JPH04312382A - Control method for induction motor - Google Patents

Control method for induction motor

Info

Publication number
JPH04312382A
JPH04312382A JP3075371A JP7537191A JPH04312382A JP H04312382 A JPH04312382 A JP H04312382A JP 3075371 A JP3075371 A JP 3075371A JP 7537191 A JP7537191 A JP 7537191A JP H04312382 A JPH04312382 A JP H04312382A
Authority
JP
Japan
Prior art keywords
speed
torque current
induction motor
control
vector control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3075371A
Other languages
Japanese (ja)
Other versions
JP3053121B2 (en
Inventor
Mitsujiro Sawamura
光次郎 沢村
Toshihiro Sawa
俊裕 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP3075371A priority Critical patent/JP3053121B2/en
Publication of JPH04312382A publication Critical patent/JPH04312382A/en
Application granted granted Critical
Publication of JP3053121B2 publication Critical patent/JP3053121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate speed control in a high revolution region by a method wherein vector control with a speed sensor is performed if a speed is smaller than a speed at which a revolution detector can detect an accurate revolution and vector control without a speed sensor is performed if the speed is larger than that speed. CONSTITUTION:If the speed of an induction motor 1 exceeds a speed at which a revolution detector 2 can detect an accurate revolution, vector control with a speed sensor can not be performed. Therefore, a switch 12 is so turned as to have a speed signal omegar on the output side of a torque current controller 8 to perform vector control without a speed sensor. That is, the torque current controller 8 estimates the motor speed omegar so that a torque current instruction value IT' agrees with a torque current estimated value IT. With this constitution, the speed control of the induction motor can be performed even if the speed is larger than the speed at which the revolution detector can detect accurate revolution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は誘導電動機のベクトル制
御を応用した制御方法に関するもので、特に工作機械の
高速主軸ドライブに利用される制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method using vector control of an induction motor, and more particularly to a control method applied to a high-speed spindle drive of a machine tool.

【0002】0002

【従来の技術】図2にシステムの構成を示す。本システ
ムは、誘導電動機aとそれに取り付けられた回転数検出
器bとその回転数を検出して誘導電動機aを駆動するイ
ンバータ装置cからなる。
2. Description of the Related Art FIG. 2 shows the configuration of a system. This system includes an induction motor a, a rotation speed detector b attached to the induction motor a, and an inverter c that detects the rotation speed and drives the induction motor a.

【0003】従来技術では、低速回転においては、回転
数検出器bの検出信号ωr を基にインバータ装置cで
速度センサ付ベクトル制御を行い、誘導電動機を駆動す
る。しかしながら、低速運転時にサーボ性能が必要であ
ったり、位置決め制御を行うために高分解能の回転数検
出器bが必要とされる場合、高速回転においては、回転
数検出器bの検出信号ωr が高周波化し、検出信号ω
r が減衰し正しくインバータ装置cに伝えられなくな
ったり回転数検出器b内の検出回路の動作遅れなどによ
り、回転数検出器bの検出信号ωr が正しい速度検出
量を出力しなくなるため、速度センサ付ベクトル制御が
できなくなる。そこで従来は、高速回転において、回転
数検出器bの検出信号ωr が不要なV/f一定制御で
誘導電動機を駆動していた。
[0003] In the prior art, during low speed rotation, an inverter device c performs vector control with a speed sensor based on a detection signal ωr from a rotation speed detector b to drive an induction motor. However, if servo performance is required during low-speed operation or a high-resolution rotational speed detector b is required for positioning control, the detection signal ωr of the rotational speed detector b is high-frequency during high-speed rotation. , and the detection signal ω
The speed sensor vector control becomes impossible. Conventionally, the induction motor was driven under constant V/f control that did not require the detection signal ωr of the rotational speed detector b during high-speed rotation.

【0004】0004

【発明が解決しようとする課題】ところが従来技術では
V/f一定制御をしているような高速回転の領域におい
ては速度センサ付ベクトル制御で可能な速度制御ができ
ないという問題点があった。そこで本発明では高速回転
の領域においても、速度制御を可能とすることを目的と
する。
However, in the prior art, there is a problem in that in a high-speed rotation region where constant V/f control is performed, speed control that is possible with vector control with a speed sensor cannot be achieved. Therefore, an object of the present invention is to enable speed control even in the high-speed rotation range.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
、本発明は、誘導電動機と、それに取り付けられた回転
数検出器と、その回転数を検出して誘導電動機を駆動す
るインバータ装置を有する誘導電動機の制御方法におい
て、前記誘導電動機の速度が前記回転数検出器が正確な
回転数を検出しうる速度より小さい場合には速度センサ
付ベクトル制御を行い、大きい場合には速度センサレス
ベクトル制御を行うことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes an induction motor, a rotation speed detector attached to the induction motor, and an inverter device that detects the rotation speed and drives the induction motor. In the method for controlling an induction motor, if the speed of the induction motor is smaller than the speed at which the rotation speed detector can accurately detect the rotation speed, vector control with a speed sensor is performed, and if it is larger, speed sensorless vector control is performed. It is characterized by doing.

【0006】[0006]

【作用】本発明では、高速回転においては、速度センサ
付ベクトル制御に比べて制御性能は劣るが、V/f一定
制御ではできなかった速度制御ができる速度センサレス
ベクトル制御を適用する。これにより、高速回転領域に
おいても速度制御が可能となる。
[Operation] In the present invention, speed sensorless vector control is applied, which is inferior in control performance to speed sensor-equipped vector control at high speed rotations, but allows speed control that cannot be achieved with constant V/f control. This allows speed control even in the high-speed rotation region.

【0007】[0007]

【実施例】以下、本発明の具体的実施例を図1制御ブロ
ック図に示して説明する。本システムは、誘導電動機1
とそれに取り付けられた回転数検出器2とその回転数を
検出して誘導電動機1を駆動するインバータ装置3とか
らなる。インバータ装置3は速度制御部4、磁束制御部
5、電流制御部6、磁束・トルク電流推定器7、トルク
電流制御器8、モータ回路定数10を含んだすべり周波
数演算器9、モータ定数の補正機能11、速度検出値と
速度推定値を切替えるスイッチ12、1次電流指令発生
器13、励磁インダクタンス関数14、掛算器15、パ
ワー変換部16、積分器17から構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to the control block diagram of FIG. This system consists of an induction motor 1
It consists of a rotation speed detector 2 attached thereto, and an inverter device 3 that detects the rotation speed and drives the induction motor 1. The inverter device 3 includes a speed control section 4, a magnetic flux control section 5, a current control section 6, a magnetic flux/torque current estimator 7, a torque current controller 8, a slip frequency calculator 9 including a motor circuit constant 10, and a motor constant correction It is composed of a function 11, a switch 12 for switching between a detected speed value and an estimated speed value, a primary current command generator 13, an excitation inductance function 14, a multiplier 15, a power converter 16, and an integrator 17.

【0008】ベクトル制御は、一般的にモータのトルク
発生メカニズムを数式解で求め、これを逆展開して、ト
ルク指令に忠実にトルクを発生するようにモータに与え
る電圧、周波数、位相を制御するものである。この数式
解を簡素化して表せば、(1)〜(7)式のようになる
。     トルク            T=kφ2 
IT                       
(1)    励磁電流振幅      IM =(1
/M)φ2                 (2)
    1次電流振幅      I1 =√(IM2
+IT2)              (3)   
 1次電流遅れ角    θT = tan−1(IT
 /IM )          (4)    1次
周波数        ω1 =ωr +ωs    
                 (5)    1
次電流ベクトル  I1 =I1 ∠θ1      
             (6)    すべり周波
数      ωs =Ks (IT /φ2 )  
          (7)従って、インバータでは、
(1)〜(7)式に基づいてベクトル制御を行う。磁束
制御部5は、指令磁束φ2*と磁束推定値φ2 が一致
するように制御し、その出力は(2)式のように励磁イ
ンダクタンス関数14を介して、励磁電流指令IM*に
変換される。速度制御部4の出力は、トルク電流指令I
T*とみなされ、1次電流指令発生器13は(3),(
4)式に基づいてI1*とθT*を出力する。一方、1
次周波数演算は、(7)式に基づいてすべり周波数演算
器9が演算を行い、すべり周波数信号ωs*を出力する
。(5)式に基づいて、速度信号ωr とすべり周波数
信号ωs*を加算して1次周波数信号ω1 を作り、こ
れを積分器17で積分した値と1次電流遅れ角θT*を
加えて、1次電流位相角θ1*を発生する。掛算器15
は(6)式に基づいて1次電流指令振幅I1*とθ1*
を掛算して、1次電流指令ベクトルI1*を発生する。 電流指令部6は、前記1次電流指令ベクトルと同じ電流
が流れるように1次電流指令ベクトルV1*を発生し、
パワー変換部17が必要な電圧、周波数、位相を発生し
、誘導電動機1に与える。磁束・トルク電流推定部7で
は、1次電流ベクトルI1 と1次電圧指令ベクトルV
1*よりトルク電流推定値IT と磁束推定値φ2 が
得られる。1次電圧指令ベクトルV1*の代わりにイン
バータ出力電圧V1 を使ってもよい。
[0008] Vector control generally involves finding the torque generation mechanism of a motor using a mathematical solution, inversely developing it, and controlling the voltage, frequency, and phase applied to the motor so that it generates torque faithfully to the torque command. It is something. If this mathematical solution is simplified and expressed, it will be as shown in equations (1) to (7). Torque T=kφ2
IT
(1) Excitation current amplitude IM = (1
/M)φ2 (2)
Primary current amplitude I1 =√(IM2
+IT2) (3)
Primary current delay angle θT = tan-1(IT
/IM ) (4) Primary frequency ω1 = ωr + ωs
(5) 1
Next current vector I1 =I1 ∠θ1
(6) Slip frequency ωs = Ks (IT /φ2)
(7) Therefore, in the inverter,
Vector control is performed based on equations (1) to (7). The magnetic flux control unit 5 controls the command magnetic flux φ2* and the estimated magnetic flux value φ2 so that they match, and the output thereof is converted into the exciting current command IM* via the exciting inductance function 14 as shown in equation (2). . The output of the speed control section 4 is the torque current command I
T*, the primary current command generator 13 is (3), (
4) Output I1* and θT* based on the formula. On the other hand, 1
The next frequency calculation is performed by the slip frequency calculator 9 based on equation (7), and outputs a slip frequency signal ωs*. Based on equation (5), the speed signal ωr and the slip frequency signal ωs* are added to create the primary frequency signal ω1, and the value integrated by the integrator 17 and the primary current delay angle θT* are added, A primary current phase angle θ1* is generated. Multiplier 15
are the primary current command amplitude I1* and θ1* based on equation (6).
The primary current command vector I1* is generated by multiplying the The current command unit 6 generates a primary current command vector V1* so that the same current as the primary current command vector flows,
The power converter 17 generates the necessary voltage, frequency, and phase and supplies it to the induction motor 1. In the magnetic flux/torque current estimator 7, the primary current vector I1 and the primary voltage command vector V
1*, the estimated torque current value IT and the estimated magnetic flux value φ2 are obtained. Inverter output voltage V1 may be used instead of primary voltage command vector V1*.

【0009】本発明においては、誘導電動機1の速度が
回転数検出器2が正確な回転数を検出しうる速度より小
さい場合には、スイッチ12を回転数検出器2の信号を
速度信号ωr とするような状態にし、速度センサ付ベ
クトル制御を行う。また、同時にトルク電流指令IT*
とトルク電流推定値IT をトルク電流制御器8に入力
する。 ここでトルク電流推定値は(7)式より次のように表す
ことができる。             IT =(ωsφ2)/Ks
                       (8
)また、磁束推定値φ2 は磁束制御器5より、指令磁
束φ2*に一致するように制御されているので、φ2*
はφ2に等しいと考えられる。その上、回転数検出器2
の出力を1次周波数の計算式(5)に用いているので、
実際のすべり周波数ωs はすべり周波数信号ωs*に
等しい。それでトルク電流指令IT*は次式のように表
すことができる。             IT*=(ωsφ2)/Ks
*                      (9
)  ここでKs*は、モータ定数の補正機能11が出
力しているモータ回路定数である。したがって、トルク
電流指令IT*とトルク電流推定値IT の差は、モー
タ回路定数Ks*が真のモータ回路定数Ks と一致し
ていないので生じている。そこでトルク電流制御器8は
、速度センサ付ベクトル制御時、トルク電流指令IT*
とトルク電流推定値IT が一致するようにモータ回路
定数Ks*を補正して、モータ回路定数Ks*を真のモ
ータ回路定数Ks に近づける機能を持っている。
In the present invention, when the speed of the induction motor 1 is smaller than the speed at which the rotational speed detector 2 can accurately detect the rotational speed, the switch 12 changes the signal of the rotational speed detector 2 to the speed signal ωr. Then, perform vector control with a speed sensor. At the same time, the torque current command IT*
and torque current estimated value IT are input to the torque current controller 8. Here, the estimated torque current value can be expressed as follows from equation (7). IT = (ωsφ2)/Ks
(8
) Also, since the estimated magnetic flux value φ2 is controlled by the magnetic flux controller 5 to match the command magnetic flux φ2*, φ2*
is considered to be equal to φ2. Moreover, rotation speed detector 2
Since the output of is used in the calculation formula (5) of the primary frequency,
The actual slip frequency ωs is equal to the slip frequency signal ωs*. Therefore, the torque current command IT* can be expressed as the following equation. IT*=(ωsφ2)/Ks
* (9
) Here, Ks* is a motor circuit constant output by the motor constant correction function 11. Therefore, the difference between the torque current command IT* and the estimated torque current value IT occurs because the motor circuit constant Ks* does not match the true motor circuit constant Ks. Therefore, the torque current controller 8 outputs a torque current command IT* during vector control with a speed sensor.
It has a function of correcting the motor circuit constant Ks* so that the estimated torque current value IT coincides with the motor circuit constant Ks*, thereby bringing the motor circuit constant Ks* closer to the true motor circuit constant Ks.

【0010】本発明においては、誘導電動機1の速度が
回転数検出器2が正確な回転数を検出しうる速度より大
きくなると、従来の技術の項で述べたように速度センサ
付ベクトル制御ができなくなるので、スイッチ12をト
ルク電流制御器8の出力側を速度信号ωr とするよう
な状態にし、速度センサレスベクトル制御を行う。ここ
でモータ定数補正機能11は、速度センサ付ベクトル制
御で用いられていたKs*の値を保持する。モータ定数
Ks*は真のモータ定数Ks に等しいと仮定すると、
(9)式は次式のように表すことができる。             IT*=(ωs*φ2)/K
s                       (
9)′  従って、(8),(9)′式よりトルク電流
指令IT*とトルク電流推定値IT の差は、すべり周
波数信号ωS*と真のすべり周波数ωs との差で生じ
たものと考えられる。そこでトルク電流制御器8は、ト
ルク電流指令IT*とトルク電流推定値IT が一致す
るように、モータ速度ωr を推定する機能を持ってい
る。もしモータ定数Ks*が真のモータ定数Ks に等
しいならば、モータ速度は、モータ速度推定値ωr に
完全に一致することになる。このように速度センサレス
ベクトル制御でも、モータ速度推定値ωr を持ってい
るので、誘導電動機1の速度制御が可能となる。
In the present invention, when the speed of the induction motor 1 becomes higher than the speed at which the rotational speed detector 2 can accurately detect the rotational speed, vector control with a speed sensor cannot be performed as described in the section of the prior art. Therefore, the switch 12 is set to a state where the output side of the torque current controller 8 is set as the speed signal ωr, and speed sensorless vector control is performed. Here, the motor constant correction function 11 holds the value of Ks* used in vector control with speed sensor. Assuming that the motor constant Ks* is equal to the true motor constant Ks,
Equation (9) can be expressed as the following equation. IT*=(ωs*φ2)/K
s (
9)' Therefore, from equations (8) and (9)', it is considered that the difference between the torque current command IT* and the estimated torque current value IT is caused by the difference between the slip frequency signal ωS* and the true slip frequency ωs. It will be done. Therefore, the torque current controller 8 has a function of estimating the motor speed ωr so that the torque current command IT* matches the estimated torque current value IT. If the motor constant Ks* is equal to the true motor constant Ks, the motor speed will perfectly match the motor speed estimate ωr. In this way, even with speed sensorless vector control, since the estimated motor speed value ωr is available, the speed of the induction motor 1 can be controlled.

【0011】[0011]

【発明の効果】以上に述べたように、本発明によれば、
回転数検出器が正確な回転数を検出しうる速度より大き
い場合でも、誘導電動機の速度制御が可能になった。
[Effects of the Invention] As described above, according to the present invention,
It is now possible to control the speed of an induction motor even when the rotation speed is higher than the rotation speed can accurately detect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】  誘導電動機制御装置のシステム構成図であ
る。
FIG. 2 is a system configuration diagram of an induction motor control device.

【符号の説明】[Explanation of symbols]

1  誘導電動機、2  回転数検出器、3  インバ
ータ装置、4  速度制御部 5  磁束制御部、6  電流制御部、7  磁束・ト
ルク電流推定器 8  トルク電流制御器、9  すべり周波数演算器、
10  モータ回路定数 11  モータ定数補正機能、12  スイッチ、13
  1次電流指令発生器 14  励磁インダクタンス関数、15  掛算器、1
6  パワー変換部 17  積分器、18  電流検出器、19  電圧検
出器ωr*  速度指令 ωr   速度検出信号 IT*  トルク電流指令 IT   トルク電流推定値 φ2*  指令磁束 φ2   磁束推定値 IM*  励磁電流指令 I1*  1次電流指令 I1*  1次電流指令ベクトル I1   1次電流ベクトル V1*  1次電圧指令ベクトル V1   インバータ出力電圧 ω1   1次周波数 θT*  1次電流遅れ角 θ1*  1次電流位相角 ωs*  すべり周波数指令
1 induction motor, 2 rotation speed detector, 3 inverter device, 4 speed control unit 5 magnetic flux control unit, 6 current control unit, 7 magnetic flux/torque current estimator 8 torque current controller, 9 slip frequency calculator,
10 Motor circuit constant 11 Motor constant correction function, 12 Switch, 13
Primary current command generator 14 Excitation inductance function, 15 Multiplier, 1
6 Power converter 17 Integrator, 18 Current detector, 19 Voltage detector ωr* Speed command ωr Speed detection signal IT* Torque current command IT Torque current estimated value φ2* Command magnetic flux φ2 Magnetic flux estimated value IM* Exciting current command I1* Primary current command I1* Primary current command vector I1 Primary current vector V1* Primary voltage command vector V1 Inverter output voltage ω1 Primary frequency θT* Primary current delay angle θ1* Primary current phase angle ωs* Slip frequency command

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  誘導電動機と、それに取り付けられた
回転数検出器と、その回転数を検出して誘導電動機を駆
動するインバータ装置を有する誘導電動機の制御方法に
おいて、前記誘導電動機の速度が前記回転数検出器が正
確な回転数を検出しうる速度より小さい場合には速度セ
ンサ付ベクトル制御を行い、大きい場合には速度センサ
レスベクトル制御を行うことを特徴とする誘導電動機の
制御方法。
1. A method for controlling an induction motor, comprising: an induction motor; a rotation speed detector attached to the induction motor; and an inverter device that detects the rotation speed and drives the induction motor. A method for controlling an induction motor, characterized in that when the speed is smaller than the speed at which a speed detector can accurately detect the rotation speed, vector control with a speed sensor is performed, and when the speed is larger, vector control without a speed sensor is performed.
【請求項2】  請求項1記載の回転数検出器の速度検
出信号と、インバータ装置に与えられる速度指令を入力
として、指令速度に実速度が一致するように制御する速
度制御部と、インバータの出力検出電圧またはそれに相
当する制御信号と、インバータの出力検出電流またはそ
れに相当する制御信号を入力として、トルク電流推定値
と磁束推定値を出力する磁束・トルク電流推定部と、前
記速度制御部の出力であるトルク電流指令とトルク電流
推定値を比較制御するトルク電流制御部を有し、速度セ
ンサ付ベクトル制御時は、前記トルク電流制御部をモー
タ回路定数の補正機能として作動させてすべり周波数指
令の補正を行い、速度センサレスベクトル制御時は、速
度センサ付ベクトル制御時に補正されていたモータ回路
定数に基づいて制御を行い、前記トルク電流制御部を速
度推定器として作動させることを特徴とする請求項1記
載の誘導電動機の制御方法。
2. A speed control section that receives as input the speed detection signal of the rotation speed detector according to claim 1 and a speed command given to the inverter device and controls the actual speed to match the command speed; a magnetic flux/torque current estimator that receives an output detection voltage or a control signal equivalent thereto and an output detection current of the inverter or a control signal equivalent thereto, and outputs an estimated torque current value and an estimated magnetic flux value; It has a torque current control section that compares and controls the output torque current command and the estimated torque current value, and during vector control with a speed sensor, the torque current control section operates as a motor circuit constant correction function to obtain the slip frequency command. and during speed sensorless vector control, control is performed based on motor circuit constants that were corrected during vector control with speed sensor, and the torque current control section is operated as a speed estimator. Item 1. A method for controlling an induction motor according to item 1.
JP3075371A 1991-04-08 1991-04-08 Control method of induction motor Expired - Fee Related JP3053121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075371A JP3053121B2 (en) 1991-04-08 1991-04-08 Control method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075371A JP3053121B2 (en) 1991-04-08 1991-04-08 Control method of induction motor

Publications (2)

Publication Number Publication Date
JPH04312382A true JPH04312382A (en) 1992-11-04
JP3053121B2 JP3053121B2 (en) 2000-06-19

Family

ID=13574288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075371A Expired - Fee Related JP3053121B2 (en) 1991-04-08 1991-04-08 Control method of induction motor

Country Status (1)

Country Link
JP (1) JP3053121B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608300A (en) * 1993-10-26 1997-03-04 Toyota Jidosha Kabushiki Kaisha Electrical angle-detecting apparatus and driving system of synchronous motor using the same
US5854548A (en) * 1996-02-29 1998-12-29 Toyota Jidosha Kabushiki Kaisha Electrical angle detecting device and synchronous motor drive device
JP2006060897A (en) * 2004-08-19 2006-03-02 Toyo Electric Mfg Co Ltd Controller for motor
JP2012151958A (en) * 2011-01-18 2012-08-09 Nagaoka Univ Of Technology Electric rolling stock control device
JP2012217231A (en) * 2011-03-31 2012-11-08 Fanuc Ltd Control device for spindle drive motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608300A (en) * 1993-10-26 1997-03-04 Toyota Jidosha Kabushiki Kaisha Electrical angle-detecting apparatus and driving system of synchronous motor using the same
US5854548A (en) * 1996-02-29 1998-12-29 Toyota Jidosha Kabushiki Kaisha Electrical angle detecting device and synchronous motor drive device
JP2006060897A (en) * 2004-08-19 2006-03-02 Toyo Electric Mfg Co Ltd Controller for motor
JP2012151958A (en) * 2011-01-18 2012-08-09 Nagaoka Univ Of Technology Electric rolling stock control device
JP2012217231A (en) * 2011-03-31 2012-11-08 Fanuc Ltd Control device for spindle drive motor

Also Published As

Publication number Publication date
JP3053121B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3282541B2 (en) Motor control device
US20010048283A1 (en) Method and apparatus for controlling a synchronous motor
JPH0951700A (en) Controlling device of rotary electric machine
JP2008086129A (en) Ac motor controller and constant measurement apparatus
JP3914108B2 (en) DC brushless motor control device
JP3429010B2 (en) Magnetic flux feedback device
JP6726390B2 (en) Controller for permanent magnet type synchronous motor
US20210078145A1 (en) Power tool
JP2006197712A (en) System and method for driving synchronous motor
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
US6777906B1 (en) Method of controlling induction motor
JP3675192B2 (en) Motor control device, electric vehicle control device, and hybrid vehicle control device
JPH04312382A (en) Control method for induction motor
JPH04364384A (en) Resistance estimation starting system for induction motor
JP3692085B2 (en) Motor control method and apparatus
JP7153879B2 (en) Electric tool
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP2009165281A (en) Speed-sensorless vector control device
JP2005304175A (en) Speed controller of motor
JP3528108B2 (en) Adaptive slip frequency type vector control method and apparatus for induction motor
JP2000324878A (en) Controller for motor
JP3979771B2 (en) AC motor control device
JP3742582B2 (en) Electric vehicle control device
JP3957368B2 (en) Induction motor controller
JP2002136196A (en) Method and apparatus for controlling induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees