JP3037855B2 - Steel sheet with good fatigue crack propagation resistance and method for producing the same - Google Patents
Steel sheet with good fatigue crack propagation resistance and method for producing the sameInfo
- Publication number
- JP3037855B2 JP3037855B2 JP5227359A JP22735993A JP3037855B2 JP 3037855 B2 JP3037855 B2 JP 3037855B2 JP 5227359 A JP5227359 A JP 5227359A JP 22735993 A JP22735993 A JP 22735993A JP 3037855 B2 JP3037855 B2 JP 3037855B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- fatigue crack
- steel
- phase
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶接構造物の疲労強度
を向上させるために、鋼板組織内に、層状に硬化層を配
列させることにより、疲労亀裂に先立つ塑性域の広がり
を抑制し、亀裂進展を遅延させる高疲労強度鋼板とその
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses the expansion of a plastic zone prior to a fatigue crack by arranging a hardened layer in a steel sheet structure in order to improve the fatigue strength of a welded structure. The present invention relates to a high fatigue strength steel sheet that delays crack growth and a method for manufacturing the same.
【0002】[0002]
【従来の技術】構造物の軽量化、大容量化の要求に応
え、構造用鋼板の高強度化が急速に進んでいる。しかし
ながら、繰り返し荷重を受ける構造物では、降伏強度の
みならず疲労強度を考慮しなければならず、高強度化の
ニーズに応えることができない場合があり、疲労強度の
向上が切望されている。特に、溶接構造物では溶接止端
部から疲労亀裂の発生する場合が多く、鋼材の強度を向
上させても疲労強度は殆ど向上しない。溶接構造物の疲
労強度は、主として溶接部の止端部形状によって支配さ
れることが知られており、溶接部の止端部処理等の疲労
強度向上策が適用されることがある。しかし、止端部処
理は、構造物の建造工数を増大させるばかりでなく、溶
接部位によっては止端部処理が実施できない場合も多
く、鋼材面から疲労強度向上が切望されている。2. Description of the Related Art In response to demands for lighter structures and larger capacities of structures, the strength of structural steel sheets is rapidly increasing. However, in a structure subjected to repeated loads, not only the yield strength but also the fatigue strength must be taken into consideration, and it may not be possible to meet the need for higher strength. In particular, in a welded structure, fatigue cracks often occur from the weld toe, and even if the strength of the steel material is improved, the fatigue strength hardly improves. It is known that the fatigue strength of a welded structure is mainly governed by the shape of the toe of the welded portion, and measures to improve the fatigue strength such as treatment of the toe of the welded portion are sometimes applied. However, the toe treatment not only increases the number of man-hours for building the structure, but also often cannot be carried out depending on the welded part, and there is a strong demand for improvement in fatigue strength from the steel surface.
【0003】溶接継手部の疲労破壊は一般に応力集中の
大きな溶接止端部から発生するため、発生特性は溶接止
端部形状に大きく影響され、鋼材組成、組織には殆ど影
響しないことが知られている。そこで、鋼材組織を制御
して疲労特性を向上させるためには止端部で発生した板
厚方向への疲労亀裂の伝播を遅延させることが有効であ
る。疲労亀裂伝播を遅延させるためには、疲労亀裂伝播
面に垂直方向に亀裂を分岐させることが有効であること
が Proceedings of an international conferencespons
ored by Metals Society(21-23, October, 1981, Londo
n)のP.79〜に記載されている。また同様な方法と
して日本造船学会論文集Vol.169,pp.257−26
6では微小セパレーションによる疲労亀裂伝播速度向上
効果を示しており、セパレーション指数が大きい程微小
セパレーションも発生しやすいとの報告がなされてい
る。しかしながら、西部造船学会報ではセパレーション
指数のきわめて大きな鋼板(SImax :0.8)でも廻
し溶接曲げ疲労強度の改善は顕著ではなく、新たな技術
が求められている。[0003] Since fatigue fracture of a welded joint generally occurs at a weld toe where stress concentration is large, it is known that the occurrence characteristics are greatly affected by the shape of the weld toe and have little effect on the steel material composition and structure. ing. Therefore, in order to control the steel structure and improve the fatigue characteristics, it is effective to delay the propagation of the fatigue crack generated in the toe in the thickness direction. Proceedings of an international conferencespons is effective in delaying fatigue crack propagation by splitting cracks perpendicular to the fatigue crack propagation plane.
ored by Metals Society (21-23, October, 1981, Londo
n). 79-. In addition, as a similar method, Proceedings of the Society of Shipbuilding Engineers of Japan, Vol. 257-26
No. 6 shows an effect of improving the fatigue crack propagation speed by minute separation, and it has been reported that the larger the separation index, the more likely the minute separation is to occur. However, according to the Western Society of Shipbuilding Engineers, even with a steel plate having an extremely large separation index (SImax: 0.8), the improvement in the bending fatigue strength by turning is not remarkable, and a new technique is required.
【0004】また、鋼板の板厚方向に強度差を単調かつ
連続的に付与して、板厚貫通亀裂の伝播速度を小さくさ
せる技術が特開平3−291355号公報に開示されて
いる。しかし、この方法は板厚方向へ単調で非対象な強
度分布を付与させるために製造過程での変形の回避が難
しく、その後の矯正工程が必要となる。また、応力拡大
係数範囲ΔKの大きい方がその遅延効果が顕著なため、
強度が一定勾配で変化する当該発明材では、亀裂進展の
初期での遅延効果は期待できず、更に新たな技術が切望
されている。Japanese Unexamined Patent Publication (Kokai) No. 3-291355 discloses a technique in which a difference in strength is monotonously and continuously applied in the thickness direction of a steel sheet to reduce the propagation speed of a through-thickness crack. However, in this method, since a monotonous and asymmetrical intensity distribution is provided in the thickness direction, it is difficult to avoid deformation during the manufacturing process, and a subsequent correction step is required. Also, stress intensification
The larger the coefficient range ΔK is, the more pronounced the delay effect is,
In the present invention material in which the strength changes at a constant gradient, a delay effect in the early stage of crack propagation cannot be expected, and further new technology is eagerly desired.
【0005】[0005]
【発明が解決しようとする課題】本発明は、疲労強度を
向上させるために、板厚方向へ進展する亀裂に対しその
伝播を阻止させる組織制御を実施した鋼板とその製造技
術を提供することを課題とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a steel sheet having a structure controlled to prevent propagation of a crack that propagates in the thickness direction in order to improve fatigue strength, and a technique for manufacturing the steel sheet. It is an issue.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)wt%で、 C :0.02〜0.2%、 Si:0.01〜1.0%、 P :0.01%以下、 Al:0.01〜0.2%、 N :0.02%以下、 Mn:0.3〜2.0% を含有し、残部がFeと不可避的に含有する不純物元素
よりなる鋼板であって、該鋼板の 鋼板圧延方向に延在す
る島状マルテンサイトを第二相とし、その島状マルテン
サイトが母相内に5〜50%の面積率で散在する微視組
織であり、かつ前記島状マルテンサイトの硬さHvが母
相の硬さHvより30%以上高いことを特徴とする耐疲
労亀裂進展特性の良好な鋼板。 (2)前記島状マルテンサイトのアスペクト比(横幅長
/縦長)が4以上、横幅長が20μm以上であることを
特徴とする前記(1)記載の耐疲労亀裂進展特性の良好
な鋼板。 (3)鋼板の成分が、wt%で更に、 Ti:0.007〜0.020%、 Nb:0.003〜0.020%、 B :0.0003〜0.0010% のうちの1種類以上を含有することを特徴とする前記
(1)または(2)に記載の耐疲労亀裂進展特性の良好
な鋼板。 (4)鋼板の成分が、wt%で更に、 Cu:0.1〜1.0%、 Ni:0.1〜3.7% のうちの1種類以上を含有することを特徴とする前記
(1)〜(3)のいずれか1項に記載の耐疲労亀裂進展
特性の良好な鋼板。The gist of the present invention is as follows. (1) In wt%, C: 0.02 to 0.2%, Si: 0.01 to 1.0%, P: 0.01% or less, Al: 0.01 to 0.2%, N: 0.02% or less, Mn: An impurity element containing 0.3 to 2.0% , with the balance being Fe and inevitably contained
A steel plate comprising: an island-like martensite extending in a steel sheet rolling direction of the steel plate as a second phase ;
Resistance that site is Microstructure scattered at an area ratio of 5-50% in the matrix phase, and the hardness Hv of the island martensite is equal to or higher than 30% than the hardness Hv of the matrix Steel plate with good fatigue crack growth characteristics. (2) Aspect ratio (width width ) of the island martensite
/ Length) is 4 or more and the width is 20 μm or more.
The steel sheet excellent in fatigue crack propagation resistance according to the above (1), which is characterized in that: (3) The composition of the steel sheet is wt%, and one of Ti: 0.007 to 0.020%, Nb: 0.003 to 0.020%, and B: 0.0003 to 0.0010%. The above is characterized by containing the above
(1) The steel sheet excellent in fatigue crack growth resistance described in (2) . (4) The steel sheet according to the above-mentioned, wherein the component of the steel sheet further contains at least one of the following: Cu: 0.1-1.0%, Ni: 0.1-3.7%.
(1) The steel sheet excellent in fatigue crack propagation resistance according to any one of (1) to (3) .
【0007】(5)wt%で、 C :0.02〜0.2%、 Si:0.01〜1.0%、 P :0.01%以下、 Al:0.01〜0.2%、 N :0.02%以下、 Mn:0.3〜2.0% を含有し、更に Ti:0.007〜0.020%、Nb:0.003〜0.020%、 B :0.0003〜0.0010%、 Cu:0.1〜1.0%、 Ni:0.1〜3.7% のうちの1種以上を含有し、残部が実質的にFeと不可
避的に含有する不純物元素よりなり、しかも、下式で算
定したA03が零より大きい鋼を、Ar3 点以上の未再
結晶域で圧下率60%以上の圧延後、該圧延終了温度か
らAr3 −50℃までを冷却速度3℃/sec以下で冷却
し、更に冷却速度5℃/sec以上で冷却して、鋼板の第二
相として島状マルテンサイトを圧延方向性に延在させ、
その島状マルテンサイトが母相内に5〜50%の面積率
で散在する微視組織であり、かつ、前記島状マルテンサ
イトの硬さHvが母相の硬さHvより30%以上高く、
更に島状マルテンサイトのアスペクト比(横幅長/縦
長)が4以上、横幅長が20μm以上としたことを特徴
とする耐疲労亀裂進展特性の良好な鋼板の製造方法。 A03=0.9%Cr−10.5%Mo+7.4%Ni+7.5%Mn −12.7%Si (6)前記冷却速度5℃/sec以上で冷却した後、熱処理
を行うことを特徴とする前記(5)に記載の耐疲労亀裂
進展特性の良好な鋼板の製造方法。なお、ここで母相と
は、所定の領域において50%以上の占有率を占める主
体となる微視組織である。(5) In wt%, C: 0.02 to 0.2%, Si: 0.01 to 1.0%, P: 0.01% or less, Al: 0.01 to 0.2% , N: 0.02% or less, Mn: 0.3 to 2.0%, Ti: 0.007 to 0.020%, Nb: 0.003 to 0.020%, B: 0. 0003 to 0.0010%, Cu: 0.1 to 1.0%, Ni: 0.1 to 3.7%, and the balance substantially inevitably contains Fe. After rolling a steel consisting of an impurity element and having a value of A03 greater than zero calculated by the following equation at a rolling reduction of 60% or more in a non-recrystallized region at an Ar 3 point or more, from the rolling end temperature to Ar 3 -50 ° C. Is cooled at a cooling rate of 3 ° C./sec or less, and further cooled at a cooling rate of 5 ° C./sec or more. To extend to,
The island-like martensite is a microstructure scattered in the matrix at an area ratio of 5 to 50%, and the hardness Hv of the island-like martensite is 30% or more higher than the hardness Hv of the matrix,
A method for producing a steel sheet having good fatigue crack growth resistance, wherein the aspect ratio (width / length) of the island-like martensite is 4 or more and the width is 20 μm or more. A03 = 0.9% Cr-10.5% Mo + 7.4% Ni + 7.5% Mn-12.7% Si (6) After cooling at the cooling rate of 5 ° C./sec or more, heat treatment is performed.
(5) The method for producing a steel sheet having good fatigue crack growth resistance characteristics according to the above (5) . Here, the parent phase is a microstructure that is a main body that occupies 50% or more in a predetermined region.
【0008】本発明において、対象とする構造用鋼は、
例えば前記した特公昭58−14849号公報に記載さ
れ、次記するように、通常の溶接構造用鋼が所要の材質
を得るために、従来から当業分野での活用で確認されて
いる作用・効果の関係を基に定めている添加元素の種類
と量を同様に使用して同等の作用と効果が得られる。従
って、これ等を含む鋼を本発明は対象鋼とするものであ
るが、主要な成分として少なくとも次の元素が、C:
0.02〜0.2%、Si:0.01〜1.0%、P:
0.01%以下、Al:0.01〜0.2%、Mn:
0.3〜2.0%の範囲である化学成分を有する鋼板に
おける上記の第一から第四の手段も本発明に含まれるも
のである。[0008] In the present invention, the structural steel of interest is
For example, as described in JP-B-58-14849, as described below, in order to obtain a required material for a normal welded structural steel, an operation and an operation which have been conventionally confirmed in the field of use in order to obtain a required material. Similar functions and effects can be obtained by using the types and amounts of the additional elements determined based on the relation of the effects in the same manner. Therefore, the present invention is intended to include steel containing these elements, but at least the following elements as main components include C:
0.02-0.2%, Si: 0.01-1.0%, P:
0.01% or less, Al: 0.01 to 0.2%, Mn:
The above-mentioned first to fourth means in a steel sheet having a chemical component in the range of 0.3 to 2.0% are also included in the present invention.
【0009】ここに、本発明の要旨とするところは、降
伏強度の異なる微視組織相を層状に存在させることを特
徴とする、耐疲労亀裂進展性に優れた大型溶接構造用鋼
である。大型溶接構造用鋼とは、海洋構造物、橋梁、船
舶等であって、それらの使用する鋼板としては、一般
に、板厚6〜200mm程度のいわゆる厚板である。本発
明の組織構成であれば、とくに成分の規定は受けない
が、化学成分の面から本組織を生成しやすい製造方法と
して、次のような成分規制は本発明の範囲とするもので
ある。Here, the gist of the present invention is a large welded structural steel excellent in fatigue crack propagation resistance, characterized in that microstructural phases having different yield strengths are present in layers. The large-sized welded structural steel is an offshore structure, a bridge, a ship, or the like, and a steel plate used for them is generally a so-called thick plate having a plate thickness of about 6 to 200 mm. With the structure of the present invention, there is no particular limitation on the components, but the following component regulations fall within the scope of the present invention as a production method that easily produces the present structure from the aspect of chemical components.
【0010】各成分元素とその添加理由と量を以下に示
す。Cは、鋼の強度を向上する有効な成分として添加す
るものであるが、0.20%を超える過剰な含有量で
は、溶接部に島状マルテンサイトを大量に析出し、鋼の
靭性を著しく劣化させるので、0.20%以下に規制す
る。Siは溶鋼の脱酸元素として必要であり、また強度
増加元素として有用であり、ミクロ偏析部にマルテンサ
イトを生成しやすくするために、0.01%以上とす
る。また、1.0%を超えて過剰に添加すると、鋼の加
工性を低下させ、溶接部の靭性を劣化させるので、添加
量を0.01〜1.0%に規制する。[0010] Each component element, the reason for its addition and the amount are shown below. C is added as an effective component for improving the strength of the steel. However, if the content is excessively more than 0.20%, a large amount of island-like martensite is precipitated in the welded portion, and the toughness of the steel is remarkably increased. Since it deteriorates, it is restricted to 0.20% or less. Si is necessary as a deoxidizing element of molten steel and is useful as a strength increasing element, and is made 0.01 % or more in order to easily form martensite in a micro-segregated portion. On the other hand, if it is added in excess of 1.0%, the workability of the steel is reduced and the toughness of the weld is deteriorated. Therefore, the addition amount is restricted to 0.01 to 1.0%.
【0011】Mnも脱酸成分元素として必要であり、
0.3%未満では鋼の清浄度を低下し、加工性を害す
る。また鋼材の強度を向上する成分として0.3%以上
の添加が必要である。しかし、Mnは変態温度を下げる
ので、過剰の添加により2相域圧延温度が下がりすぎ、
変形抵抗の上昇をきたすので、2.0%を上限とする。
AlおよびNは、Al窒化物による鋼の微細化の他、圧
延過程での固溶、析出により、鋼の結晶方位の整合およ
び再結晶に有効な働きをさせるために添加する。しか
し、添加量が少ない時にはその効果がなく、過剰の場合
には鋼の靭性を劣化させるので、Al:0.01〜0.
20%、N:0.020%以下に限定する。Mn is also required as a deoxidizing component element,
If it is less than 0.3%, the cleanliness of the steel is reduced and the workability is impaired. Further, it is necessary to add 0.3% or more as a component for improving the strength of the steel material. However, since Mn lowers the transformation temperature, the excessive addition lowers the two-phase rolling temperature too much,
Since deformation resistance increases, the upper limit is 2.0%.
Al and N are added to refine the steel by Al nitrides, and also to provide a solid solution and precipitation during the rolling process to effectively work for matching the crystal orientation and recrystallization of the steel. However, no effect thereof when the amount is small added, since when excess degrades the toughness of the steel, Al: 0.01 ~0.
20%, N: 0.020% or less.
【0012】以上が、本発明が対象とする鋼の基本成分
であるが、母材強度の上昇のためにNi,Cu,Mo,
Nb,V等の合金元素を必要に応じて添加しても良く、
あるいは、継手靭性の向上の目的のためにTi,B,Z
r,希土類元素,Mg等を必要に応じて添加しても良い
が、強度、靭性の観点からCu:1%以下、Ni:3.
7%以下、Nb:0.02%以下が望ましい。The above are the basic components of the steel targeted by the present invention. However, Ni, Cu, Mo,
Alloying elements such as Nb and V may be added as necessary.
Alternatively, for the purpose of improving the joint toughness, Ti, B, Z
r, a rare earth element, Mg, etc. may be added as necessary, but from the viewpoint of strength and toughness, Cu: 1% or less, Ni: 3.
7% or less, Nb: 0.02% or less is desirable.
【0013】[0013]
【作用】発明者らは、疲労亀裂の進展機構を研究する過
程で、疲労亀裂伝播が亀裂先端の塑性域進展と密接な関
係にあり、亀裂先端に生じるすべり変形が繰り返されて
次第に亀裂として進展することを突き止めた。更に、疲
労亀裂先端にすべり変形しにくい領域が存在すると疲労
亀裂が伝播しにくいことを明らかにした。この現象は、
特開平3−29135号公報で開示されている「板厚方
向に単調(一定勾配で)かつ連続的な強度勾配を付与す
る」ことにより、亀裂先端に蓄積される塑性歪範囲を徐
々に減少させて疲労亀裂の進展を阻止しようとする技術
とは異なり、巨視的に急激な降伏強度を変化させたすべ
り変形のしにくい領域を亀裂先端全面に存在させ、塑性
歪を受ける領域を亀裂進展方向から分散させてしまうこ
とにより生ずるものである。In the process of studying the mechanism of fatigue crack propagation, fatigue crack propagation is closely related to the plastic zone propagation at the crack tip, and the slip deformation that occurs at the crack tip is repeated and gradually grows as a crack. I figured out what to do. Furthermore, it was clarified that fatigue cracks are difficult to propagate when there is a region where slip deformation is difficult at the fatigue crack tip. This phenomenon is
Japanese Patent Application Laid-Open No. 3-29135 discloses a technique of “giving a monotonic (constant gradient) and continuous strength gradient in the thickness direction” to gradually reduce the plastic strain range accumulated at the crack tip. Unlike the technology that attempts to prevent the growth of fatigue cracks, a region where slip deformation that changes the macroscopic sudden yield strength is difficult to exist over the entire crack tip, and the region that receives plastic strain from the crack growth direction This is caused by dispersing.
【0014】発明者らは、この知見を更に微視的な疲労
亀裂の伝播制御に応用できると考え、微視組織の中に母
相組織より降伏強度の高い相を分散させた混粒組織を試
作し、降伏強度の高い相と母相の境界を疲労亀裂が通過
する挙動を詳細に観察した。その結果、微視的組織でも
疲労亀裂が降伏強度の高い領域に達するとすべり変形が
抑制され疲労亀裂の伝播が大幅に遅延することが知見さ
れた。図1には、亀裂先端に20μm程度の範囲にわた
り硬さの高い第二相が存在した時、そこに亀裂が伝播し
ていく過程で要した繰り返し数の比較を示す。島状マル
テンサイトの硬さHv(H)が母相の硬さHv(O)よ
り30%以上高い状態であれば、亀裂進展の障害になる
ことが知見された。The present inventors believe that this finding can be further applied to the control of microscopic fatigue crack propagation, and a mixed grain structure in which a phase having a higher yield strength than the parent structure is dispersed in the microstructure. A prototype was fabricated and the behavior of fatigue cracks passing through the boundary between the high yield strength phase and the parent phase was observed in detail. As a result, it was found that even in a microstructure, when the fatigue crack reaches a region having a high yield strength, slip deformation is suppressed and propagation of the fatigue crack is greatly delayed. FIG. 1 shows a comparison of the number of repetitions required in the process of propagating a crack when a second phase having a high hardness exists over a range of about 20 μm at the tip of the crack. Island-shaped circle
The hardness Hv (H) of Tensite is equal to the hardness Hv (O) of the matrix.
It has been found that a state higher than 30% is an obstacle to crack growth.
【0015】微視的に硬さの差異を確保するためにはセ
メンタイト相やマルテンサイト相を分散させることによ
り実現できる。再現熱サイクル試験によりオーステナイ
ト化した後、急冷させてラス状組織としたサンプルに種
々の第二サイクルを付与して、島状マルテンサイトの形
態を変化させて作製したサンプルを用いて疲労試験を実
施した。その結果、図2(a)に示すように、島状マル
テンサイトの横幅長さLが20μm以下の場合には、亀
裂が単にマルテンサイトを回り込むように伝播しただけ
で、伝播速度は遅延しなかった。また図2(b)に示す
ように、島状マルテンサイトの横幅長さLが20μm以
上の場合には、亀裂進展が停滞し、伝播遅延効果が認め
られた。また図3(a)に示すように、マルテンサイト
形状のアスペクト比(横幅長L/縦長H)が2程度の時
は、マルテンサイトの横幅長さLが20μm以上であっ
ても、マルテンサイトとマトリックスの界面にそって亀
裂が伝播し、遅延効果は得られず、図3(b),(c)
に示すように、アスペクト比(L/H)で4以上の形態
の必要なことが知見された。The microscopic difference in hardness can be realized by dispersing a cementite phase or a martensite phase. After austenitizing by a reproducible heat cycle test, various types of second cycles were applied to the sample that had been rapidly cooled to form a lath-like structure, and a fatigue test was performed using a sample prepared by changing the form of island martensite did. As a result, as shown in FIG. 2 (a), when the lateral length L of the island-like martensite is 20 μm or less , the crack propagates simply around the martensite, and The speed did not slow. Also shown in FIG.
As described above, when the lateral length L of the island-like martensite was 20 μm or more, crack propagation was stagnated, and a propagation delay effect was observed. Further, as shown in FIG. 3A, when the aspect ratio ( width L / length H ) of the martensite shape is about 2, even if the width L of the martensite is 20 μm or more, the martensite and along the interface between the matrix cracks propagate, the delay effect can not be obtained, FIG. 3 (b), (c)
As shown in the figure, it was found that a form having an aspect ratio (L / H) of 4 or more was required.
【0016】本発明にかかる鋼材、すなわち微視的に降
伏強度の異なる相から構成される微視組織を有する鋼板
を製造する手段は、何等限定を要するものではないが、
工業的に容易に低コストで実施できる製造方法として、
化学成分と島状組織の関係を種々検討した。その結果、
島状組織の発達程度を示す指標である島状組織生成指数
A03がA03=0.9%Cr−10.5%Mo+7.
4%Ni+7.5%Mn−12.7%Si>0であれ
ば、ミクロ偏析の生成が容易となり、更にSi量を0.
01%以上確保すればマルテンサイトの生成が容易とな
ることを知見した。Means for producing the steel material according to the present invention, that is, a steel plate having a microstructure composed of phases having microscopically different yield strengths, need not be limited at all.
As a manufacturing method that can be implemented industrially easily at low cost,
Various relations between chemical components and islands were studied. as a result,
The island -structure generation index A03, which is an index indicating the degree of development of the island-like structure, is A03 = 0.9% Cr-10.5% Mo + 7.
If 4% Ni + 7.5% Mn-12.7% Si> 0, micro-segregation is easy to generate, and the Si content is reduced to 0.1% .
It has been found that the formation of martensite is facilitated if the content is secured to not less than 01 %.
【0017】この成分系において、島状組織の発達があ
っても材質特性を確保できるように未再結晶域で圧延
し、その後ミクロ偏析を助長できる時間を与えるために
徐冷し、成分の濃縮したγ域を生成せしめたのち、加速
冷却するとその部分がマルテンサイト変態しやすくな
り、アスペクト比が4以上で横幅長さが20μm以上の
島状マルテンサイトを生成できることを知見したのであ
る。尚、上記効果を工業的に発揮させるためには少なく
とも鋼板板厚方向の断面組織で50%以上の面積率が必
要であった。In this component system, the material is rolled in a non-recrystallized region so that the material properties can be secured even if an island- like structure develops, and then slowly cooled to give time for promoting microsegregation, and the component is concentrated. After the γ region is generated, when accelerated cooling, the part is apt to undergo martensitic transformation, and the aspect ratio is 4 or more and the width is 20 μm or more.
They found that island martensite could be formed. In order to industrially exert the above-mentioned effects, at least a 50% or more area ratio was required in the cross-sectional structure in the thickness direction of the steel sheet.
【0018】[0018]
【実施例】実施例の供試鋼の成分を表1に、製造条件お
よび得られた材質を表2に比較例と共に示す。EXAMPLES The components of the test steels of the examples are shown in Table 1, and the production conditions and the obtained materials are shown in Table 2 together with comparative examples.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【表3】 [Table 3]
【0022】疲労特性を評価するために、試験片幅80
mm、曲げスパン220mm、試験片中央に高さ2mmの突起
をつけ、そこに切り欠きを施すことにより、疲労亀裂発
生を容易にして疲労亀裂伝播特性を抽出する工夫をした
表面疲労亀裂伝播試験をビーチマーク法を適用して実施
し、板厚方向への亀裂伝播速度を測定した。さらに、試
験片幅80mmの試験板中央に廻し溶接を施工し、軸力に
よる疲労試験を実施し、2×106 回の疲労強度を求め
た。本発明例である試験番号1〜12は母相内に硬い第
二相が層状に存在しており、比較例より破断寿命、廻し
溶接継手部での2×106 回の疲労強度も向上してい
る。一方、比較例12は未再結晶域の圧下量が50%以
下のため、第二相が所定の形状とならずに、本発明例よ
り疲労特性が劣化している。比較例13は、所定の圧延
まで適用したが、その後の冷却開始温度が高すぎ、所定
の冷速を得られなかったので、相全体がベーナイト状に
なり疲労特性は本発明例のレベルには達しなかった。比
較例14は、所定の圧延後、Ar3 −50℃からの冷却
速度が小さすぎ、成分濃縮域がマルテンサイト変態せ
ず、母相より硬い第二相を得ることができなかった。比
較例15は、圧延後の冷却は、所定の条件で実施したも
のの、圧延温度域が高く未再結晶域圧延が実施できなか
った。このため、硬い第二相は生成したものの、所定の
形状とはならず、疲労特性も本発明例より劣っていた。
また、比較例16は圧延後空冷したため硬い第二相は得
られなかった。In order to evaluate the fatigue characteristics, a test piece width 80
The surface fatigue crack propagation test was devised to facilitate the generation of fatigue cracks and extract the fatigue crack propagation characteristics by making a notch in the center of the test specimen with a protrusion with a height of 2 mm and a bending span of 220 mm. The crack propagation speed in the thickness direction was measured by applying the beach mark method. Further, a welding test was carried out around the center of the test plate having a test piece width of 80 mm, and a fatigue test was carried out by an axial force to obtain a fatigue strength of 2 × 10 6 times. In Test Nos. 1 to 12, which are examples of the present invention, the hard second phase is present in a layer in the matrix, and the fracture life and the fatigue strength of 2 × 10 6 times in the lap welding joint are also improved as compared with the comparative example. ing. On the other hand, in Comparative Example 12, since the rolling reduction in the unrecrystallized region was 50% or less, the second phase did not have a predetermined shape, and the fatigue characteristics were deteriorated as compared with the inventive examples. Comparative Example 13 was applied up to a predetermined rolling, but the subsequent cooling start temperature was too high and a predetermined cooling speed could not be obtained, so that the entire phase became bainite-like and the fatigue characteristics were at the level of the present invention. Did not reach. In Comparative Example 14, after the predetermined rolling, the cooling rate from Ar 3 -50 ° C. was too low, the component enriched region did not undergo martensitic transformation, and a second phase harder than the parent phase could not be obtained. In Comparative Example 15, although the cooling after the rolling was performed under predetermined conditions, the rolling temperature range was high and the unrecrystallized region rolling could not be performed. For this reason, although the hard second phase was formed, it did not have a predetermined shape, and the fatigue characteristics were inferior to those of the present invention.
In Comparative Example 16, a hard second phase was not obtained because the air was cooled after the rolling.
【0023】[0023]
【発明の効果】例えば船体の縦通肋骨や海洋構造物のよ
うに、その表面から疲労亀裂が発生・伝播する大型構造
物に対し、本発明にかかる鋼板を使用することにより、
設計面および施工面での特別な配慮を必要とせずに、高
い疲労亀裂伝播阻止性能を前記大型構造物に付与するこ
とが可能となった。したがって、前記大型構造物をコス
トの上昇を伴わずに、十分に確保することが可能とな
り、当業分野はもちろん、関連分野にもたらす効果が大
きい。The steel sheet according to the present invention is used for large structures in which fatigue cracks are generated and propagated from the surface, such as longitudinal ribs of a hull and marine structures.
It has become possible to impart high fatigue crack propagation prevention performance to the large-sized structure without requiring special consideration in design and construction. Therefore, it is possible to sufficiently secure the large-sized structure without increasing the cost, which has a great effect not only in this technical field but also in related fields.
【図1】疲労亀裂伝播遅延現象に及ぼす硬さの差の影響
の図表。FIG. 1 is a chart of the effect of hardness differences on fatigue crack propagation delay phenomena.
【図2】(a),(b)は疲労亀裂伝播挙動に及ぼす第
二相(母相より硬さの高い相)の長さの影響の模式図。FIGS. 2A and 2B are schematic diagrams of the influence of the length of a second phase (a phase having a higher hardness than a parent phase) on the fatigue crack propagation behavior.
【図3】(a),(b),(c)は疲労亀裂伝播遅延現
象に及ぼす第二相の形状(アスペクト比)の影響の図
表。3 (a), (b), and (c) are diagrams showing the influence of the shape (aspect ratio) of the second phase on the fatigue crack propagation delay phenomenon.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/00 - 8/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/00-8/02
Claims (6)
よりなる鋼板であって、該鋼板の 鋼板圧延方向に延在す
る島状マルテンサイトを第二相とし、その島状マルテン
サイトが母相内に5〜50%の面積率で散在する微視組
織であり、かつ前記島状マルテンサイトの硬さHvが母
相の硬さHvより30%以上高いことを特徴とする耐疲
労亀裂進展特性の良好な鋼板。1. wt%, C: 0.02-0.2%, Si: 0.01-1.0 %, P: 0.01% or less, Al: 0.01-0.2%, N: 0.02% or less, Mn: 0.3 to 2.0% , the balance being Fe and unavoidable impurity elements
A steel plate comprising: an island-like martensite extending in a steel sheet rolling direction of the steel plate as a second phase ;
Resistance that site is Microstructure scattered at an area ratio of 5-50% in the matrix phase, and the hardness Hv of the island martensite is equal to or higher than 30% than the hardness Hv of the matrix Steel plate with good fatigue crack growth characteristics.
(横幅長/縦長)が4以上、横幅長が20μm以上であ
ることを特徴とする請求項1記載の耐疲労亀裂進展特性
の良好な鋼板。2. The aspect ratio of the island martensite.
(Width / length) is 4 or more and width is 20 μm or more
The steel sheet having good fatigue crack growth resistance characteristics according to claim 1 , characterized in that:
1または2に記載の耐疲労亀裂進展特性の良好な鋼板。3. The composition of a steel sheet in wt%, wherein Ti: 0.007 to 0.020%, Nb: 0.003 to 0.020%, and B: 0.0003 to 0.0010%. good steel fatigue crack growth resistance characteristics according to claim 1 or 2, characterized in that it contains one or more.
1〜3のいずれか1項に記載の耐疲労亀裂進展特性の良
好な鋼板。4. The steel sheet is characterized in that the steel sheet further contains at least one of the following: wt.% : Cu: 0.1-1.0%, Ni: 0.1-3.7%. The steel sheet excellent in fatigue crack propagation resistance according to any one of claims 1 to 3 .
りなり、しかも、下式で算定したA03が零より大きい
鋼を、Ar3 点以上の未再結晶域で圧下率60%以上の
圧延後、該圧延終了温度からAr3 −50℃までを冷却
速度3℃/sec以下で冷却し、更に冷却速度5℃/sec以上
で冷却して、鋼板の第二相として島状マルテンサイトを
圧延方向性に延在させ、その島状マルテンサイトが母相
内に5〜50%の面積率で散在する微視組織であり、か
つ、前記島状マルテンサイトの硬さHvが母相の硬さH
vより30%以上高く、更に島状マルテンサイトのアス
ペクト比(横幅長/縦長)が4以上、横幅長が20μm
以上としたことを特徴とする耐疲労亀裂進展特性の良好
な鋼板の製造方法。 A03=0.9%Cr−10.5%Mo+7.4%Ni+7.5%Mn −12.7%Si5. In% by weight, C: 0.02 to 0.2%, Si: 0.01 to 1.0%, P: 0.01% or less, Al: 0.01 to 0.2%, N: 0.02% or less, Mn: 0.3 to 2.0%, Ti: 0.007 to 0.020%, Nb: 0.003 to 0.020%, B: 0.0003 -0.0010%, Cu: 0.1-1.0%, Ni: 0.1-3.7%, and the balance is substantially Fe and inevitable impurities. After rolling a steel consisting of elements and having A03 greater than zero calculated by the following equation at a rolling reduction of 60% or more in a non-recrystallized region at an Ar 3 point or more, the temperature from the rolling end temperature to Ar 3 -50 ° C. Cool at a cooling rate of 3 ° C / sec or less, and further cool at a cooling rate of 5 ° C / sec or more, and roll the island martensite as a second phase of the steel sheet in the rolling direction. Zaisa was a microstructure that island martensite is dispersed at an area ratio of 5-50% in the matrix phase, and the hardness H of the hardness Hv mother phase of the island martensite
v is 30% or more, and the aspect ratio (width / length) of the island martensite is 4 or more, and the width is 20 μm.
A method for producing a steel sheet having good fatigue crack propagation resistance, characterized by the above. A03 = 0.9% Cr-10.5% Mo + 7.4% Ni + 7.5% Mn-12.7% Si
後、熱処理を行うことを特徴とする請求項5に記載の耐
疲労亀裂進展特性の良好な鋼板の製造方法。 6. Cooling at a cooling rate of 5 ° C./sec or more.
The method for producing a steel sheet having good fatigue crack growth resistance characteristics according to claim 5, wherein heat treatment is performed thereafter .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5227359A JP3037855B2 (en) | 1993-09-13 | 1993-09-13 | Steel sheet with good fatigue crack propagation resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5227359A JP3037855B2 (en) | 1993-09-13 | 1993-09-13 | Steel sheet with good fatigue crack propagation resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790478A JPH0790478A (en) | 1995-04-04 |
JP3037855B2 true JP3037855B2 (en) | 2000-05-08 |
Family
ID=16859568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5227359A Expired - Fee Related JP3037855B2 (en) | 1993-09-13 | 1993-09-13 | Steel sheet with good fatigue crack propagation resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3037855B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101051282B1 (en) | 2011-02-18 | 2011-07-27 | 박재우 | Bookmark |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4537649B2 (en) | 2002-10-08 | 2010-09-01 | 新日本製鐵株式会社 | Rotating welded joint, manufacturing method of Rotated welded joint, and welded structure |
JP4502950B2 (en) * | 2005-12-28 | 2010-07-14 | 株式会社神戸製鋼所 | Marine steel with excellent corrosion resistance and fatigue crack growth resistance |
KR101687687B1 (en) | 2011-03-28 | 2016-12-19 | 제이에프이 스틸 가부시키가이샤 | Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet |
CN103459640B (en) | 2011-03-28 | 2015-11-25 | 杰富意钢铁株式会社 | The Plate Steel of the fatigue resistance excellence in thickness of slab direction and the fillet-welded joint of manufacture method and this Plate Steel of use thereof |
EP3162908B8 (en) | 2014-07-14 | 2019-07-31 | Nippon Steel Corporation | Hot-rolled steel sheet |
KR101897932B1 (en) | 2014-07-14 | 2018-09-12 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
US11401571B2 (en) | 2015-02-20 | 2022-08-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
WO2016132549A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
CN107406929B (en) | 2015-02-25 | 2019-01-04 | 新日铁住金株式会社 | Hot rolled steel plate |
WO2016135898A1 (en) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | Hot-rolled steel sheet or plate |
WO2018026015A1 (en) | 2016-08-05 | 2018-02-08 | 新日鐵住金株式会社 | Steel sheet and plated steel sheet |
CN109563580A (en) | 2016-08-05 | 2019-04-02 | 新日铁住金株式会社 | steel sheet and plated steel sheet |
-
1993
- 1993-09-13 JP JP5227359A patent/JP3037855B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101051282B1 (en) | 2011-02-18 | 2011-07-27 | 박재우 | Bookmark |
Also Published As
Publication number | Publication date |
---|---|
JPH0790478A (en) | 1995-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3869747B2 (en) | High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance | |
KR100206151B1 (en) | Weldable high tensile steel excellent in low-temperatur toughness | |
JP3526576B2 (en) | Manufacturing method of high-strength steel with excellent weld strength and weld strength | |
JP4226626B2 (en) | High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
JP3037855B2 (en) | Steel sheet with good fatigue crack propagation resistance and method for producing the same | |
WO2013099318A1 (en) | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor | |
WO2013099319A1 (en) | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor | |
JP3434434B2 (en) | Steel material excellent in fatigue crack propagation characteristics and method of manufacturing the same | |
JP3499085B2 (en) | Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof | |
JPH08188847A (en) | Steel plate with composite structure, excellent in fatigue characteristic, and its production | |
JP3849244B2 (en) | Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method | |
JP3244984B2 (en) | High strength linepipe steel with low yield ratio and excellent low temperature toughness | |
CN115989327A (en) | Thick steel plate and method for producing same | |
JPS5913023A (en) | Production of steel plate for large diameter welded pipe | |
JP3262972B2 (en) | Weldable high strength steel with low yield ratio and excellent low temperature toughness | |
JPS62205230A (en) | Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation | |
JP2541070B2 (en) | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material | |
JP2000017379A (en) | Steel sheet improved in fatigue crack propagating characteristic by crystal orientation control and its production | |
WO2011043287A1 (en) | Steel for linepipe having good strength and malleability, and method for producing the same | |
JP3371744B2 (en) | Low yield ratio steel material and method of manufacturing the same | |
JP3032669B2 (en) | Steel plate having good fatigue fracture resistance and method for producing the same | |
JPH10147845A (en) | Steel plate with high fatigue strength, and its production | |
JP3244987B2 (en) | High strength linepipe steel with low yield ratio | |
JP2905639B2 (en) | Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |