化膜を形成する第7段階と、 上記第7段階遂行後、基板全面を酸化して酸化膜を成長
させる第8段階と、 上記第8段階で成長された酸化膜上部に多結晶シリコン
膜を形成する第9段階と、 上記第8及び第9段階で形成された多結晶シリコン膜及
び上記酸化膜を順に選択蝕刻してゲート酸化膜及びゲー
ト電極を形成する第10段階と、 上記第1導電型の第2ウェル及び第2導電型のドリフト
領域に 第2導電型のソース/ドレーン領域を形成する
11段階とを含む高電圧電力素子の製造方法。
A first step of forming a first well of a first conductivity type in an epitaxial layer above a semiconductor substrate; and a drift region of a second conductivity type and a first well in the first well.
A second step of forming a second well of the conductivity type, the drift region of the second conductivity type and the second well of the first conductivity type;
Third step of forming pad oxide film of predetermined thickness on well
If, after the third step performed, the 1 T of predetermined thickness on the entire structure
A fourth step of forming an EOS oxide film, a fifth step of heat-treating the first TEOS oxide film, and a first TEOS oxidation after the heat treatment of the first TEOS oxide film.
Sixth step of forming a second TEOS oxide film having a predetermined thickness on the film
A floor, and a seventh step of forming Ficoll <br/> Rudo oxide film to expose the area to be expected the first 1TEOS oxide film and the first 2TEOS oxide film on the inclined etching to the active region, the seventh step performed Later, the entire surface of the substrate is oxidized to grow an oxide film
An eighth step of forming a polysilicon layer on the oxide film grown in the eighth step.
A ninth step of forming a film, the polycrystalline silicon film formed in the eighth and ninth steps, and
Gate oxide film and gate
10th step of forming a gate electrode, and the second well of the first conductivity type and the drift of the second conductivity type.
The forming the source / drain regions of a second conductivity type in the region
11. A method for manufacturing a high-voltage power device, comprising:
【請求項2】 上記第7段階における傾斜蝕刻は、稀釈
されたHF溶液を使用した蝕刻法を利用することを特徴
とする請求項1に記載の高電圧電力素子の製造方法。
2. The inclined etching in the seventh step is a dilution.
Characterized by using an etching method using a HF solution
The method for manufacturing a high-voltage power device according to claim 1.
【請求項3】 上記第1TEOS酸化膜の厚さは、50
00ないし8000Åであり、上記第2TEOS酸化膜
の厚さは、2000ないし3000Åであることを特徴
とする請求項1に記載の高電圧電力素子の製造方法。
3. The thickness of the first TEOS oxide film is 50.
The second TEOS oxide film,
Characterized by a thickness of 2000 to 3000 mm
The method for manufacturing a high-voltage power device according to claim 1.
【請求項4】 上記第5段階における上記第1TEOS
酸化膜の熱処理は、 850℃に熱処理することを特徴と
する請求項1に記載の高電圧電力素子の製造方法。
4. The first TEOS in the fifth step.
The heat treatment of the oxide film is performed at a temperature of 850 ° C.
The method for manufacturing a high-voltage power device according to claim 1.
【請求項5】 上記第3段階における上記パッド酸化膜
の厚さは200ないし500Åであることを特徴とする
請求項1に記載の高電圧電力素子の製造方法。
5. The pad oxide film in the third step
Characterized by a thickness of 200 to 500 mm
A method for manufacturing the high-voltage power device according to claim 1.
JP10291039A 1997-11-20 1998-10-13 Method of manufacturing high voltage power device Expired - Fee Related JP3068814B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997-61585 1997-11-20
KR1019970061585A KR100289055B1 (en) 1997-11-20 1997-11-20 Method for fabricating p-channel double diffusion power device

Publications (2)

Publication Number Publication Date
JPH11191624A JPH11191624A (en) 1999-07-13
JP3068814B2 true JP3068814B2 (en) 2000-07-24

Family

ID=19525196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291039A Expired - Fee Related JP3068814B2 (en) 1997-11-20 1998-10-13 Method of manufacturing high voltage power device

Country Status (2)

Country Link
JP (1) JP3068814B2 (en)
KR (1) KR100289055B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3831602B2 (en) * 2000-12-07 2006-10-11 三洋電機株式会社 Manufacturing method of semiconductor device
KR100788376B1 (en) * 2006-09-13 2008-01-02 동부일렉트로닉스 주식회사 Method for forming semiconductor device
KR100760924B1 (en) * 2006-09-13 2007-09-21 동부일렉트로닉스 주식회사 Method for forming semiconductor device
CN110491941B (en) * 2018-05-15 2023-03-24 立锜科技股份有限公司 High voltage device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH11191624A (en) 1999-07-13
KR100289055B1 (en) 2001-08-07
KR19990041054A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US6277675B1 (en) Method of fabricating high voltage MOS device
JP5154347B2 (en) Superjunction semiconductor device and method of manufacturing superjunction semiconductor device
US5631484A (en) Method of manufacturing a semiconductor device and termination structure
US6534365B2 (en) Method of fabricating TDMOS device using self-align technique
JP4216189B2 (en) Manufacturing method of semiconductor device having edge structure
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
JP2748898B2 (en) Semiconductor device and manufacturing method thereof
KR100282710B1 (en) Method for manufacturing bipolar transistor and its structure
JP3122403B2 (en) Semiconductor device and manufacturing method thereof
JP2003347546A (en) Vertical dmos element and manufacturing method therefor
JP3068814B2 (en) Method of manufacturing high voltage power device
JP2009130021A (en) Lateral mos transistor and method of manufacturing the same
JPH10294475A (en) Semiconductor device and its manufacture
JPH04260335A (en) Manufacture of field-effect transistor
JP3498431B2 (en) Method for manufacturing semiconductor device
JP3792930B2 (en) Method for forming ultra-thin SOI electrostatic discharge protection element
JP2633104B2 (en) Method for manufacturing semiconductor device
JPS62229880A (en) Semiconductor device and manufacture thereof
US20030062598A1 (en) Method for manufacturing and structure of semiconductor device with sinker contact region
US7164186B2 (en) Structure of semiconductor device with sinker contact region
JPS5878457A (en) Manufacture of semiconductor device
JP3031282B2 (en) Semiconductor device
JP3532494B2 (en) Method for manufacturing semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
KR0128024B1 (en) Fabrication method of cateral bipolar transistor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees