JP3035479B2 - Multilayer inductance element - Google Patents

Multilayer inductance element

Info

Publication number
JP3035479B2
JP3035479B2 JP7296077A JP29607795A JP3035479B2 JP 3035479 B2 JP3035479 B2 JP 3035479B2 JP 7296077 A JP7296077 A JP 7296077A JP 29607795 A JP29607795 A JP 29607795A JP 3035479 B2 JP3035479 B2 JP 3035479B2
Authority
JP
Japan
Prior art keywords
inductance element
laminated
conductor
multilayer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7296077A
Other languages
Japanese (ja)
Other versions
JPH09115730A (en
Inventor
孝始 木皿
元 大学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7296077A priority Critical patent/JP3035479B2/en
Publication of JPH09115730A publication Critical patent/JPH09115730A/en
Application granted granted Critical
Publication of JP3035479B2 publication Critical patent/JP3035479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器に適
用され、LCフィルターや共振器として働く積層型イン
ダクタンス素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer inductance element which is applied to various electronic devices and functions as an LC filter or a resonator.

【0002】[0002]

【従来の技術】近年、電子機器技術の進歩により、電子
機器内で扱われる信号の周波数帯域が高周波側に広が
り、その帯域は、数100MHz〜数GHzにまで及ん
でいる。このような高周波帯域における信号の分離、或
は合成等の回路で使用される共振器としては、目的周波
数帯域で高利得(Q)を有することが要求され、磁性体
粉末を含有する磁性体層用ペーストと導電粉末を含有す
る導電体層用ペーストを交互に印刷し、同時焼成した積
層型インダクタンス素子が使用されてきた。
2. Description of the Related Art In recent years, with the advancement of electronic equipment technology, the frequency band of signals handled in electronic equipment has been extended to the high frequency side, and the band extends from several hundred MHz to several GHz. A resonator used in a circuit for separating or synthesizing signals in such a high frequency band is required to have a high gain (Q) in a target frequency band, and a magnetic layer containing a magnetic powder is required. Laminated inductance elements have been used in which a paste for conductive layer and a paste for conductive layer containing conductive powder are alternately printed and co-fired.

【0003】[0003]

【発明が解決しようとする課題】一般的に、インダクタ
ンス素子用の軟磁性磁心材料として、Ni、Zn,C
u、Feから構成されたスピネル型フェライト焼結体が
使用されてきた。しかしながら、これらの組成系のイン
ダクタンス素子を、高周波域(100MHz)で使用し
た場合、利得(Q)が著しく低下すると共に、インダク
タンスも急激に低下し、高周波域ではインダクタンス素
子として全く機能しなくなるという問題点があった。
Generally, Ni, Zn, C are used as soft magnetic core materials for inductance elements.
Spinel-type ferrite sintered bodies composed of u and Fe have been used. However, when these composition-based inductance elements are used in a high-frequency range (100 MHz), the gain (Q) is remarkably reduced, and the inductance is also sharply reduced. There was a point.

【0004】そこで、本発明の課題は、高周波帯域での
インダクタンス及びQ特性に優れた、広い周波数帯域に
適用できる積層型インダクタンス素子を提供することに
ある。
It is an object of the present invention to provide a multilayer inductance element having excellent inductance and Q characteristics in a high frequency band and applicable to a wide frequency band.

【0005】[0005]

【課題を解決するための手段】本発明者は、種々検討を
進めた結果、スピネル型軟磁性フェライト粉末の基本組
成が、aFe、bNiO、cCuO(mol%)
十添加物からなり、主成分を各々42<a<50、40
<b<48、4<c<8、a+b+c=100mol%
とし、添加物としてBi、MnO,CoOを各々
0〜0.5wt%(各元素とも0wt%を含まない)と
した範囲の組成からなり、磁性体層と導電体層を交互に
積層し、内部に導電体のコイルを形成し、広い周波数帯
域での適用が可能な積層型インダクタンス素子を得るこ
とができることを見い出した。
As a result of various studies, the present inventors have found that the basic composition of the spinel-type soft magnetic ferrite powder is aFe 2 O 3 , bNiO, cCuO (mol%).
Consisting of 10 additives, each having a main component of 42 <a <50, 40
<B <48, 4 <c <8, a + b + c = 100 mol%
And a composition in which Bi 2 O 3 , MnO, and CoO are each added in an amount of 0 to 0.5 wt% (each element does not include 0 wt%), and magnetic layers and conductor layers are alternately laminated. Then, they have found that it is possible to obtain a multilayer inductance element that can be applied in a wide frequency band by forming a conductor coil inside.

【0006】即ち、本発明は、軟磁性フェライト粉末
と、導電体粉末を、それぞれ合成樹脂バインダを用いて
ペースト化し、これらを印刷法によって積層し、コイル
状の導電体を形成し、同時焼成した積層型インダクタン
ス素子において、前記軟磁性フェライト粉末は、主成分
として、各々42<a<50、40<b<48、4<c
<8、a+b+c=100となるaFe、bNi
O、cCuO(mol%)と、副成分として、各々0〜
0.5wt%(各元素とも0wt%を含まない)となる
Bi、MnO、CoOとからなることを特徴とす
る積層型インダクタンス素子である。
That is, according to the present invention, a soft magnetic ferrite powder and a conductor powder are each formed into a paste using a synthetic resin binder, and these are laminated by a printing method to form a coil-shaped conductor, which is simultaneously fired. In the multilayer inductance element, the soft magnetic ferrite powder contains 42 <a <50, 40 <b <48, and 4 <c as main components, respectively.
<8, aFe 2 O 3 and bNi satisfying a + b + c = 100
O, cCuO (mol%), and 0-
This is a multilayer inductance element comprising Bi 2 O 3 , MnO, and CoO in an amount of 0.5 wt% (each element does not include 0 wt%).

【0007】ここで、インダクタンス素子の判断基準と
して本発明で採用した電気特性の評価項目について説明
する。
Here, the evaluation items of the electrical characteristics employed in the present invention as criteria for determining the inductance element will be described.

【0008】特性の評価は、インダクタンス(L)の周
波数特性、利得(Q)の周波数特性、素子の温度特性△
LT、共振周波数である。
The characteristics are evaluated by the frequency characteristics of the inductance (L), the frequency characteristics of the gain (Q), and the temperature characteristics of the element.
LT is the resonance frequency.

【0009】△LTは、20℃、100kHzでのLの
値を基準とした場合の0から80℃におけるLの温度変
化率(%/℃)を示し次式より求められる。 △LT=[(L80−LO)/(L20×80)]×100(%/℃) 又、共振周波数は素子のインダクタンスが0になった時
の周波数の値である。
△ LT indicates the temperature change rate (% / ° C.) of L from 0 to 80 ° C. based on the value of L at 20 ° C. and 100 kHz, and is obtained by the following equation. ΔLT = [(L80−LO) / (L20 × 80)] × 100 (% / ° C.) The resonance frequency is the value of the frequency when the inductance of the element becomes zero.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を実施例を用
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to examples.

【0011】(実施例1) 化学組成比が、aFe、bNiO,cCuO(m
ol%)+Bi:0.2wt%・CoO:0.2
wt%、MnO:0.2wt%で表され、a+b+c=
100,a=41、42、43、44、45、46、4
7、48、49、50、51、c=6となるように各原
料を調製し、ボールミルにて20時間湿式混合した。こ
こで使用した原料粉末の粒度は、全て0.5μm以下の
ものである。
(Example 1) The chemical composition ratio was aFe 2 O 3 , bNiO, cCuO (m
ol%) + Bi 2 O 3 : 0.2 wt% · CoO: 0.2
wt%, MnO: 0.2 wt%, a + b + c =
100, a = 41, 42, 43, 44, 45, 46, 4
Each raw material was prepared so that 7, 48, 49, 50, 51, and c = 6, and was wet-mixed with a ball mill for 20 hours. The particle sizes of the raw material powders used here are all 0.5 μm or less.

【0012】次に、これらの原料混合粉末を大気中80
0℃で2時間仮焼した後、ボールミルにて3時間湿式粉
砕し、スピネル型軟磁性フェライト粉末とした。粉末の
平均粒径は約1μmである。
Next, the mixed powder of these raw materials is
After calcining at 0 ° C. for 2 hours, the mixture was wet-ground with a ball mill for 3 hours to obtain a spinel-type soft magnetic ferrite powder. The average particle size of the powder is about 1 μm.

【0013】この粉末とバインダ、溶剤を表1の比率で
配合し、配合物を三本ロールで混練して磁性体層用ペー
ストを作製した。
The powder, the binder, and the solvent were blended in the ratio shown in Table 1, and the blend was kneaded with a three-roll mill to produce a paste for a magnetic layer.

【0014】 [0014]

【0015】導電体層用粉末として、平均粒径05μm
のAg粉末を用意した。この粉末と、表2の比率でバイ
ンダ、溶剤とそれぞれ配合し、配合物を三本ロールで混
練して、導電体層用ペーストを作製した。
The powder for the conductor layer has an average particle size of 05 μm.
Of Ag powder was prepared. This powder was mixed with a binder and a solvent at the ratios shown in Table 2, and the mixture was kneaded with a three-roll mill to prepare a conductor layer paste.

【0016】 [0016]

【0017】本実施例では、表1及び表2の配合比でペ
ーストを作製したが、これ以外の成分配合比でも、印刷
可能なペーストが得られるものであればよい。さらに、
配合物の混練に三本ロールを使用したが、これ以外にも
ホモジェナイザやサンドミル等を使用してもよい。
In this embodiment, the pastes were prepared with the compounding ratios shown in Tables 1 and 2, but any other compounding ratios may be used as long as a printable paste can be obtained. further,
Although a three-roll mill was used for kneading the mixture, a homogenizer or a sand mill may be used instead.

【0018】次に、作製した磁性体層用ペーストを印刷
法により所定の厚さ(0.5mm)に積層した。その上
に、導電体層用ペーストと磁性体層用ペーストを用いて
5.5ターンの導電体の積層巻線を形成するように、印
刷積層を行った。この時、一層の積層厚は、磁性体層で
約30μm、導電体層では約15μmで行った。
Next, the magnetic layer paste thus produced was laminated to a predetermined thickness (0.5 mm) by a printing method. Printing and lamination were performed thereon so as to form a laminate winding of 5.5 turns of the conductor using the conductor layer paste and the magnetic layer paste. At this time, the thickness of one layer was about 30 μm for the magnetic layer and about 15 μm for the conductor layer.

【0019】その上に、磁性体層用ペーストを印刷法に
より、所定の厚さ(0.5mm)に積層した。全体の積
層厚さは約1.3mmである。
On top of this, a magnetic layer paste was laminated to a predetermined thickness (0.5 mm) by a printing method. The overall stack thickness is about 1.3 mm.

【0020】本実施例では、導電体の積層巻線を5.5
ターンとしたが、これ以外の巻線でもよく、必要な特性
が得られるように巻線を調整すればよい。
In this embodiment, the laminated winding of the conductor is 5.5
Although the winding is used, other windings may be used, and the winding may be adjusted so as to obtain necessary characteristics.

【0021】上記作製した積層体を、所定の大きさに3
mm×1.5mmに切断した。上記積層、切断した積層
体を脱バインダ後、850℃で同時焼成を行った。本実
施例では、850℃で焼成を行ったが、積層体が焼結が
完了する温度で、かつ、内部電極が断線しない温度範囲
であればよい。
The above-prepared laminate is reduced to a predetermined size by 3
mm x 1.5 mm. After removing the binder from the laminated and cut laminates, simultaneous firing was performed at 850 ° C. In the present embodiment, the sintering was performed at 850 ° C., but any temperature may be used as long as it is a temperature at which sintering of the laminate is completed and the internal electrodes are not disconnected.

【0022】又、一つの積層体素子の大きさを3mm×
1.5mmとしたが、これ以外の大きさでもよく、その
場合、導電体の積層巻線の大きさを調整すればよい。
Further, the size of one laminated element is 3 mm ×
Although 1.5 mm was used, other sizes may be used. In such a case, the size of the laminated conductor winding may be adjusted.

【0023】上記焼成した積層インダクタンス素子に、
導電体の積層巻線のリードが露出している面に、Agを
主成分とした導電体層用ペーストを塗布し、約300℃
で焼き付けを行い、外部電極を形成した。
In the fired laminated inductance element,
A conductor layer paste containing Ag as a main component is applied to a surface of the conductor laminated winding where the leads are exposed, and is applied at about 300 ° C.
Was performed to form external electrodes.

【0024】図1に、積層インダクタの構成を示す。図
1(a)は積層面からの平面図、図1(b)は断面図で
ある。
FIG. 1 shows the configuration of the multilayer inductor. FIG. 1A is a plan view from the lamination surface, and FIG. 1B is a sectional view.

【0025】図1に示すように、磁性体1内で、導電体
2が積層巻線されている。又、3は焼成後形成する外部
電極である。
As shown in FIG. 1, a conductor 2 is laminated and wound in a magnetic body 1. Reference numeral 3 denotes an external electrode formed after firing.

【0026】本実施例では、外部電極としてAgを主成
分とした導電体層用ペーストを用いたが、これ以外に
も、カーボンやCu,Ni等を主成分とした導電体層用
ペーストでもよい。
In this embodiment, a conductor layer paste containing Ag as a main component is used as the external electrode. However, a conductor layer paste containing carbon, Cu, Ni, or the like as a main component may be used. .

【0027】上記のように作製した積層インダクタンス
素子の利得(Q)の最大値(以下QMAXと称す)と1
00kHzでのインダクタンス値(以下、L100kH
zと称す)、インダクタンスの温度特性及び共振周波数
をYHP製インピーダンスアナライザーHP4191A
を用いて評価した。その結果を表3に示す。
The maximum value (hereinafter referred to as Q MAX ) of the gain (Q) of the laminated inductance element manufactured as described above is 1
The inductance value at 00 kHz (hereinafter, L100 kHz
z), the temperature characteristic of the inductance and the resonance frequency are determined by a YHP impedance analyzer HP4191A.
Was evaluated using Table 3 shows the results.

【0028】[0028]

【表3】[Table 3]

【0029】表3より、a=42を下回ると、QMAX
が著しく低下し、a=50を越えると、共振周波数、△
LTが著しく低下する。従って、a=42〜50が有用
な組成範囲である。
According to Table 3, when a is smaller than 42, Q MAX
Significantly decreases, and when a exceeds 50, the resonance frequency, △
LT significantly decreases. Therefore, a = 42 to 50 is a useful composition range.

【0030】(実施例2) 化学組成比が、aFe、bNiO,cCuO(m
ol%)+Bi:0.2wt%・CoO:0.2
wt%・MnO:0.2wt%で表され、但し、a+b
+c=100、b=39、40、41、42、43、4
4、45、46、47、48、49、c=4となるよう
に各原料を調製し、実施例1と同様に積層型インダクタ
ンス素子を作製した。作製した素子を実施例1と同様の
評価を行った。その結果を表4に示す。
Example 2 The chemical composition ratio was aFe 2 O 3 , bNiO, cCuO (m
ol%) + Bi 2 O 3 : 0.2 wt% · CoO: 0.2
wt% · MnO: 0.2 wt%, where a + b
+ C = 100, b = 39, 40, 41, 42, 43, 4
Each raw material was prepared so that 4, 45, 46, 47, 48, 49, and c = 4, and a multilayer inductance element was manufactured in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 4 shows the results.

【0031】[0031]

【表4】[Table 4]

【0032】表4より、b=40〜48の範囲を越える
と△LTが著しく大きくなることを示している。従っ
て、b=40〜48の範囲が有用な組成範囲である。
Table 4 shows that ΔLT significantly increases when b exceeds the range of 40 to 48. Therefore, the range of b = 40 to 48 is a useful composition range.

【0033】(実施例3) 化学組成比が、aFe、bNi、cCuO(m
ol%)+Bi:0.2wt%・CoO:0.2
wt%・MnO:0.2wt%で表され、但し、a+b
+c=100,b=46、c=3、4、5、6、7、
8、9となるように各原料を調製し、実施例1と同様に
積層型インダクタンス素子を作製した。作製した素子を
実施例1と同様の評価を行った。その結果を表5に示
す。
Example 3 The chemical composition ratio was aFe 2 O 3 , bNi O , cCuO (m
ol%) + Bi 2 O 3 : 0.2 wt% · CoO: 0.2
wt% · MnO: 0.2 wt%, where a + b
+ C = 100, b = 46, c = 3, 4, 5, 6, 7,
Each raw material was prepared so as to obtain 8, 9 and a multilayer inductance element was produced in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 5 shows the results.

【0034】 [0034]

【0035】表5より、c=4〜8の範囲を越えると△
LTが著しく大きくなることを示している。さらに、c
>8では、共振周波数が低下する。従って、c=4〜8
の範囲が有用な組成範囲である。
As shown in Table 5, when c exceeds the range of 4 to 8, △
This indicates that LT is significantly increased. Furthermore, c
At> 8, the resonance frequency decreases. Therefore, c = 4-8
Is a useful composition range.

【0036】(実施例4) 化学組成比が、aFe、bNiO、cCuO(m
ol%)+dBi・CoO:0.2wt%・Mn
O:0.2wt%で表され、但し、a+b+c=10
0、a=48、b=46、c=6、d=0、0.01、
0.05、0.1、0.2、0.3、0.4、0.5、
0.6wt%となるように各原料を調製し、実施例1と
同様に積層型インダクタンス素子を作製した。作製した
素子を実施例1と同様の評価を行った。その結果を表6
に示す。
Example 4 The chemical composition ratio was aFe 2 O 3 , bNiO, cCuO (m
ol%) + dBi 2 O 3 .CoO: 0.2 wt% · Mn
O: expressed by 0.2 wt%, provided that a + b + c = 10
0, a = 48, b = 46, c = 6, d = 0, 0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
Each raw material was prepared so as to be 0.6 wt%, and a multilayer inductance element was produced in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 6 shows the results.
Shown in

【0037】[0037]

【表6】[Table 6]

【0038】表6より、d=0の場合は、QMAX及び
△LTが低い。d>0ではQMAXが向上し、さらに、
△LTも向上するが、d=0.5を越えると、共振周波
数が低下する。従ってd=0〜0.5(0は含まない)
の範囲が有用な組成範囲である。
From Table 6, when d = 0, Q MAX and ΔLT are low. When d> 0, Q MAX is improved.
ΔLT also improves, but if d exceeds 0.5, the resonance frequency decreases. Therefore, d = 0 to 0.5 (0 is not included)
Is a useful composition range.

【0039】(実施例5) 化学組成比が、aFe、bNiO,cCuO(m
ol%)+Bi:0.2wt%・eCoO・Mn
O:0.2wt%で表され、但し、a+b+c=10
0、a=48、b=46、c=6、e=0、0.01、
0.05、0.1、0.2、0.3、04、0.5、
0.6wt%となるように各原料を調製し、実施例1と
同様に積層型インダクタンス素子を作製した。作製した
素子を実施例1と同様の評価を行った。その結果を表7
に示す。
Example 5 The chemical composition ratio was aFe 2 O 3 , bNiO, cCuO (m
ol%) + Bi 2 O 3 : 0.2 wt% · eCoO · Mn
O: expressed by 0.2 wt%, provided that a + b + c = 10
0, a = 48, b = 46, c = 6, e = 0, 0.01,
0.05, 0.1, 0.2, 0.3, 04, 0.5,
Each raw material was prepared so as to be 0.6 wt%, and a multilayer inductance element was produced in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 7 shows the results.
Shown in

【0040】[0040]

【表7】[Table 7]

【0041】表7より、e=0の場合はQMAXが低
い。e>OではQMAXが向上し、さらに共振周波数が
高周波帯域まで向上するが、e=0.5を越えると、△
LTが著しく低下する。従って、e=0〜0.5(0は
含まない)の範囲が有用な組成範囲である。
As shown in Table 7, when e = 0, Q MAX is low. When e> O, Q MAX is improved, and the resonance frequency is further improved up to the high frequency band.
LT significantly decreases. Therefore, the range of e = 0 to 0.5 (excluding 0) is a useful composition range.

【0042】(実施例6) 化学組成比が、aFe、bNiO,cCuO(m
ol%)+Bi:02wt%・CoO:0.2w
t%・fMnOで表され、但し、a+b+c=100、
a=48、b=46、c=6、f=0、0.01、0.
05、01、0.2、0.3、0.4、0.5、0.6
wt%となるように各原料を調製し、実施例1と同様に
積層型インダクタンス素子を作製した。作製した素子を
実施例1と同様の評価を行った。その結果を表8に示
す。
Example 6 The chemical composition ratio was aFe 2 O 3 , bNiO, cCuO (m
ol%) + Bi 2 O 3 : 02 wt% · CoO: 0.2 w
t% · fMnO, where a + b + c = 100,
a = 48, b = 46, c = 6, f = 0, 0.01, 0.
05, 01, 0.2, 0.3, 0.4, 0.5, 0.6
Each raw material was prepared so as to be wt%, and a multilayer inductance element was produced in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 8 shows the results.

【0043】[0043]

【表8】[Table 8]

【0044】表8より、f>0でQMAXが向上する
が、添加量がf=0.5を越えると、逆に、QMAX
低下する。従って、f=0〜0.5(0は含まない)の
範囲が有用な組成範囲である。
[0044] From Table 8, it improves the Q MAX at f> 0, the amount is exceeds f = 0.5, conversely, Q MAX is decreased. Therefore, the range of f = 0 to 0.5 (excluding 0) is a useful composition range.

【0045】(実施例7) 化学組成比は、主成分が48Fe−46Ni−6
CuOであり、添加物として、Bi:0.1wt
%・CoO:0.3wt%・MnO:0.2wt%を各
々添加した粉末を使用し、実施例1と同様に、積層型イ
ンダクタンス素子を作製した。
Example 7 The chemical composition ratio of the main component was 48Fe 2 O 3 -46Ni-6.
CuO, and Bi 2 O 3 : 0.1 wt.
% · CoO: 0.3 wt% · MnO: 0.2 wt% Each of the powders to which powder was added was used to fabricate a multilayer inductance element in the same manner as in Example 1.

【0046】作製した積層型インダクタンス素子の周波
数とL及びQの関係を図2に示し、共振周波数を表9に
示す。なお、図2及び表9中には、比較例として、磁性
体は実施例と同じスピネル型Ni−Cu−Znフェライ
トを用いて作製した積層インダクタンス素子の周波数と
L及びQの関係と共振周波数を示す。
FIG. 2 shows the relationship between the frequency and L and Q of the manufactured laminated inductance element, and Table 9 shows the resonance frequency. 2 and Table 9 show, as a comparative example, the relationship between the frequency, the L and Q, and the resonance frequency of the laminated inductance element manufactured using the same spinel-type Ni-Cu-Zn ferrite as the magnetic material as the example. Show.

【0047】 [0047]

【0048】図2より、本実施例で示した組成範囲の磁
性体層用ペーストを用いることにより、実効透磁率が若
干低下し、よって、インダクタンスLも低下するが、1
00MHzまでは、Lがフラットな特性を示し、又、Q
ピークを示す周波数帯域も100MHz以上に到達して
おり、さらに、QMAXも従来の積層型インダクタンス
素子より高く、従って、広い周波帯域で適用できる積層
型インダクタンス素子であることがわかった。又、表9
からもわかるように、共振周波数も高い周波数域にある
ことがわかった。
As can be seen from FIG. 2, the use of the magnetic layer paste having the composition range shown in the present embodiment slightly lowers the effective magnetic permeability and hence the inductance L.
Up to 00 MHz, L shows a flat characteristic.
Frequency band shows a peak has also reached more than 100 MHz, furthermore, Q MAX even higher than conventional laminated inductance element, therefore, was found to be laminated inductance element that can be applied in a wide frequency band. Table 9
As can be seen from the figure, it was found that the resonance frequency was also in a high frequency range.

【0049】[0049]

【発明の効果】以上、述べたように、本発明によれば、
高周波帯域でのインダクタンス及びQ特性に優れ、広い
周波数帯域での適用が可能な積層型インダクタンス素子
が得られる。
As described above, according to the present invention,
A multilayer inductance element having excellent inductance and Q characteristics in a high frequency band and applicable in a wide frequency band can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の積層インダクタの構成を示す図。図
1(a)は平面図。図1(b)は断面図。
FIG. 1 is a diagram showing a configuration of a laminated inductor of the present embodiment. FIG. 1A is a plan view. FIG. 1B is a sectional view.

【図2】実施例7の積層型インダクタンス素子と比較例
の積層型インダクタンス素子の周波数とL、及びQの関
係を示す図。図2(a)は、周波数とQの関係を示す
図。図2(b)は、周波数とLの関係を示す図。
FIG. 2 is a diagram showing the relationship between the frequency, L, and Q of a multilayer inductance element of Example 7 and a multilayer inductance element of a comparative example. FIG. 2A is a diagram illustrating a relationship between frequency and Q. FIG. 2B is a diagram illustrating a relationship between frequency and L.

【符号の説明】[Explanation of symbols]

1 磁性体 2 導電体 3 外部電極 A 実施例7 B 比較例 DESCRIPTION OF SYMBOLS 1 Magnetic body 2 Conductor 3 External electrode A Example 7 B Comparative example

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 17/00 H01F 1/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 17/00 H01F 1/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟磁性フェライト粉末と、導電体粉末
を、それぞれ合成樹脂バインダを用いてペースト化し、
これらを印刷法によって積層し、コイル状の導電体を形
成し、同時焼成した積層型インダクタンス素子におい
て、前記軟磁性フェライト粉末は、主成分として、各々
42<a<50、40<b<48、4<c<8、a+b
+c=100となるaFe、bNiO、cCuO
(mol%)と、副成分として、各々0〜0.5wt%
(各元素とも0wt%を含まない)となるBi
MnO,CoOとからなることを特徴とする積層型イン
ダクタンス素子。
1. A paste of a soft magnetic ferrite powder and a conductor powder using a synthetic resin binder, respectively.
These are laminated by a printing method to form a coil-shaped conductor, and in the laminated inductance element co-fired, the soft magnetic ferrite powder contains 42 <a <50, 40 <b <48, 4 <c <8, a + b
AFe 2 O 3 , bNiO, cCuO where + c = 100
(Mol%) and 0 to 0.5 wt% as sub-components, respectively.
Bi 2 O 3 , which does not contain 0 wt% for each element,
A multilayer inductance element comprising MnO and CoO.
JP7296077A 1995-10-18 1995-10-18 Multilayer inductance element Expired - Fee Related JP3035479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7296077A JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7296077A JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Publications (2)

Publication Number Publication Date
JPH09115730A JPH09115730A (en) 1997-05-02
JP3035479B2 true JP3035479B2 (en) 2000-04-24

Family

ID=17828827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7296077A Expired - Fee Related JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Country Status (1)

Country Link
JP (1) JP3035479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758464B2 (en) * 2000-05-12 2006-03-22 株式会社村田製作所 Laminated electronic components
JP2008288332A (en) * 2007-05-16 2008-11-27 Tdk Corp Ferrite paste and method of manufacturing laminated ceramic component

Also Published As

Publication number Publication date
JPH09115730A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
JP3876790B2 (en) High frequency circuit element
JP2987176B2 (en) Multilayer inductor and manufacturing method of multilayer inductor
JP2005306696A (en) Magnetic ferrite, and common mode noise filter and chip transformer using the same
JP2010018482A (en) Ferrite, and manufacturing method thereof
JP2008300548A (en) Multilayered inductor component
JP3364174B2 (en) Chip ferrite component and method of manufacturing the same
JP2000182834A (en) Laminate inductance element and manufacture thereof
JP3508642B2 (en) Multilayer inductor
JP4736311B2 (en) Magnetic ferrite and magnetic element using the same
JP2005032918A (en) Magnetic element
JP3035479B2 (en) Multilayer inductance element
US10854376B2 (en) Coil component and LC composite component
JP2002087877A (en) Magnetic ferrite, lamination type ferrite part and manufacturing method thereof
JPH0630297B2 (en) Ferrite sintered body and chip parts
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JPH08124746A (en) Laminated inductor
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP3381939B2 (en) Ferrite sintered body, chip inductor parts, composite laminated parts and magnetic core
JP3174398B2 (en) Ferrite sintered body, chip inductor parts, composite laminated parts and magnetic core
JP4074438B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JPH08167523A (en) Laminated inductor and manufacture thereof
JPH08236354A (en) Laminated inductor
JPH10106840A (en) Multilayer inductance element
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees