JP3038722B2 - Junction type field effect transistor - Google Patents

Junction type field effect transistor

Info

Publication number
JP3038722B2
JP3038722B2 JP1161705A JP16170589A JP3038722B2 JP 3038722 B2 JP3038722 B2 JP 3038722B2 JP 1161705 A JP1161705 A JP 1161705A JP 16170589 A JP16170589 A JP 16170589A JP 3038722 B2 JP3038722 B2 JP 3038722B2
Authority
JP
Japan
Prior art keywords
region
gate
conductivity type
drain
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1161705A
Other languages
Japanese (ja)
Other versions
JPH0327534A (en
Inventor
博之 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1161705A priority Critical patent/JP3038722B2/en
Publication of JPH0327534A publication Critical patent/JPH0327534A/en
Application granted granted Critical
Publication of JP3038722B2 publication Critical patent/JP3038722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接合型電界効果トランジスタ(以下、J−FE
Tと称する)に関し、特に静電耐量の増大を図ったJ−F
ETに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a junction field effect transistor (hereinafter referred to as J-FE).
T), J-F especially aimed at increasing the electrostatic withstand capability
About ET.

〔従来の技術〕[Conventional technology]

従来のこの種のJ−FETを第3図に示す。同図(a)
は平面図、同図(b)はそのC−C線断面図である。こ
のJ−FETは、p型半導体基板1の上にn型半導体層2
を形成し、かつこのn型半導体層2を前記p型半導体基
板1に繋がるp+型半導体領域3で区分けし、素子領域を
画成する。そして、n型半導体層2の上には酸化膜4を
形成し、この酸化膜4に開設した窓を通してゲート領域
としてのp+型半導体領域5と、ソース領域及びドレイン
領域としてのn+型半導体領域6,7をそれぞれ形成する。
A conventional J-FET of this type is shown in FIG. FIG.
1 is a plan view, and FIG. 1B is a cross-sectional view taken along the line CC. This J-FET has an n-type semiconductor layer 2 on a p-type semiconductor substrate 1.
Is formed, and the n-type semiconductor layer 2 is divided by ap + -type semiconductor region 3 connected to the p-type semiconductor substrate 1 to define an element region. Then, an oxide film 4 is formed on the n-type semiconductor layer 2, and a p + -type semiconductor region 5 as a gate region and an n + -type semiconductor as a source region and a drain region are formed through a window formed in the oxide film 4. Regions 6 and 7 are formed respectively.

そして、ゲート領域5は前記p型半導体領域3を介し
てゲート電極としてのp型半導体基板1に接続し、ソー
ス領域6,ドレイン領域7はそれぞれアルミニウム配線8
で所要の配線を行っている。
The gate region 5 is connected to the p-type semiconductor substrate 1 as a gate electrode via the p-type semiconductor region 3, and the source region 6 and the drain region 7
Required wiring.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来のJ−FETは、ソース領域6及びドレイ
ン領域7にはアルミニウム配線8を接続して所要の電気
配線を行っているが、ゲート領域5はp+半導体領域3を
介してp型半導体基板1に電気的接続を行っている。こ
のため、ゲート領域5に流れ込んだ電流はp+型半導体領
域3を通してゲート電極としてのp型半導体基板1に到
達するため、電流がゲート電極に到達するのに時間がか
かる。このため、サージ電圧が印加された場合に、これ
がゲート電極を通して外部に逃げるのに時間がかかり、
ゲート領域5で局部的な破壊が起こり易く、静電耐量が
バイポーラトランジスタに比較して低くなるという問題
がある。
In the above-described conventional J-FET, the source region 6 and the drain region 7 are connected to the aluminum wiring 8 to perform necessary electric wiring, but the gate region 5 is connected to the p-type semiconductor via the p + semiconductor region 3. Electrical connection is made to the substrate 1. For this reason, the current flowing into the gate region 5 reaches the p-type semiconductor substrate 1 as the gate electrode through the p + -type semiconductor region 3, so that it takes time for the current to reach the gate electrode. For this reason, when a surge voltage is applied, it takes time for this to escape outside through the gate electrode,
There is a problem that local destruction is likely to occur in the gate region 5 and the electrostatic resistance becomes lower than that of the bipolar transistor.

特に、近年のJ−FETは特性上の要求から微細化が進
み、ゲート長が1〜2μm,ゲート幅は200〜300μmのも
のが多いため、ゲート領域の拡散抵抗は大きくなってお
り、上述した問題が顕著なものとなっている。
In particular, in recent years, J-FETs have been increasingly miniaturized due to demands on characteristics, and since gate lengths are often 1 to 2 μm and gate widths are 200 to 300 μm, the diffusion resistance of the gate region is large. The problem is prominent.

本発明はゲート電極における電気抵抗を低減し、静電
耐量の向上を図ったJ−FETを提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a J-FET in which the electric resistance of a gate electrode is reduced and the electrostatic resistance is improved.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のJ−FETは、ソース・ドレインとしての一導
電型半導体基板の表面側に形成したゲート領域に金属配
線を接続し、この金属配線を通して前記ゲート領域を基
板の裏面側に形成したゲート電極に電気接続している。
According to the J-FET of the present invention, a gate electrode is formed on a back surface side of a substrate by connecting a metal wiring to a gate region formed on a front surface side of a one conductivity type semiconductor substrate as a source / drain, and through the metal wiring. Is electrically connected to

すなわち、一導電型の半導体基板の上に反対導電型の
半導体層を形成し、前記半導体層を表裏面にわたって貫
通するように高濃度の一導電型不純物領域を素子分離領
域として形成し、この素子分離領域内に、一導電型のゲ
ート領域を複数のライン状に配設するとともに、前記ゲ
ート領域を挟む領域に反対導電型のソース領域およびド
レイン領域を配設し、前記ソース領域およびドレイン領
域に接続されるソース電極及びドレイン電極をそれぞれ
櫛の歯状に配設し、前記ゲート領域に接続される金属配
線が前記ソース領域およびドレイン領域の間に直線状に
延び、かつその一部において前記素子分離領域に接続さ
れた構成とする。
That is, a semiconductor layer of the opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and a high-concentration one conductivity type impurity region is formed as an element isolation region so as to penetrate the semiconductor layer over the front and back surfaces. In the isolation region, a gate region of one conductivity type is provided in a plurality of lines, and a source region and a drain region of opposite conductivity types are provided in a region sandwiching the gate region. A source electrode and a drain electrode to be connected are respectively arranged in a comb tooth shape, a metal wiring connected to the gate region extends linearly between the source region and the drain region, and a part thereof includes the element. It is configured to be connected to the separation region.

あるいは、一導電型の半導体基板の上に反対導電型の
半導体層を形成し、前記半導体層を表裏面にわたって貫
通するように高濃度の一導電型不純物領域を素子分離領
域として形成し、この素子分離領域内に一導電型のゲー
ト領域を格子状に配設するとともに、前記ゲート領域の
各格子内に反対導電型のソース領域およびドレイン領域
を島状に配設し、前記ソース領域およびドレイン領域に
接続される金属配線が前記ゲート領域の格子に平行に延
びており、前記ゲート領域に接続される金属配線が前記
ソース領域およびドレイン領域の間に格子状に延び、か
つその一部において前記素子分離領域に接続された構成
とする。
Alternatively, a semiconductor layer of the opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and a high-concentration one conductivity type impurity region is formed as an element isolation region so as to penetrate the semiconductor layer over the front and back surfaces. A gate region of one conductivity type is arranged in a lattice shape in an isolation region, and a source region and a drain region of an opposite conductivity type are arranged in an island shape in each lattice of the gate region. Metal wiring connected to the gate region extends in parallel with the lattice of the gate region, metal wiring connected to the gate region extends in a lattice shape between the source region and the drain region, and a part thereof includes the element. It is configured to be connected to the separation region.

〔作用〕[Action]

この構成では、ゲート領域には並列に金属配線が接続
されることになり、この金属配線の低抵抗特性によりゲ
ート領域及びゲート電極における電気抵抗を低減させ
る。
In this configuration, the metal wiring is connected to the gate region in parallel, and the electrical resistance in the gate region and the gate electrode is reduced by the low resistance characteristic of the metal wiring.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例を示しており、第1図
(a)は平面図、第1図(b)はそのA−A線に沿う断
面図である。図において、1はゲート電極としてのp型
半導体基板1であり、この上にn型半導体層2を形成
し、かつこのn型半導体層2を前記p型半導体基板1に
繋がるp+型半導体領域3で区分けし、素子領域を画成す
る。また、n型半導体層2の上には酸化膜4を形成し、
この酸化膜4に開設した窓を通してゲート領域としての
p+型半導体領域5と、ソース領域及びドレイン領域とし
てのn+型半導体領域6,7をそれぞれ形成する。
FIG. 1 shows a first embodiment of the present invention. FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view along the line AA. In FIG, 1 is a p-type semiconductor substrate 1 as the gate electrode, p + -type semiconductor region this n-type semiconductor layer 2 is formed on, and connected to the n-type semiconductor layer 2 to the p-type semiconductor substrate 1 3 to define the element region. Further, an oxide film 4 is formed on the n-type semiconductor layer 2,
Through the window opened in this oxide film 4 as a gate region
A p + -type semiconductor region 5 and n + -type semiconductor regions 6 and 7 as a source region and a drain region, respectively, are formed.

そして、前記ゲート領域5、ソース領域6、ドレイン
領域7にはそれぞれ前記酸化膜4の窓に設けたアルミニ
ウム配線8を接続し、しかる上でゲート領域5は前記p+
型半導体領域3を介してゲート電極としてのp型半導体
基板1に接続している。また、ソース領域6,ドレイン領
域7はそれぞれソース電極9,ドレイン電極10に電気接続
している。
Then, the gate region 5, source region 6, connecting the aluminum wiring 8 provided on each of the drain region 7 window of the oxide film 4, a gate region 5 on which accordingly the p +
It is connected to a p-type semiconductor substrate 1 as a gate electrode via a type semiconductor region 3. The source region 6 and the drain region 7 are electrically connected to a source electrode 9 and a drain electrode 10, respectively.

この構成によれば、ゲート領域5に流れ込んだ電流は
ゲート領域5に接続した低抵抗のアルミニウム配線8を
流れ、かつp+型半導体領域3を介してゲート電極として
のp型半導体基板1に流れる。このため、ゲート領域5
の拡散抵抗が大きい場合でもゲート電極に到達するまで
の時間を短縮することができる。これにより、サージ電
圧がゲート領域5に印加された場合でも、このサージ電
圧はアルミニウム配線8を通して瞬間的にゲート電極に
達し、かつ外部に放出されるため、ゲート領域での局部
的な破壊を防止して静電耐量を向上することができる。
According to this configuration, the current flowing into the gate region 5 flows through the low-resistance aluminum wiring 8 connected to the gate region 5 and flows through the p + -type semiconductor region 3 into the p-type semiconductor substrate 1 as a gate electrode. . Therefore, the gate region 5
, The time required to reach the gate electrode can be reduced even if the diffusion resistance is large. Thus, even when a surge voltage is applied to the gate region 5, the surge voltage instantaneously reaches the gate electrode through the aluminum wiring 8 and is discharged to the outside, thereby preventing local destruction in the gate region. As a result, the electrostatic resistance can be improved.

第2図は本発明の第2実施例を示しており、第2図
(a)は平面図、第2図(b)はそのB−B線に沿う断
面図である。なお、第1図と同一又は対応する部分には
同一符号を付してある。
FIG. 2 shows a second embodiment of the present invention. FIG. 2 (a) is a plan view and FIG. 2 (b) is a cross-sectional view taken along the line BB. The same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals.

この実施例では、ゲート領域5を格子状に配置し、こ
のゲート領域5で囲まれる領域にそれぞれソース領域6,
ドレイン領域7を形成している。このとき、p+型半導体
領域3の一部にもゲート領域5と同様のp+型半導体領域
5Aを形成しておく。
In this embodiment, the gate regions 5 are arranged in a lattice pattern, and the regions surrounded by the gate regions 5 have source regions 6 and 5, respectively.
The drain region 7 is formed. At this time, the p + -type semiconductor region similar to the gate region 5 is also formed in a part of the p + -type semiconductor region 3.
5A is formed.

そして、ゲート領域5及び半導体領域5A上には格子状
のアルミニウム配線8を形成し、ソース領域6,ドレイン
領域7は層間絶縁膜11上に形成した第2のアルミニウム
配線12によって各領域のアルミニウム配線8を相互に電
気接続している。
Then, a grid-like aluminum wiring 8 is formed on the gate region 5 and the semiconductor region 5A, and the source region 6 and the drain region 7 are formed on the aluminum wiring in each region by the second aluminum wiring 12 formed on the interlayer insulating film 11. 8 are electrically connected to each other.

前記ゲート領域5のアルミニウム配線8はp+型半導体
領域5A及びp+型半導体領域3を介してp型半導体基板1
に電気接続している。
The aluminum wiring 8 of the gate region 5 is connected to the p-type semiconductor substrate 1 via the p + -type semiconductor region 5A and the p + -type semiconductor region 3.
Is electrically connected to

この構成においても、ゲート領域5に低抵抗のアルミ
ニウム配線8を接続しているため、静電耐圧を向上でき
ることは第1実施例と同じである。
Also in this configuration, since the low resistance aluminum wiring 8 is connected to the gate region 5, the electrostatic withstand voltage can be improved as in the first embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、半導体基板に形成した
ゲート領域に金属配線を接続し、この金属配線を通して
ゲート領域をゲート電極に電気接続しているので、この
金属配線によってゲート領域の電気抵抗が低減でき、サ
ージ電圧を瞬時的にゲート電極に流すことを可能にして
ゲート領域での局部的な破壊を防止し、J−FETの静電
耐量を向上することができる効果がある。
As described above, according to the present invention, the metal wiring is connected to the gate region formed on the semiconductor substrate, and the gate region is electrically connected to the gate electrode through the metal wiring. Thus, the surge voltage can be instantaneously passed to the gate electrode, thereby preventing local destruction in the gate region and improving the electrostatic withstand capability of the J-FET.

また、本発明はゲート電極につながる金属配線が櫛の
歯状のソース・ドレイン電極の間で直線状に延びて素子
分離領域に接続され、あるいは当該金属配線が格子状に
形成されて素子分離領域に接続されている構成を採用す
ることで、前記した効果をより有効に発揮させることが
可能となる。また、後者の構成では、ソース・ドレイン
の各領域に接続される金属配線をゲート領域の格子に平
行に延長することで、金属配線の幅が増大されることが
防止でき、これにより金属配線の間隔をかせぎ、金属配
線に位置ずれが生じた場合でも、ソース・ドレイン間の
短絡やコンタクト孔が配線から露出するようなことが起
こり難くなる。
Further, according to the present invention, the metal wiring connected to the gate electrode extends linearly between the comb-shaped source / drain electrodes and is connected to the element isolation region, or the metal wiring is formed in a lattice shape and , The above-described effect can be more effectively exerted. In the latter configuration, the width of the metal wiring can be prevented from being increased by extending the metal wiring connected to each of the source and drain regions in parallel with the lattice of the gate region. Even if the metal wiring is misaligned by increasing the interval, it is difficult for the short circuit between the source and the drain and the contact hole to be exposed from the wiring.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示し、同図(a)は平面
図、同図(b)はそのA−A線に沿う断面図、第2図は
本発明の第2実施例を示し、同図(a)は平面図、同図
(b)はそのB−B線に沿う断面図、第3図は従来のJ
−FETを示し、同図(a)は平面図、同図(b)はその
C−C線に沿う断面図である。 1……p型半導体基板、2……n型半導体層、3……p+
型半導体領域、4……酸化膜、5……p+型半導体領域、
5A……p+型半導体領域、6,7……n+型半導体領域、8…
…アルミニウム配線、9……ソース電極、10……ドレイ
ン電極、11……層間絶縁膜、12……第2のアルミニウム
配線。
FIG. 1 shows a first embodiment of the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a sectional view taken along line AA, and FIG. 2 is a second embodiment of the present invention. 3A is a plan view, FIG. 3B is a cross-sectional view taken along the line BB, and FIG.
FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the line CC. 1 ... p-type semiconductor substrate, 2 ... n-type semiconductor layer, 3 ... p +
Semiconductor region, 4 ... oxide film, 5 ... p + type semiconductor region,
5A ... p + type semiconductor region, 6,7 ... n + type semiconductor region, 8 ...
... aluminum wiring, 9 ... source electrode, 10 ... drain electrode, 11 ... interlayer insulating film, 12 ... second aluminum wiring.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/337 H01L 21/338 H01L 29/808 H01L 29/812 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/337 H01L 21/338 H01L 29/808 H01L 29/812

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体基板の上に反対導電型の
半導体層を形成し、前記半導体層を表裏面にわたって貫
通するように高濃度の一導電型不純物領域を素子分離領
域として形成し、この素子分離領域内に、一導電型のゲ
ート領域を複数のライン状に配設するとともに、前記ゲ
ート領域を挟む領域に反対導電型のソース領域およびド
レイン領域を配設し、前記ソース領域およびドレイン領
域に接続されるソース電極及びドレイン電極をそれぞれ
櫛の歯状に配設し、前記ゲート領域に接続される金属配
線が前記ソース領域およびドレイン領域の間に直線状に
延び、かつその一部において前記素子分離領域に接続さ
れていることを特徴とする接合型電界効果トランジス
タ。
A semiconductor layer of the opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and a high-concentration impurity region of one conductivity type is formed as an element isolation region so as to penetrate the semiconductor layer over the front and back surfaces. In the element isolation region, a gate region of one conductivity type is arranged in a plurality of lines, and a source region and a drain region of opposite conductivity types are arranged in a region sandwiching the gate region. A source electrode and a drain electrode connected to the drain region are respectively arranged in a comb tooth shape, and a metal wiring connected to the gate region extends linearly between the source region and the drain region, and a part thereof. 3. The junction field effect transistor according to claim 1, wherein the junction field effect transistor is connected to the element isolation region.
【請求項2】一導電型の半導体基板の上に反対導電型の
半導体層を形成し、前記半導体層を表裏面にわたって貫
通するように高濃度の一導電型不純物領域を素子分離領
域として形成し、この素子分離領域内に一導電型のゲー
ト領域を格子状に配設するとともに、前記ゲート領域の
各格子内に反対導電型のソース領域およびドレイン領域
を島状に配設し、前記ソース領域およびドレイン領域に
接続される金属配線が前記ゲート領域の格子に平行に延
びており、前記ゲート領域に接続される金属配線が前記
ソース領域およびドレイン領域の間に格子状に延び、か
つその一部において前記素子分離領域に接続されている
ことを特徴とする接合型電界効果トランジスタ。
2. A semiconductor layer of opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and a high-concentration impurity region of one conductivity type is formed as an element isolation region so as to penetrate the semiconductor layer over the front and back surfaces. A gate region of one conductivity type is arranged in a lattice shape in the element isolation region, and a source region and a drain region of the opposite conductivity type are arranged in an island shape in each lattice of the gate region; And a metal line connected to the drain region extends in parallel with the lattice of the gate region, and the metal line connected to the gate region extends in a lattice shape between the source region and the drain region, and a part thereof. 3. The junction field effect transistor according to claim 1, wherein the junction field effect transistor is connected to the element isolation region.
JP1161705A 1989-06-23 1989-06-23 Junction type field effect transistor Expired - Lifetime JP3038722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161705A JP3038722B2 (en) 1989-06-23 1989-06-23 Junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161705A JP3038722B2 (en) 1989-06-23 1989-06-23 Junction type field effect transistor

Publications (2)

Publication Number Publication Date
JPH0327534A JPH0327534A (en) 1991-02-05
JP3038722B2 true JP3038722B2 (en) 2000-05-08

Family

ID=15740310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161705A Expired - Lifetime JP3038722B2 (en) 1989-06-23 1989-06-23 Junction type field effect transistor

Country Status (1)

Country Link
JP (1) JP3038722B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053534A (en) * 2006-08-25 2008-03-06 Sanyo Electric Co Ltd Junction type fet and manufacturing method thereof
JP2009043923A (en) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method of the same
JP4974381B2 (en) * 2008-03-13 2012-07-11 株式会社東洋製作所 Humidified bread
MY183483A (en) 2010-02-25 2021-02-20 Santen Pharmaceutical Co Ltd Ophthalmic solution for treating ocular infection comprising levofloxacin or salt thereof or solvate of the same, method for treating ocular infection, levofloxacin or salt thereof or solvate of the same, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240965A (en) * 1988-07-30 1990-02-09 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0327534A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
JP3156300B2 (en) Vertical semiconductor device
JP3417013B2 (en) Insulated gate bipolar transistor
JP3038722B2 (en) Junction type field effect transistor
JP2722453B2 (en) Semiconductor device
JPH049378B2 (en)
JP2523678B2 (en) MOSFET with overcurrent protection function
US5204735A (en) High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same
JPH0563202A (en) Semiconductor device
JP2881907B2 (en) Power semiconductor device
JP2000340580A (en) Semiconductor device
JPH0590579A (en) Power field-effect transistor
US5160990A (en) MIS-FET with small chip area and high strength against static electricity
JP2920013B2 (en) Semiconductor electrostatic protection circuit
JPH08130317A (en) Semiconductor device provided with resistive field plate
JPS5934666A (en) Semiconductor integrated circuit device
JPS6359262B2 (en)
JP2724898B2 (en) Bidirectional 2-terminal thyristor
JP2802940B2 (en) Semiconductor device
JP2999567B2 (en) Method for manufacturing semiconductor element and article used for its implementation
JP2522350B2 (en) Semiconductor integrated circuit protection device
JP3594725B2 (en) Semiconductor device protection circuit
JP2996346B2 (en) MOS integrated circuit
JP2780179B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH03154374A (en) Input end protecting structure of integrated circuit
JPH0464458B2 (en)