JP3066697B2 - Vector control method and device for induction motor - Google Patents

Vector control method and device for induction motor

Info

Publication number
JP3066697B2
JP3066697B2 JP5338386A JP33838693A JP3066697B2 JP 3066697 B2 JP3066697 B2 JP 3066697B2 JP 5338386 A JP5338386 A JP 5338386A JP 33838693 A JP33838693 A JP 33838693A JP 3066697 B2 JP3066697 B2 JP 3066697B2
Authority
JP
Japan
Prior art keywords
axis component
command value
value
axis
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5338386A
Other languages
Japanese (ja)
Other versions
JPH07194198A (en
Inventor
昇 梓沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5338386A priority Critical patent/JP3066697B2/en
Publication of JPH07194198A publication Critical patent/JPH07194198A/en
Application granted granted Critical
Publication of JP3066697B2 publication Critical patent/JP3066697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機のベクトル
制御方法及び装置に関する。具体的には誘導電動機の速
度を検出する速度検出器及び電圧検出器を用いず、誘導
電動機の一次電流検出値及び速度指令値等に基づいて速
度を推定し、この速度推定値を用いて速度を制御するい
わゆるセンサレスの速度制御に関する。
BACKGROUND OF THE INVENTION The present invention relates to an induction motor vector.
The present invention relates to a control method and device . Specifically, the speed is estimated based on the primary current detection value of the induction motor and the speed command value without using the speed detector and the voltage detector for detecting the speed of the induction motor, and the speed is estimated using the estimated speed. And so-called sensorless speed control.

【0002】[0002]

【従来の技術】速度検出器等を用いずに誘導電動機をベ
クトル制御して速度を制御する、いわゆるセンサレスの
速度制御は、特開昭60−18782号公報又は特開昭
61−52176号公報等により広く知られている。
2. Description of the Related Art A so-called sensorless speed control in which an induction motor is controlled by a vector without using a speed detector or the like, that is, a sensorless speed control is disclosed in Japanese Patent Application Laid-Open Nos. 60-18782 or 61-52176. More widely known.

【0003】例えば、前者の公報に記載されたものは次
のように速度を制御している。まず、後述するようにし
て求めた誘導電動機の速度推定値ωr’を速度指令値ω
r*に一致させるように、比例積分制御などによりトル
ク成分電流(以下、q軸成分電流という。)の指令値i
q*を演算する。
For example, in the former publication, the speed is controlled as follows. First, an estimated speed ωr ′ of the induction motor obtained as described later is converted into a speed command value ωr.
A command value i of a torque component current (hereinafter, referred to as a q-axis component current) by proportional integral control or the like so as to match r *.
Calculate q *.

【0004】一方、誘導電動機の一次電流の検出値から
q軸成分電流の検出値iqと励磁成分電流(以下、d軸
成分電流という。)の検出値idを演算により求める。
On the other hand, a detection value iq of a q-axis component current and a detection value id of an excitation component current (hereinafter, referred to as a d-axis component current) are calculated from the detection value of the primary current of the induction motor.

【0005】そして、q軸成分電流の検出値iqをその
指令値iq*に一致させるように、比例積分制御などに
よりq軸成分電流に対応したq軸電圧の指令値Vq*を
演算する。同様に、d軸成分電流の検出値idを設定さ
れたその指令値id*に一致させるように、比例積分制
御などによりd軸成分電流に対応したd軸電圧の指令値
Vd*を演算する。
Then, a command value Vq * of a q-axis voltage corresponding to the q-axis component current is calculated by proportional integration control or the like so that the detected value iq of the q-axis component current matches the command value iq *. Similarly, a command value Vd * of the d-axis voltage corresponding to the d-axis component current is calculated by proportional integration control or the like so that the detected value id of the d-axis component current matches the set command value id *.

【0006】上で求めたq軸電圧成分の指令値Vq*に
基づいて誘導電動機の速度推定値ωr’を演算により求
める。また、q軸成分電流の指令値に誘導電動機の二次
抵抗(一次側換算値)を乗じた値(r’・iq*)に基
づいてすべり周波数ωsを求める。この求めた、すべり
周波数ωsと速度推定値ωr’を加算して、一次周波数
指令値ω*を作成する。この一次周波数指令値ω*を
d軸電圧の指令値Vd*によりすべり補正分を加算して
補正する。
[0006] An estimated speed ωr 'of the induction motor is obtained by calculation based on the command value Vq * of the q-axis voltage component obtained above. Further, the slip frequency ωs is obtained based on a value (r 2 ′ · iq *) obtained by multiplying the command value of the q-axis component current by the secondary resistance (primary conversion value) of the induction motor. The slip frequency ωs and the estimated speed value ωr ′ thus obtained are added to create a primary frequency command value ω 1 *. The primary frequency command value ω 1 * is corrected by adding a slip correction by the d-axis voltage command value Vd *.

【0007】このようにして得られたd軸電圧とq軸電
圧の指令値Vd*,Vq*及び一次周波数指令値ω*に
よりPWMインバータを制御して、ベクトル制御による
速度制御を行っている。
The PWM inverter is controlled by the d-axis voltage and q-axis voltage command values Vd * and Vq * and the primary frequency command value ω 1 * thus obtained, and the speed control by vector control is performed. .

【0008】[0008]

【発明が解決しようとする課題】ところで、誘導電動機
の等価回路は図2に示すように表すことができる。図2
において、Vは一次電圧、iは一次電流、ioはd
軸成分電流(以下idで表す。)、i’は一次側換算
の二次電流(q軸成分電流、以下iqで表す。)、E’
は誘起電圧(以下、e’で表す)、rは一次抵抗、r
’は二次抵抗の一次側換算値、lは一次漏れインダ
クタンス、l’は二次漏れインダクタンスの一次側換
算値、M’は励磁インダクタンス、sはすべりを表して
いる。
The equivalent circuit of the induction motor can be represented as shown in FIG. FIG.
, V 1 is the primary voltage, i 1 is the primary current, and io is d
An axis component current (hereinafter, represented by id), i 2 ′ is a secondary current converted into a primary side (q-axis component current, hereinafter, represented by iq), E ′.
Is an induced voltage (hereinafter, represented by e ′), r 1 is a primary resistance, r
2 'primary conversion value of the secondary resistance, l 1 is the primary leakage inductance, l 2' is primary converted value of the secondary leakage inductance, M 'is excitation inductance, s represents the slip.

【0009】また、電流のベクトル図の例を図3(A)
に示し、これに対応する電圧ベクトルを図3(B)に示
す。
FIG. 3A shows an example of a current vector diagram.
And the corresponding voltage vector is shown in FIG.

【0010】前記した従来の技術では、一次側でみたd
軸電圧Vd、q軸電圧Vqはそれぞれ次式(1)、
(2)で表すものとなっている。
[0010] In the above-mentioned conventional technique, d viewed from the primary side
The axis voltage Vd and the q-axis voltage Vq are expressed by the following equations (1), respectively.
This is represented by (2).

【0011】 Vd=r・id−ω(l+l’)iq (1) Vq=r・iq+ω(l+l’)id+e’ (2) これらの演算は、それぞれd,q軸成分電流の設定値と
検出値の偏差に基づいてd,q軸成分電圧の指令値を生
成するd,q軸電流演算手段により行われる。
Vd = r 1 · id−ω 1 (l 1 + l 2 ′) iq (1) Vq = r 1 · iq + ω 1 (l 1 + l 2 ′) id + e 1 ′ (2) , Q-axis component current command means for generating a command value for the d- and q-axis component voltages based on the deviation between the set value of the q-axis component current and the detected value.

【0012】上記の式は、負荷の増加などにより一次電
流がi’に変化すると、q軸成分電流iqが変化し
て、上記の式はそれぞれ下式(1’),(2’)にな
る。また、ベクトル関係は図3(A),(B)に示した
ようになる。
In the above equation, when the primary current changes to i 1 ′ due to an increase in load, the q-axis component current iq changes, and the above equations become the following equations (1 ′) and (2 ′), respectively. Become. The vector relationship is as shown in FIGS. 3 (A) and 3 (B).

【0013】 Vd’=r・id−ω(l+l’)iq’ (1’) Vq’=r・iq’+ω(l+l’)id+e’ (2’) 上記式(1)の右辺は誘導電動機におけるインピーダン
ス降下分であり、d軸成分の内部誘起電圧が「0」の場
合である。また、式(2)の右辺は、第1,2項がイン
ピーダンス降下分で、第3項がq軸成分の内部誘起電圧
である。
Vd ′ = r 1 · id−ω 1 (l 1 + l 2 ′) iq ′ (1 ′) Vq ′ = r 1 · iq ′ + ω 1 (l 1 + l 2 ′) id + e 1 ′ (2 ′) The right side of the above equation (1) is the impedance drop in the induction motor, and corresponds to the case where the internal induced voltage of the d-axis component is “0”. In the right side of the equation (2), the first and second terms are the impedance drop, and the third term is the internal induced voltage of the q-axis component.

【0014】このように、従来の技術はインピーダンス
降下分の補償が加味されているが、負荷の急変あるいは
急加減速等により生ずる電流の急変に対して配慮されて
いない。
As described above, in the conventional technique, compensation for the impedance drop is taken into consideration, but no consideration is given to a sudden change in current caused by a sudden change in load or sudden acceleration / deceleration.

【0015】すなわち、電流が過渡的に変化すると、上
記(1’),(2’)式から明らかなように、各軸成分
電圧の指令値が変化し、これらに基づいて推定している
速度推定値、すべり補正値等が過渡的に変化するととも
に、d,q軸成分の相互間の干渉作用により各軸成分電
圧の指令値が変化するから、速度追従制御の応答性が低
下するという問題があった。
That is, when the current changes transiently, as is apparent from the above equations (1 ') and (2'), the command value of each axis component voltage changes, and the speed estimated based on these changes. Since the estimated value, the slip correction value, and the like change transiently and the command value of each axis component voltage changes due to the interference between the d and q axis components, the response of the speed following control decreases. was there.

【0016】本発明の目的は、負荷の急変や急加減速等
に伴い電流が急変しても、速度追従制御の応答性を有す
誘導電動機のベクトル制御方法及び装置を提供するこ
とにある。
It is an object of the present invention to provide a vector control method and apparatus for an induction motor having a response of speed following control even when a current is suddenly changed due to a sudden change of a load, sudden acceleration or deceleration, or the like.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明の誘導電動機のベクトル制御方法及び装置
、速度指令値と速度推定値とを比較して、それらの偏
差を低減するq軸成分電流の指令値を生成し、該指令値
と誘導電動機のq軸成分電流の検出値との偏差に基づい
て誘導電動機のq軸成分内部誘起電圧とq軸成分電流の
変化に伴うインダクタンス降下分との和からなるq軸成
分電圧の基本指令値を求める一方、前記q軸成分電流の
指令値に基づいてq軸成分電流の変化に伴う前記インダ
クタンス降下分を求め、該インダクタンス降下分を前記
基本指令値から減じてq軸成分内部誘起電圧の推定値を
生成し、該q軸成分内部誘起電圧の推定値に基づいて前
記速度推定値を求めて前記速度指令値との比較に用いる
と共に、該速度推定値に前記q軸成分電流の指令値に基
づいて求まるすべり速度を加算して一次周波数指令値を
生成し、d軸成分電流の指令値と検出値との偏差に基づ
いてd軸成分内部誘起電圧の推定値を生成し、前記d軸
成分電流の指令値と前記q軸成分電流の指令値とに基づ
いて誘導電動機のd軸成分電圧の抵抗降下分を含むイン
ピーダンス降下を求め、該インピーダンス降下を前記d
軸成分内部誘起電圧の推定値に加算してd軸成分電圧の
指令値を生成し、前記q軸電流成分の指令値と前記d軸
成分電流の指令値と基づいて誘導電動機のq軸成分電圧
の抵抗降下分を含むインピーダンス降下を求め、該イン
ピーダンス降下を前記基本指令値に加算してq軸成分電
圧の指令値を生成し、前記一次周波数指令値と前記d軸
成分電圧の指令値と前記q軸成分電圧の指令値とに基づ
いて誘導電動機を制御することを特徴とする。
In order to achieve the above object, a vector control method and apparatus for an induction motor according to the present invention are provided.
Compares the speed command value and the speed estimated value, their polarization
Generating a q-axis component current command value for reducing the difference;
And the detected value of the q-axis component current of the induction motor
Of the induced voltage inside the q-axis component of the induction motor and the current of the q-axis component
Q-axis component that is the sum of the inductance drop due to the change
While obtaining the basic command value of the divided voltage, the q-axis component current
The inductor associated with a change in the q-axis component current based on the command value;
And the inductance drop is calculated as described above.
Subtract from the basic command value to obtain the estimated value of the q-axis component internal induced voltage.
Generated based on the estimated value of the q-axis component internal induced voltage.
The speed estimation value is obtained and used for comparison with the speed command value.
At the same time, the speed estimation value is calculated based on the command value of the q-axis component current.
The primary frequency command value by adding the slip speed
Generated based on the deviation between the command value of the d-axis component current and the detected value.
Generating an estimated value of the d-axis component internal induced voltage,
Based on the command value of the component current and the command value of the q-axis component current.
Including the resistance drop of the d-axis component voltage of the induction motor.
The impedance drop is determined, and the impedance drop
Of the d-axis component voltage
A command value is generated, and the command value of the q-axis current component and the d-axis current component are generated.
Q-axis component voltage of the induction motor based on the command value of the component current
The impedance drop including the resistance drop of
Add the impedance drop to the basic command value and
A pressure command value is generated, and the primary frequency command value and the d-axis
Based on the command value of the component voltage and the command value of the q-axis component voltage.
And controlling the induction motor.

【0018】この場合において、すべり補正値の極性を
誘導電動機の回転方向に応じて変えることが好ましい。
これにより、正転/逆転に拘らず速度追従制御の応答性
を有するものにできる。
In this case, it is preferable to change the polarity of the slip correction value according to the rotation direction of the induction motor.
Thus, the responsiveness of the speed following control can be achieved regardless of the forward rotation / reverse rotation.

【0019】[0019]

【作用】このように構成することにより、本発明によれ
ば次の作用により上記目的が達成される。
According to the present invention, according to the present invention, the above-mentioned object is attained by the following operations.

【0020】本来、ベクトル制御が完全に行われている
状態では、制御装置における基準軸であるd軸と誘導電
動機の二次磁束軸φは一致する。しかし、負荷の急変
や急加減速により電流が急変すると、図4(A),
(B)に示すように、二次磁束軸φはd軸から位相ず
れ(進み又は遅れ角度δ)が起こる。これにより、d,
q軸成分電流の指令値id*,iq*に対応する一次電流
iは、実際の誘導電動機内部ではim,itに相当す
る。また、二次磁束軸φのずれに応じて位相がずれる
ことによりd軸成分edが生じ、内部誘起電圧eはq
軸成分eqとd軸成分edのベクトル和となる。
[0020] Originally, in the state where vector control is performed completely, the secondary magnetic flux axis phi 2 of the d-axis and an induction motor which is the reference axis in the controller to match. However, when the current suddenly changes due to a sudden change in the load or sudden acceleration / deceleration, FIG.
As shown in (B), the secondary magnetic flux axis φ 2 has a phase shift (lead or delay angle δ) from the d axis. This gives d,
Primary current corresponding to command values id *, iq * of q-axis component current
i 1 corresponds to im, it inside the actual induction motor. Further, the phase shifts in accordance with the shift of the secondary magnetic flux axis φ 2 , causing a d-axis component ed, and the internal induced voltage e 1 becomes q
The vector sum of the axis component eq and the d-axis component ed is obtained.

【0021】したがって、一次電圧Vのd軸成分Vd
は、内部誘起電圧のd軸成分edとインピーダンス降下
分(−r・id+ω(l+l’)iq)との和
になる。また、q軸成分Vqは内部誘起電圧のq軸成分
eqとインピーダンス降下分(r・iq+ω(l
+l’)id)との和になる。
[0021] Therefore, d-axis component Vd of the primary voltages V 1
Is the sum of the d-axis component ed impedance drop of the internal induced voltage and (-r 1 · id + ω 1 (l 1 + l 2 ') iq). The q-axis component Vq is equal to the q-axis component eq of the internal induced voltage and the impedance drop (r 1 · iq + ω 1 (l 1
+ L 2 ') id).

【0022】そこで、本発明は、電流急変の影響を受け
ない内部誘起電圧のd,q軸成分の推定値ed’及びe
q’を、電流急変の影響を受けるインピーダンス降下分
と分離して求めたのである。そして、eq’に基づいて
速度推定値を求めるとともに、ed’を零にするよう
に、つまり二次磁束のずれ角δを「0」に制御するため
のすべり補正値を求めるようにしたのである。その結
果、速度推定値及びすべり補正値を電流急変に干渉され
ることなく演算できるから、負荷の急変や急加減速等に
伴う電流急変に対しても、速度追従制御の応答性を高く
保持できる。
Therefore, according to the present invention, the estimated values ed 'and e of the d- and q-axis components of the internal induced voltage which are not affected by a sudden change in current.
q ′ was determined separately from the impedance drop affected by the sudden change in current. Then, an estimated speed value is obtained based on eq ′, and a slip correction value for controlling ed ′ to be zero, that is, controlling the deviation angle δ of the secondary magnetic flux to “0” is obtained. . As a result, the speed estimation value and the slip correction value can be calculated without being interfered by a sudden change in current, so that the responsiveness of the speed following control can be maintained high even for a sudden change in load or a sudden change in acceleration or deceleration. .

【0023】[0023]

【実施例】以下、本発明の実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below.

【0024】図1に本発明の速度制御方法を適用してな
る誘導電動機のベクトル制御装置の全体構成図を示す。
FIG. 1 shows an entire configuration diagram of an induction motor vector control apparatus to which the speed control method of the present invention is applied.

【0025】図1に示すように、PWMインバータ1は
PWMパルス発生手段10から与えられるインバータス
イッチ素子のゲート信号に合わせて駆動され、直流電源
4から供給される直流電力を所望の周波数及び電圧を有
する交流に変換して、誘導電動機2の一次電圧、電流と
して供給するようになっている。
As shown in FIG. 1, the PWM inverter 1 is driven in accordance with the gate signal of the inverter switch element provided from the PWM pulse generating means 10, and converts the DC power supplied from the DC power supply 4 to a desired frequency and voltage. The AC is converted to a primary voltage and a current which are supplied to the induction motor 2.

【0026】誘導電動機2の一次電流は電流検出器3に
より検出される。検出された一次電流は3相/2相変換
手段11により周知の直交2相電流iα,iβに変換さ
れる。変換されたiα,iβは直交2軸(d,q軸)の
電流成分を検出する電流検出手段12に入力され、次式
(3),(4)の演算によりd軸成分電流の検出値i
d、q軸成分電流の検出値iqがそれぞれ求められる。
The primary current of the induction motor 2 is detected by a current detector 3. The detected primary current is converted by the three-phase / two-phase conversion means 11 into known two-phase currents iα and iβ. The converted iα and iβ are input to current detecting means 12 for detecting current components of two orthogonal axes (d and q axes), and the detected value i of the d-axis component current is calculated by the following equations (3) and (4).
The detection values iq of the d-axis and q-axis component currents are obtained.

【0027】 id=iα・cos(ω*・t+θ*)+iβ・sin(ω*・t+θ*) (3) iq=−iα・sin(ω*・t+θ*)+iβ・cos(ω*・t+θ*) (4) ここで、ω*は後述する一次周波数指令値であり、θ*
は位相演算手段9により次式(5)により求められる角
度指令値である。
[0027] id = iα · cos (ω 1 * · t + θ *) + iβ · sin (ω 1 * · t + θ *) (3) iq = -iα · sin (ω 1 * · t + θ *) + iβ · cos (ω 1 * · T + θ *) (4) Here, ω 1 * is a primary frequency command value described later, and θ *
Is an angle command value obtained by the phase calculation means 9 by the following equation (5).

【0028】 θ*=tan-1(Vd*/Vq*) (5) d軸成分誘起電圧演算手段6は、d軸成分電流の検出値
iqと設定値id*を入力し、それらの偏差に基づいて
誘導電動機のd軸成分誘起電圧の推定値ed’を演算し
て出力する。
Θ * = tan −1 (Vd * / Vq *) (5) The d-axis component induced voltage calculation means 6 inputs the detected value iq of the d-axis component current and the set value id *, and calculates the deviation between them. An estimated value ed 'of the d-axis component induced voltage of the induction motor is calculated and output based on the calculated value.

【0029】速度制御手段(ASR)5は、速度指令値
ωr*と後述する速度推定手段17から出力される速度推定
値ωr'を入力し、それらの偏差を減少させるようにq軸
成分電流の指令値iq*を生成して出力する。
The speed control means (ASR) 5 inputs the speed command value ωr * and the speed estimated value ωr 'output from the speed estimating means 17 which will be described later, and reduces the q-axis component current so as to reduce their deviation. A command value iq * is generated and output.

【0030】q軸成分電圧演算手段7は、特徴部分に係
るものであり、q軸成分電流の指令値iq*とその検出
値iqとを入力し、それらの偏差に基づいて誘導電動機
のq軸成分電圧の基本指令値を演算して出力する。この
基本指令値は、q軸成分の内部誘起電圧の推定値eq’
と、q軸成分電流の変化に伴うインダクタンス降下分
(p(l+l’)iq*)との和になっている。
The q-axis component voltage calculating means 7 relates to a characteristic portion, inputs a command value iq * of the q-axis component current and a detection value iq thereof, and based on a deviation therebetween, determines the q-axis voltage of the induction motor. The basic command value of the component voltage is calculated and output. This basic command value is an estimated value eq ′ of the internal induced voltage of the q-axis component.
And the inductance drop due to the change in the q-axis component current
(p (l 1 + l 2 ') iq *).

【0031】q軸電流変化分補正手段16と減算手段3
3は特徴部分に係るものであり、q軸電流変化分補正手
段16は、q軸成分電流の指令値iq*に基づいてq軸
成分電流の変化に伴うインダクタンス降下分(p(l
+l’)iq*)を求める。減算手段33は、q軸成分
電圧演算手段7の出力からq軸電流変化分補正手段16
の出力を減算して、q軸成分誘起電圧の推定値eq’を
求める。
The q-axis current change correction means 16 and the subtraction means 3
Numeral 3 relates to a characteristic portion, and the q-axis current variation correction means 16 uses the q-axis component current command value iq * to determine the inductance drop (p (l 1
+ L 2 ') iq *). The subtraction means 33 calculates the q-axis component
Q-axis current change correction means 16 from the output of voltage calculation means 7
Is subtracted to obtain an estimated value eq ′ of the q-axis component induced voltage.

【0032】速度推定手段17は、減算手段33から出
力されるq軸成分誘起電圧の推定値eq’に基づいて誘
導電動機の速度推定値ωr'を演算する。すべり変換手段
14は、q軸成分電流の指令値iq*に基づいてすべり
速度ωs*を求める。加算手段34はすべり速度ωs*を
速度推定値ωr'に加算して、誘導電動機の一次周波数指
令値ω*を得る。
The speed estimating means 17 calculates an estimated speed ωr 'of the induction motor based on the estimated value eq' of the q-axis component induced voltage output from the subtracting means 33. The slip converter 14 determines a slip speed ωs * based on the command value iq * of the q-axis component current. The adding means 34 adds the slip speed ωs * to the estimated speed value ωr ′ to obtain a primary frequency command value ω 1 * of the induction motor.

【0033】すべり補正手段15も特徴部分に係り、d
軸成分誘起電圧の推定値ed’を入力し、これと「0」
との偏差を比例積分処理してすべり補正値dωsを生成
し、これを加算手段35にて一次周波数指令値ω*に
加算することによりすべり補正を行う。
The slip correcting means 15 also relates to the characteristic portion, and d
Input the estimated value ed 'of the axis component induced voltage, and enter "0"
Is subjected to a proportional integration process to generate a slip correction value dωs, which is added to the primary frequency command value ω 1 * by the adding means 35 to perform slip correction.

【0034】ここで、特徴部分の1つである電流急変の
干渉を避けるために、インピーダンス降下を分離して求
めてインピーダンス降下補償を行わせるようにしたd・
q軸インピーダンス非干渉補正手段13を説明する。
Here, in order to avoid interference of a sudden change in current, which is one of the characteristic portions, the impedance drop is obtained by separating and finding the impedance drop, and the impedance drop compensation is performed.
The q-axis impedance non-interference correction unit 13 will be described.

【0035】第1の演算手段20は係数乗算手段であ
り、d軸成分電流の設定値id*に一次抵抗rを乗算
して、id*に対応する誘導電動機のd軸成分電圧の抵
抗降下分を求める。第2の演算手段は係数乗算手段21
と乗算手段24からなり、q軸電流の指令値iq*にイ
ンダクタンス(l+l’)を乗算し、これに補正さ
れた一次周波数指令値ωs*を乗算して、q軸成分電流
に対応する誘導電動機のd軸成分電圧のインピーダンス
降下分を求める。これら第1と第2の演算手段20,2
1,24の出力は加算手段31に入力される。この加算
手段31においてd軸成分誘起電圧の推定値ed’に極
性を加味して加算され、その加算値がd軸成分電圧の指
令値Vd*として振幅演算手段8と位相演算手段9に入
力される。
The first calculating means 20 is a coefficient multiplying means, by multiplying the primary resistance r 1 to the set value of the d-axis component current id *, the ohmic drop of the d-axis component voltage of the induction motor corresponding to the id * Ask for minutes. The second calculating means is a coefficient multiplying means 21
, Multiplying the command value iq * of the q-axis current by the inductance (l 1 + l 2 ′), and multiplying this by the corrected primary frequency command value ωs * to correspond to the q-axis component current The impedance drop of the d-axis component voltage of the induction motor is calculated. These first and second calculation means 20, 2
The outputs of 1 and 24 are input to the adding means 31. The adding means 31 adds the estimated value ed 'of the d-axis component induced voltage in consideration of the polarity, and inputs the added value to the amplitude calculating means 8 and the phase calculating means 9 as a d-axis component voltage command value Vd *. You.

【0036】第3の演算手段23は係数乗算手段であ
り、q軸電流の指令値iq*に一次・二次抵抗r12(=
+r’)を乗じ、q軸電流の指令値に対応する誘
導電動機のq軸成分電圧の抵抗降下分を求める。第4の
演算手段は係数乗算手段22と乗算手段25からなり、
d軸電流の指令値id*にインダクタンス(l
’)を乗算し、これに補正された一次周波数指令値
ω*を乗算して、d軸成分電流に対応する誘導電動機
のq軸成分電圧のインピーダンス降下分を求める。これ
らの和を加算手段32にてq軸成分電圧の指令値Vq*
に加算してこれを補正する。
The third calculating means 23 is a coefficient multiplying means, and adds a primary / secondary resistance r 12 (=
r 1 + r 2 ′) to determine a resistance drop of the q-axis component voltage of the induction motor corresponding to the q-axis current command value. The fourth operation means includes a coefficient multiplication means 22 and a multiplication means 25,
Inductance (l 1 +
l 2 ′) and the corrected primary frequency command value ω 1 * to obtain the impedance drop of the q-axis component voltage of the induction motor corresponding to the d-axis component current. The sum of these is added by the adding means 32 to the command value Vq * of the q-axis component voltage.
To correct for this.

【0037】この補正されたq軸成分電圧の指令値Vq
*は、振幅演算手段8と位相演算手段9に入力される。
振幅演算手段8は、d,q軸成分電圧の指令値Vd*,
Vq*に基づいて、一次電圧指令値V*=√(Vd*
+Vq*)を求めて、PWMパルス発生手段10に出
力する。同様に、位相演算手段9はd,q軸成分電圧の
指令値Vd*,Vq*に基づいて、前記式(5)の演算を
実行して角度指令値θ*を求めPWMパルス発生手段1
0と電流検出手段12に出力する。
The command value Vq of the corrected q-axis component voltage
* Is input to the amplitude calculator 8 and the phase calculator 9.
The amplitude calculating means 8 includes a command value Vd * of the d- and q-axis component voltages,
Based on Vq *, the primary voltage command value V 1 * = √ (Vd * 2
+ Vq * 2 ) and outputs it to the PWM pulse generating means 10. Similarly, based on the command values Vd * and Vq * of the d- and q-axis component voltages, the phase calculation means 9 calculates the angle command value θ * by executing the calculation of the equation (5), and obtains the PWM pulse generation means 1
0 is output to the current detection means 12.

【0038】PWMパルス発生手段10は、入力される
一次電圧指令値V*と角度指令値θ*と補正された一次
周波数指令値ω*に基づいてPWMパルスを発生し、
これによりPWMインバータを駆動制御することによ
り、速度指令値に追従して誘導電動機の速度を制御する
ようになっている。
The PWM pulse generating means 10 generates a PWM pulse based on the input primary voltage command value V 1 *, angle command value θ *, and corrected primary frequency command value ω 1 *,
Thus, by controlling the driving of the PWM inverter, the speed of the induction motor is controlled in accordance with the speed command value.

【0039】次に、図1実施例の特徴に係る動作を説明
する。
Next, the operation according to the features of the embodiment of FIG. 1 will be described.

【0040】誘導電動機のd,q軸成分電圧Vd,Vq
は公知のように、次式(6)〜(9)で表せる。それら
の式で、pは演算子(d/dt)、L=l’+M’
である。
D and q axis component voltages Vd and Vq of the induction motor
Can be expressed by the following equations (6) to (9) as is known. In these equations, p is the operator (d / dt), L 2 = l 2 '+ M'
It is.

【0041】 Vd=r・id+p(l+l')id-ω(l+l')iq+p・M'・φd/L・M'・φq/ L(6) =r id-ω (l +l ')iq-ed+p(l +l ')id+p M' φ d/L (7) Vq=r・iq+p(l+l')iq+ω(l+l')id+ω・M'・φd/L+p・M'・φq/ L(8) =(r+r)・iq+ω(l+l')id+eq+p(l+l')iq+p・M'・φq/L(9) ここで、eq=ω・M'・φd/Lである。Vd = r 1 · id + p (l 1 + l 2 ') id-ω 1 (l 1 + l 2 ') iq + p · M '· φ 2 d / L 21 · M'・ Φ 2 q / L 2 (6) = r 1 id-ω 1 (l 1 + l 2 ') iq-ed + p (l 1 + l 2 ') id + p M ' φ 2 d / L 2 (7) Vq = r 1 · iq + p (l 1 + l 2 ') iq + ω 1 (l 1 + l 2') id + ω 1 · M '· φ 2 d / L 2 + p · M '· φ 2 q / L 2 (8) = (r 1 + r 2) · iq + ω 1 (l 1 + l 2') id + eq + p (l 1 + l 2 ') iq + p · M ′ · φ 2 q / L 2 (9) Here, eq = ω 1 · M ′ · φ 2 d / L 2 .

【0042】上記実施例では、まず励磁電流であるd軸
成分電流idを一定に制御するのであるから、二次磁束
のd軸成分φdも一定に保たれる。また、すべり補正
手段15により二次磁束のq軸成分φqは「0」に保
持制御される。したがって、(7)式右辺の第3,4項
は「0」とみなせるから、また同様に(9)式の右辺第
5項は「0」とみなせるから、それらの式はそれぞれ次
の式(10),(11)に近似できる。
In the above embodiment, since the d-axis component current id, which is the exciting current, is controlled to be constant, the d-axis component φ 2 d of the secondary magnetic flux is also kept constant. The slip correction means 15 controls the q-axis component φ 2 q of the secondary magnetic flux to be maintained at “0”. Therefore, the third and fourth terms on the right side of equation (7) can be regarded as “0”, and similarly, the fifth term on the right side of equation (9) can be regarded as “0”. 10) and (11).

【0043】 Vd≒r・id-ω(l+l')iq-ed+p(l+l')id (10) Vq≒(r+r)・iq+ω(l+l')id+eq+p(l+l')iq (11) これに着目し、本実施例ではd,q軸の電圧指令値Vd
*,Vq*を次式(12),(13)により求めるものとし、電流
の影響に鑑みて各項を適宜分離して演算するようにした
のである。
Vd ≒ r 1 · id-ω 1 (l 1 + l 2 ') iq-ed + p (l 1 + l 2 ') id 2 (10) Vq ≒ (r 1 + r 2 ) · iq + ω 1 (l 1 + l 2 ') id + eq + p (l 1 + l 2 ') iq (11) Focusing on this, in the present embodiment, the d and q axis voltage command values Vd
*, Vq * are determined by the following equations (12) and (13), and the terms are appropriately separated and calculated in consideration of the influence of the current.

【0044】 Vd*=r・id*−ω*(l+l’)iq*−ed’ (12) Vq*=(r+r’)・iq*+ω*(l+l’)id* +eq’+p(l+l’)iq* (13) すなわち、(12)式の第1,2項は非干渉補正手段1
3により演算し、第3項はd軸成分誘起電圧推定手段6
により演算している。これにより求めた推定値ed’
は、すべり補正手段15により「0」になるように一次
周波数指令値ω*を制御する。また、(13)式の第
1項,第2項は非干渉補正手段13により演算し、第
3,4項の和をq軸成分電圧演算手段7により演算し、
さらに第3,4項の和から減算手段33によりiq変化
分補正手段16で求めた第4項分を減算してq軸成分誘
起電圧の推定値eq’を求め、これに基づいて速度推定
値ωr’を求めているのである。すなわち、速度推定値
演算手段17に(M'・φd/L)を係数として与えてお
き、 ωr’=eq’/(M'・φd/L) により求める。
Vd * = r 1 · id * −ω 1 * (l 1 + l 2 ′) iq * -ed ′ (12) Vq * = (r 1 + r 2 ′) · iq * + ω 1 * (l 1 + l 2 ′) id * + eq ′ + p (l 1 + l 2 ′) iq * (13) That is, the first and second terms in the equation (12) are the non-interference correction means 1
The third term is d-axis component induced voltage estimating means 6
Is calculated by The estimated value ed 'obtained by this
Controls the primary frequency command value ω 1 * to be “0” by the slip correction means 15. Further, the first and second terms of the equation (13) are calculated by the non-interference correcting means 13, and the sum of the third and fourth terms is calculated by the q-axis component voltage calculating means 7,
Further, the estimated value eq ′ of the q-axis component induced voltage is obtained by subtracting the fourth term obtained by the iq variation correcting means 16 from the sum of the third and fourth terms by the subtracting means 33, and based on this, the speed estimated value is obtained. ωr ′ is required. That is, (M ′ · φ 2 d / L 2 ) is given to the speed estimation value calculating means 17 as a coefficient, and is obtained by ωr ′ = eq ′ / (M ′ · φ 2 d / L 2 ).

【0045】これらのことにより、図1の実施例によれ
ば、ed’,eq’,ωr’の各推定値は、トルク電流
であるiqの変化の影響を受けずに求められる。その結
果、ed’,eq’,ωr’の各推定値を基準にして制
御される速度制御は、負荷急変や急加減速に対しても応
答性よく追従制御できるという効果がある。
From the above, according to the embodiment of FIG. 1, the estimated values of ed ', eq', and ωr 'are obtained without being affected by the change of the torque current iq. As a result, the speed control controlled on the basis of the estimated values of ed ', eq', and ωr 'has an effect that the follow-up control can be performed with a high response even to a sudden load change or a sudden acceleration / deceleration.

【0046】上記実施例は、誘導電動機が一定方向に回
転する場合を例にして示したが、誘導電動機が正/逆回
転で用いられる場合は、図1におけるすべり補正手段1
5に入力されるd軸成分誘起電圧の推定値ed’の極性
を、図5に示すように、回転方向に応じて切り替えてや
ればよい。
In the above embodiment, the case where the induction motor rotates in a fixed direction has been described as an example. However, when the induction motor is used in forward / reverse rotation, the slip correcting means 1 shown in FIG.
The polarity of the estimated value ed 'of the d-axis component induced voltage input to 5 may be switched according to the rotation direction as shown in FIG.

【0047】すなわち、図5に示すように、極性判別手
段50により一次周波数指令値ω*の極性を判別し、判
別した極性(+1,−1)に応じて乗算手段51により
+1または−1をd軸成分誘起電圧の推定値ed’に乗
算すればよい。なお、図5のすべり補正手段15は図1
と同一の構成であり、入力される推定値ed’と設定値
「ed’=0」との偏差を求め、その偏差を比例積分手
段53により処理して、すべり補正値dωsとして出力
する。
That is, as shown in FIG. 5, the polarity of the primary frequency command value ω * is determined by the polarity determining means 50, and +1 or -1 is multiplied by the multiplying means 51 according to the determined polarity (+1, -1). What is necessary is just to multiply the estimated value ed 'of the d-axis component induced voltage. Note that the slip correcting means 15 of FIG.
The deviation between the input estimated value ed ′ and the set value “ed ′ = 0” is obtained, the deviation is processed by the proportional integration means 53, and the deviation is output as the slip correction value dωs.

【0048】ここで、d軸成分誘起電圧edの極性につ
いて説明しておく。edは誘導電動機の回転方向に拘ら
ず、 ・d軸がφ軸よりも遅れる場合は: ed<0 ・d軸がφ軸よりも進む場合は: ed>0 の関係があり、推定値ed’も同様である。
Here, the polarity of the d-axis component induced voltage ed will be described. ed is regardless of the direction of rotation of the induction motor, if · d-axis lags behind phi 2 axes: ed <0 · d If the shaft is advanced than phi 2 axes: ed> 0 there is a relationship, the estimated value The same applies to ed '.

【0049】一方、式(6),(10)から判るよう
に、 ed=ω*・M’φq/L であるから、ω*の極性により極性が変化する。そこ
で、図5実施例のようにω*の極性に応じて推定値e
d’の極性を切り替えて、すべり補正をすることによ
り、可逆回転の誘導電動機にも適用できることになる。
On the other hand, as can be seen from equations (6) and (10),
, Ed = ω1* · M'φ2q / L2  Ω1The polarity changes depending on the polarity of *. There
Then, as shown in FIG.1Estimated value e according to the polarity of *
By switching the polarity of d 'to correct slip
In other words, it can be applied to a reversible rotating induction motor.

【0050】[0050]

【発明の効果】本発明は、内部誘起電圧のd,q軸成分
の推定値ed’及びeq’を電流急変の影響を受けるイ
ンピーダンス降下分と分離して求め、求めたeq’に基
づいて速度推定値を求めるとともに、ed’を零にする
ようにすべり補正値を求めるようにしたのである。e
d’,eq’は電流急変の影響を受けないことから、負
荷の急変や急加減速等に伴う電流急変に対しても、速度
追従制御の応答性を高く保持できる。
According to the present invention, the estimated values ed 'and eq' of the d- and q-axis components of the internal induced voltage are obtained separately from the impedance drop affected by the sudden change in current, and the speed is calculated based on the obtained eq '. An estimated value is obtained, and a slip correction value is obtained so as to make ed 'zero. e
Since d 'and eq' are not affected by a sudden change in current, the response of the speed following control can be kept high even for a sudden change in load due to a sudden change in load or sudden acceleration / deceleration.

【0051】また、一次周波数指令値ω*の極性に応
じてd軸誘起電圧の推定値ed’の極性を切り替えて、
すべり補正をすることにより、可逆回転の誘導電動機に
も適用できる
Further, the polarity of the estimated value ed ′ of the d-axis induced voltage is switched according to the polarity of the primary frequency command value ω 1 *,
By applying slip correction, it can be applied to reversible induction motors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の速度制御方法を適用してなる一実施例
の誘導電動機のベクトル制御装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an induction motor vector control device according to an embodiment to which a speed control method of the present invention is applied.

【図2】誘導電動機の等価回路の一例図である。FIG. 2 is an example diagram of an equivalent circuit of the induction motor.

【図3】ベクトル制御におけるベクトル関係を説明する
図であり、(A)は電流ベクトル図、(B)は電圧ベク
トル図である。
3A and 3B are diagrams for explaining a vector relationship in vector control, wherein FIG. 3A is a current vector diagram, and FIG. 3B is a voltage vector diagram.

【図4】負荷急変などにより二次磁束軸がd軸とずれた
場合のベクトルの変化を説明する図であり、(A)は電
流ベクトル、(B)は電圧ベクトル図である。
4A and 4B are diagrams illustrating a change in a vector when a secondary magnetic flux axis is shifted from a d-axis due to a sudden change in load, in which FIG. 4A is a current vector and FIG. 4B is a voltage vector diagram.

【図5】誘導電動機が正/逆回転で用いられる場合のす
べり補正手段15の他の実施例を示す図である。
FIG. 5 is a diagram showing another embodiment of the slip correcting means 15 when the induction motor is used in forward / reverse rotation.

【符号の説明】[Explanation of symbols]

1 PWMインバータ 2 誘導電動機 6 d軸成分内部誘起電圧推定手段 7 q軸成分電圧演算手段 8 振幅演算手段 9 位相演算手段 10 PWMパルス発生手段 11 3相/2相変換手段 12 電流検出手段 13 非干渉補正手段 14 すべり変換手段 15 すべり補正手段 16 iq変化分補正手段 17 速度推定手段REFERENCE SIGNS LIST 1 PWM inverter 2 induction motor 6 d-axis component internal induced voltage estimating means 7 q-axis component voltage calculating means 8 amplitude calculating means 9 phase calculating means 10 PWM pulse generating means 11 three-phase / two-phase converting means 12 current detecting means 13 non-interference Correction means 14 slip conversion means 15 slip correction means 16 iq variation correction means 17 speed estimation means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 21/00 H02P 5/408 - 5/412 H02P 7/628 - 7/632 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02P 21/00 H02P 5/408-5/412 H02P 7/628-7/632

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 速度指令値と速度推定値とを比較して、
それらの偏差を低減するq軸成分電流の指令値を生成
し、該指令値と誘導電動機のq軸成分電流の検出値との
偏差に基づいて誘導電動機のq軸成分内部誘起電圧とq
軸成分電流の変化に伴うインダクタンス降下分との和か
らなるq軸成分電圧の基本指令値を求める一方、前記q
軸成分電流の指令値に基づいてq軸成分電流の変化に伴
う前記インダクタンス降下分を求め、該インダクタンス
降下分を前記基本指令値から減じてq軸成分内部誘起電
圧の推定値を生成し、該q軸成分内部誘起電圧の推定値
に基づいて前記速度推定値を求めて前記速度指令値との
比較に用いると共に、該速度推定値に前記q軸成分電流
の指令値に基づいて求まるすべり速度を加算して一次周
波数指令値を生成し、 d軸成分電流の指令値と検出値との偏差に基づいてd軸
成分内部誘起電圧の推定値を生成し、前記d軸成分電流
の指令値と前記q軸成分電流の指令値とに基づいて誘導
電動機のd軸成分電圧の抵抗降下分を含むインピーダン
ス降下を求め、該インピーダンス降下を前記d軸成分内
部誘起電圧の推定値に加算してd軸成分電圧の指令値を
生成し、 前記q軸電流成分の指令値と前記d軸成分電流の指令値
と基づいて誘導電動機のq軸成分電圧の抵抗降下分を含
むインピーダンス降下を求め、該インピーダンス降下を
前記基本指令値に加算してq軸成分電圧の指令値を生成
し、 前記一次周波数指令値と前記d軸成分電圧の指令値と前
記q軸成分電圧の指令値とに基づいて誘導電動機を制御
する誘導電動機のベクトル制御方法。
A speed command value is compared with an estimated speed value.
Generates q-axis component current command values to reduce those deviations
And the detected value of the command value and the detected value of the q-axis component current of the induction motor.
Based on the deviation, the induced voltage inside the q-axis component of the induction motor and q
Is it the sum of the inductance drop due to the change of the axis component current?
While obtaining the basic command value of the q-axis component voltage
As the q-axis component current changes based on the command value of the
Calculate the inductance drop
The descent is subtracted from the basic command value to generate the q-axis internal induced power.
Pressure estimate, and the q-axis component internal induced voltage estimate
Calculating the speed estimation value based on the speed command value and
The speed estimation value is used for comparison and the q-axis component current
Add the slip speed obtained based on the command value of
Generates a wave number command value, and calculates the d-axis component current based on the deviation between the command value and the detected value.
Generating an estimated value of the component internal induced voltage,
And the q-axis component current command value.
Impedance including resistance drop of d-axis component voltage of motor
Of the d-axis component.
Command value for the d-axis component voltage by adding
Generate the command value of the q-axis current component and the command value of the d-axis component current
Includes the resistance drop of the q-axis component voltage of the induction motor based on
The impedance drop, and calculate the impedance drop
Adds to the basic command value to generate a command value for q-axis component voltage
The primary frequency command value and the d-axis component voltage command value
The induction motor is controlled based on the command value of the q-axis component voltage.
Vector control method of induction motor.
【請求項2】 請求項1において、前記d軸成分内部誘
起電圧の推定値を積分処理して得られるすべり補正値に
より前記一次周波数指令値を補正することを特徴とする
誘導電動機のベクトル制御方法。
2. The method according to claim 1, wherein the d-axis component is internally induced.
The slip correction value obtained by integrating the estimated value of the electromotive voltage
Wherein the primary frequency command value is further corrected.
Vector control method for induction motor.
【請求項3】 誘導電動機の一次電流の検出値に基づい
てd軸成分電流とq軸成分電流の検出値をそれぞれ求め
る電流検出手段と、 速度指令値と速度推定値とを比較して、それらの偏差を
低減するq軸成分電流 の指令値を生成する速度制御手段
と、 前記q軸成分電流の指令値と誘導電動機の前記q軸成分
電流の検出値との偏差に基づいて、誘導電動機のq軸成
分内部誘起電圧とq軸成分電流の変化に伴うインダクタ
ンス降下分との和からなるq軸成分電圧の基本指令値を
求めるq軸成分電圧演算手段と、 前記q軸成分電流の指令値に基づいてq軸成分電流の変
化に伴う前記インダクタンス降下分を求めるq軸電流変
化分補正手段と、 該インダクタンス降下分を前記基本指令値から減じて前
記q軸成分内部誘起電圧の推定値を生成する減算手段
と、 該q軸成分内部誘起電圧の推定値に基づいて前記速度推
定値を求めて前記速度制御手段に出力する速度推定手段
と、 前記速度推定値に前記q軸成分電流の指令値に基づいて
求まるすべり速度を加算して一次周波数指令値を生成す
る加算手段と、 前記q軸電流成分の指令値に基づいて誘導電動機のq軸
成分電圧の抵抗降下分を求めると共に、d軸成分電流の
指令値と前記一次周波数指令値とに基づいて誘導電動機
のq軸成分電圧のインピーダンス降下分を求めるq軸イ
ンピーダンス非干渉補正手段と、 q軸成分電圧の前記抵抗降下分と前記インピーダンス降
下分の和を前記基本指令値に加算してq軸成分電圧の指
令値を生成する加算手段と、 d軸成分電流の指令値と検出値との偏差に基づいてd軸
成分内部誘起電圧の推定値を生成するd軸成分内部誘起
電圧演算手段と、 前記d軸電流成分の指令値に基づいて誘導電動機のd軸
成分電圧の抵抗降下分を求めると共に、前記q軸成分電
流の指令値に基づいて誘導電動機のd軸成分電圧のイン
ピーダンス降下分を求めるd軸インピーダンス非干渉補
正手段と、 前記d軸成分電圧の抵抗降下分とインピーダンス降下分
の和を前記d軸成分内部誘起電圧の推定値に加算してd
軸成分電圧の指令値を生成する加算手段とを備え、 前記一次周波数指令値と前記q軸電圧の指令値とd軸成
分電圧の指令値とに基づいてPWMインバータを制御す
るPWMパルス発生手段とを備えてなる誘導電 動機のベ
クトル制御装置。
3. The method according to claim 1, wherein the detected value is a primary current of the induction motor.
To find the detected values of d-axis component current and q-axis component current respectively
Current detection means, the speed command value and the speed estimation value, and
Speed control means for generating a command value of the q-axis component current to be reduced
A command value of the q-axis component current and the q-axis component of the induction motor.
Based on the deviation from the detected current value, the q-axis
Inductor due to change of internal induced voltage and q-axis component current
The basic command value of the q-axis component voltage consisting of the sum with the
A q-axis component voltage calculating means for calculating the q-axis component current based on the q-axis component current command value;
Q-axis current change to find the inductance drop due to
Compound correction means, and subtracting the inductance drop from the basic command value
Subtraction means for generating an estimated value of a q-axis component internal induced voltage
And the speed estimation based on the estimated value of the q-axis component internal induced voltage.
Speed estimating means for obtaining a constant value and outputting it to the speed controlling means
And the speed estimation value based on the command value of the q-axis component current.
Generate the primary frequency command value by adding the determined slip speed
Adding means, and the q-axis of the induction motor based on the command value of the q-axis current component.
In addition to calculating the resistance drop of the component voltage, the d-axis component current
An induction motor based on a command value and the primary frequency command value
Q-axis to find the impedance drop of the q-axis component voltage of
Impedance non-interference correction means, the resistance drop of the q-axis component voltage and the impedance drop
The lower sum is added to the basic command value to determine the q-axis component voltage.
An adding means for generating a command value, and a d-axis based on a deviation between the command value of the d-axis component current and the detected value.
Induction of d-axis component to generate estimated value of component internal induced voltage
Voltage calculation means, and the d-axis of the induction motor based on the command value of the d-axis current component.
In addition to calculating the resistance drop of the component voltage,
Of the d-axis component voltage of the induction motor based on the flow command value.
D-axis impedance non-interference compensation to find the impedance drop
Positive means, resistance drop and impedance drop of the d-axis component voltage
Is added to the estimated value of the d-axis component internal induced voltage to obtain d
An adding means for generating a command value of the axis component voltage, wherein the command value of the primary frequency, the command value of the q-axis voltage,
The PWM inverter is controlled based on the divided voltage command value.
Baie induction motor comprising a PWM pulse generating unit that
Vector control device.
【請求項4】 請求項3において、前記d軸成分内部誘
起電圧の推定値を積分処理して得られるすべり補正値に
より前記一次周波数指令値を補正する加算手段を有する
ことを特徴とする誘導電動機のベクトル制御装置。
4. The method according to claim 3, wherein the d-axis component is internally induced.
The slip correction value obtained by integrating the estimated value of the electromotive voltage
Further comprising an adding means for correcting the primary frequency command value.
A vector control device for an induction motor, characterized in that:
JP5338386A 1993-12-28 1993-12-28 Vector control method and device for induction motor Expired - Fee Related JP3066697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5338386A JP3066697B2 (en) 1993-12-28 1993-12-28 Vector control method and device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5338386A JP3066697B2 (en) 1993-12-28 1993-12-28 Vector control method and device for induction motor

Publications (2)

Publication Number Publication Date
JPH07194198A JPH07194198A (en) 1995-07-28
JP3066697B2 true JP3066697B2 (en) 2000-07-17

Family

ID=18317671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5338386A Expired - Fee Related JP3066697B2 (en) 1993-12-28 1993-12-28 Vector control method and device for induction motor

Country Status (1)

Country Link
JP (1) JP3066697B2 (en)

Also Published As

Publication number Publication date
JPH07194198A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
EP2779414B1 (en) Motor control system having bandwidth compensation
US9136785B2 (en) Motor control system to compensate for torque ripple
JP3152058B2 (en) Variable speed control device for induction motor
EP0082303B1 (en) Method and apparatus for controlling induction motor
JP2005204350A (en) Controller of rotary electric machine and power generation system
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
TWI427916B (en) Inverter control device and control method thereof
JPH11187699A (en) Speed control method for induction motor
JP5397664B2 (en) Motor control device
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
JP4238646B2 (en) Speed sensorless vector controller for induction motor
JP4230793B2 (en) Power converter
JP3066697B2 (en) Vector control method and device for induction motor
JP2005304175A (en) Speed controller of motor
JP3341799B2 (en) Electric vehicle control device
JP3882728B2 (en) Electric motor control device
JP3425438B2 (en) Induction motor drive
JP3351244B2 (en) Induction motor speed control method
JPH08205599A (en) Speed estimation and drive device for induction motor
JP2946157B2 (en) Induction motor speed control device
JPH04312382A (en) Control method for induction motor
JP4682521B2 (en) Variable speed control device for induction motor
JP4839552B2 (en) Induction motor control method
JP3323900B2 (en) Control device for linear motor electric vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees