JPH09115730A - Multilayered inductance element - Google Patents

Multilayered inductance element

Info

Publication number
JPH09115730A
JPH09115730A JP7296077A JP29607795A JPH09115730A JP H09115730 A JPH09115730 A JP H09115730A JP 7296077 A JP7296077 A JP 7296077A JP 29607795 A JP29607795 A JP 29607795A JP H09115730 A JPH09115730 A JP H09115730A
Authority
JP
Japan
Prior art keywords
laminated
inductance element
conductor
magnetic
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7296077A
Other languages
Japanese (ja)
Other versions
JP3035479B2 (en
Inventor
Takashi Kizara
孝始 木皿
Hajime Daigaku
元 大学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7296077A priority Critical patent/JP3035479B2/en
Publication of JPH09115730A publication Critical patent/JPH09115730A/en
Application granted granted Critical
Publication of JP3035479B2 publication Critical patent/JP3035479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer inductance element which is excellent in inductance and Q characteristics in a high frequency band and can be applied over a wide frequency band. SOLUTION: The basic composition of a spinel soft magnetic ferrite powder is composed of a-Fe2 O3 , bNiO, cCuO (mol%) + admixture, where 42<a<50, 40<b<48, 4<c<8, and a+b+c=100mol%. The admixture is composed of Bi2 O3 , MnO, and CoO whose range are 0-0.5wt.% (0wt.% is not contained in the respective elements). Magnetic material layers 1 and conductor layers 2 are alternately laminated, and a multilayered inductance element in which a conductor coil is formed is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器に適
用され、LCフィルターや共振器として働く積層型イン
ダクタンス素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated inductance element which is applied to various electronic devices and serves as an LC filter or a resonator.

【0002】[0002]

【従来の技術】近年、電子機器技術の進歩により、電子
機器内で扱われる信号の周波数帯域が高周波側に広が
り、その帯域は、数100MHz〜数GHzにまで及ん
でいる。このような高周波帯域における信号の分離、或
は合成等の回路で使用される共振器としては、目的周波
数帯域で高利得(Q)を有することが要求され、磁性体
粉末を含有する磁性体層用ペーストと導電粉末を含有す
る導電体層用ペーストを交互に印刷し、同時焼成した積
層型インダクタンス素子が使用されてきた。
2. Description of the Related Art In recent years, due to advances in electronic equipment technology, the frequency band of signals handled in electronic equipment has expanded to the high frequency side, and the band extends from several hundred MHz to several GHz. A resonator used in a circuit for separating or synthesizing signals in such a high frequency band is required to have a high gain (Q) in a target frequency band, and a magnetic layer containing magnetic powder. A laminated inductance element has been used in which a paste for a conductor and a paste for a conductor layer containing a conductive powder are alternately printed and simultaneously fired.

【0003】[0003]

【発明が解決しようとする課題】一般的に、インダクタ
ンス素子用の軟磁性磁心材料として、Ni、Zn、C
u、Feから構成されたスピネル型フェライト焼結体が
使用されてきた。しかしながら、これらの組成系のイン
ダクタンス素子を、高周波域(100MHz)で使用し
た場合、利得(Q)が著しく低下すると共に、インダク
タンスも急激に低下し、高周波域ではインダクタンス素
子として全く機能しなくなるという問題点があった。
Generally, Ni, Zn, C are used as the soft magnetic core material for the inductance element.
Spinel-type ferrite sintered bodies composed of u and Fe have been used. However, when the inductance element of these composition systems is used in a high frequency range (100 MHz), the gain (Q) is remarkably reduced, and the inductance is also rapidly reduced, so that the inductance element does not function at all in the high frequency range. There was a point.

【0004】そこで、本発明の課題は、高周波帯域での
インダクタンス及びQ特性に優れた、広い周波数帯域に
適用できる積層型インダクタンス素子を提供することに
ある。
Therefore, an object of the present invention is to provide a laminated inductance element which is excellent in inductance and Q characteristic in a high frequency band and can be applied to a wide frequency band.

【0005】[0005]

【課題を解決するための手段】本発明者は、種々検討を
進めた結果、スピネル型軟磁性フェライト粉末の基本組
成が、aFe23、bNiO、cCuO(mol%)+
添加物からなり、主成分を各々42<a<50、40<
b<48、4<c<8、a+b+c=100mol%と
し、添加物としてBi23、MnO、CoOを各々0〜
0.5wt%(各元素とも0wt%を含まない)とした
範囲の組成からなり、磁性体層と導電体層を交互に積層
し、内部に導電体のコイルを形成し、広い周波数帯域で
の適用が可能な積層型インダクタンス素子を得ることが
できることを見い出した。
As a result of various studies, the present inventor has found that the basic composition of spinel type soft magnetic ferrite powder is aFe 2 O 3 , bNiO, cCuO (mol%) +
It consists of additives, and the main components are 42 <a <50, 40 <
b <48, 4 <c <8, a + b + c = 100 mol%, and Bi 2 O 3 , MnO, and CoO as additives are 0 to 0, respectively.
The composition is in the range of 0.5 wt% (not including 0 wt% for each element), the magnetic layers and the conductive layers are alternately laminated, and the coil of the conductive material is formed inside. It has been found that an applicable laminated inductance element can be obtained.

【0006】即ち、本発明は、セラミックス粉末を含有
する磁性体層と、導電体の積層巻線を形成するための銀
の金属粉末を含有する導電体層を印刷法により交互に積
層し、内部に導電体のコイルを形成し、これを同時に焼
結した積層型インダクタンス素子において、前記磁性体
層にNi−Cu系フェライトとエチルセルロース樹脂と
からなる磁性体を用いたことを特徴とする積層型インダ
クタンス素子である。
That is, according to the present invention, a magnetic material layer containing ceramic powder and a conductor layer containing silver metal powder for forming a laminated winding of a conductor are alternately laminated by a printing method to form an internal layer. In a laminated inductance element in which a coil of a conductor is formed and sintered at the same time, a magnetic body made of Ni-Cu based ferrite and ethyl cellulose resin is used for the magnetic body layer. It is an element.

【0007】又、本発明は、上記積層型インダクタンス
素子において、前記磁性体が主成分として、各々42<
a<50、40<b<48、4<c<8、a+b+c=
100となるaFe23、bNiO、cCuO(mol
%)と、副成分として、各々0〜0.5wt%(各元素
とも0wt%を含まない)となるBi23、MnO、C
oOとからなることを特徴とする積層型インダクタンス
素子である。
Further, according to the present invention, in the above-mentioned laminated inductance element, the magnetic substance is a main component, and 42 <
a <50, 40 <b <48, 4 <c <8, a + b + c =
AFe 2 O 3 , bNiO, cCuO (mol of 100)
%) And Bi 2 O 3 , MnO, and C as subcomponents of 0 to 0.5 wt% (each element does not include 0 wt%).
and a laminated inductance element.

【0008】ここで、インダクタンス素子の判断基準と
して本発明で採用した電気特性の評価項目について説明
する。
Here, the evaluation items of the electrical characteristics adopted in the present invention as criteria for judging the inductance element will be described.

【0009】特性の評価は、インダクタンス(L)の周
波数特性、利得(Q)の周波数特性、素子の温度特性△
LT、共振周波数である。
The characteristics are evaluated by the frequency characteristic of the inductance (L), the frequency characteristic of the gain (Q), and the temperature characteristic of the element Δ.
LT, the resonance frequency.

【0010】△LTは、20℃、100kHzでのLの
値を基準とした場合の0から80℃におけるLの温度変
化率(%/℃)を示し次式より求められる。 △LT=[(L80−LO)/(L20×80)]×1
00(%/℃) 又、共振周波数は素子のインダクタンスが0になった時
の周波数の値である。
ΔLT represents the temperature change rate (% / ° C.) of L from 0 to 80 ° C. with reference to the value of L at 20 ° C. and 100 kHz, and is calculated by the following equation. ΔLT = [(L80−LO) / (L20 × 80)] × 1
00 (% / ° C.) The resonance frequency is the value of the frequency when the inductance of the element becomes zero.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を実施例を用
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to examples.

【0012】(実施例1)化学組成比が、aFe23
bNiO、cCuO(mol%)+Bi23:0.2w
t%・CoO:0.2wt%、MnO:0.2wt%で表
され、a+b+c=100、a=41、42、43、4
4、45、46、47、48、49、50、51、c=
6となるように各原料を調製し、ボールミルにて20時
間湿式混合した。ここで使用した原料粉末の粒度は、全
て0.5μm以下のものである。
Example 1 The chemical composition ratio is aFe 2 O 3 ,
bNiO, cCuO (mol%) + Bi 2 O 3 : 0.2w
t% · CoO: 0.2 wt%, MnO: 0.2 wt%, a + b + c = 100, a = 41, 42, 43, 4
4, 45, 46, 47, 48, 49, 50, 51, c =
Each raw material was prepared so as to be 6, and wet-mixed in a ball mill for 20 hours. The raw material powders used here all have a particle size of 0.5 μm or less.

【0013】次に、これらの原料混合粉末を大気中80
0℃で2時間仮焼した後、ボールミルにて3時間湿式粉
砕し、スピネル型軟磁性フェライト粉末とした。粉末の
平均粒径は約1μmである。
Next, these raw material mixed powders were mixed with each other in the air at 80
After calcination at 0 ° C. for 2 hours, it was wet pulverized with a ball mill for 3 hours to obtain spinel type soft magnetic ferrite powder. The average particle size of the powder is about 1 μm.

【0014】この粉末とバインダ、溶剤を表1の比率で
配合し、配合物を三本ロールで混練して磁性体層用ペー
ストを作製した。
This powder, a binder, and a solvent were mixed in the ratios shown in Table 1, and the mixture was kneaded with a three-roll to prepare a magnetic layer paste.

【0015】 [0015]

【0016】導電体層用粉末として、平均粒径0.5μ
mのAg粉末を用意した。この粉末と、表2の比率でバ
インダ、溶剤とそれぞれ配合し、配合物を三本ロールで
混練して、導電体層用ペーストを作製した。
The powder for the conductor layer has an average particle size of 0.5 μm.
m Ag powder was prepared. This powder was mixed with a binder and a solvent in the proportions shown in Table 2, and the mixture was kneaded with a three-roll mill to prepare a conductor layer paste.

【0017】 [0017]

【0018】本実施例では、表1及び表2の配合比でペ
ーストを作製したが、これ以外の成分配合比でも、印刷
可能なペーストが得られるものであればよい。さらに、
配合物の混練に三本ロールを使用したが、これ以外にも
ホモジェナイザやサンドミル等を使用してもよい。
In this embodiment, the paste was prepared with the compounding ratios shown in Tables 1 and 2, but other compounding ratios may be used as long as a printable paste is obtained. further,
Although three rolls were used for kneading the compound, a homogenizer, a sand mill or the like may be used instead.

【0019】次に、作製した磁性体層用ペーストを印刷
法により所定の厚さ(0.5mm)に積層した。その上
に、導電体層用ペーストと磁性体層用ペーストを用いて
5.5ターンの導電体の積層巻線を形成するように、印
刷積層を行った。この時、一層の積層厚は、磁性体層で
約30μm、導電体層では約15μmで行った。
Next, the prepared magnetic layer paste was laminated by printing to a predetermined thickness (0.5 mm). Printing and lamination were performed thereon by using the conductor layer paste and the magnetic layer paste to form a conductor laminated winding of 5.5 turns. At this time, the thickness of one layer was about 30 μm for the magnetic layer and about 15 μm for the conductor layer.

【0020】その上に、磁性体層用ペーストを印刷法に
より、所定の厚さ(0.5mm)に積層した。全体の積
層厚さは約1.3mmである。
On top of this, a magnetic layer paste was laminated by printing to a predetermined thickness (0.5 mm). The overall stack thickness is about 1.3 mm.

【0021】本実施例では、導電体の積層巻線を5.5
ターンとしたが、これ以外の巻線でもよく、必要な特性
が得られるように巻線を調整すればよい。
In this embodiment, the laminated winding of the conductor is set to 5.5.
Although the winding is described as a turn, a winding other than this may be used, and the winding may be adjusted so as to obtain required characteristics.

【0022】上記作製した積層体を、所定の大きさに3
mm×1.5mmに切断した。上記積層、切断した積層
体を脱バインダ後、850℃で同時焼成を行った。本実
施例では、850℃で焼成を行ったが、積層体が焼結が
完了する温度で、かつ、内部電極が断線しない温度範囲
であればよい。
The above-prepared laminated body is formed into a predetermined size 3
It was cut to a size of 1.5 mm × 1.5 mm. After removing the binder from the above laminated and cut laminated body, simultaneous firing was performed at 850 ° C. In the present example, the firing was performed at 850 ° C., but it may be performed at a temperature at which sintering of the laminated body is completed and a temperature range in which the internal electrodes are not broken.

【0023】又、一つの積層体素子の大きさを3mm×
1.5mmとしたが、これ以外の大きさでもよく、その
場合、導電体の積層巻線の大きさを調整すればよい。
Further, the size of one laminated body element is 3 mm ×
Although it is set to 1.5 mm, other sizes may be used, and in that case, the size of the laminated winding of the conductor may be adjusted.

【0024】上記焼成した積層インダクタンス素子に、
導電体の積層巻線のリードが露出している面に、Agを
主成分とした導電体層用ペーストを塗布し、約300℃
で焼き付けを行い、外部電極を形成した。
In the fired laminated inductance element,
Apply the conductor layer paste containing Ag as a main component to the surface of the conductor where the leads of the laminated winding are exposed.
Then, baking was performed to form external electrodes.

【0025】図1に、積層インダクタの構成を示す。図
1(a)は積層面からの平面図、図1(b)は断面図で
ある。
FIG. 1 shows the structure of the laminated inductor. FIG. 1A is a plan view from the laminated surface, and FIG. 1B is a sectional view.

【0026】図1に示すように、磁性部1内で、導電体
2が積層巻線されている。又、3は焼成後形成する外部
電極である。
As shown in FIG. 1, a conductor 2 is laminated and wound in the magnetic portion 1. Further, 3 is an external electrode formed after firing.

【0027】本実施例では、外部電極としてAgを主成
分とした導電体層用ペーストを用いたが、これ以外に
も、カーボンやCu、Ni等を主成分とした導電体層用
ペーストでもよい。
In the present embodiment, the conductor layer paste containing Ag as a main component was used as the external electrode, but other than this, a conductor layer paste containing carbon, Cu, Ni or the like as a main component may be used. .

【0028】上記のように作製した積層インダクタンス
素子の利得(Q)の最大値(以下QMAXと称す)と10
0kHzでのインダクタンス値(以下、L100kHz
と称す)、インダクタンスの温度特性及び共振周波数を
YHP製インピーダンスアナライザーHP4191Aを
用いて評価した。その結果を表3に示す。
The maximum value (hereinafter referred to as Q MAX ) of the gain (Q) of the laminated inductance element manufactured as described above and 10
Inductance value at 0 kHz (hereinafter L100 kHz
The temperature characteristics of the inductance and the resonance frequency were evaluated using a YHP impedance analyzer HP4191A. Table 3 shows the results.

【0029】[0029]

【表3】 [Table 3]

【0030】表3より、a=42を下回ると、QMAX
著しく低下し、a=50を越えると、共振周波数、△L
Tが著しく低下する。従って、a=42〜50が有用な
組成範囲である。
From Table 3, when a = 42 or less, Q MAX remarkably decreases, and when a = 50 or more, the resonance frequency, ΔL.
T is significantly reduced. Therefore, a = 42 to 50 is a useful composition range.

【0031】(実施例2)化学組成比が、aFe23
bNiO、cCuO(mol%)+Bi23:0.2w
t%・CoO:0.2wt%・MnO:0.2wt%で表
され、但し、a+b+c=100、b=39、40、4
1、42、43、44、45、46、47、48、4
9、c=4となるように各原料を調製し、実施例1と同
様に積層型インダクタンス素子を作製した。作製した素
子を実施例1と同様の評価を行った。その結果を表4に
示す。
(Example 2) The chemical composition ratio is aFe 2 O 3 ,
bNiO, cCuO (mol%) + Bi 2 O 3 : 0.2w
t% · CoO: 0.2 wt% · MnO: 0.2 wt%, provided that a + b + c = 100, b = 39, 40, 4
1, 42, 43, 44, 45, 46, 47, 48, 4
9, each raw material was prepared so that c = 4, and a laminated inductance element was manufactured in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】表4より、b=40〜48の範囲を越える
と△LTが著しく大きくなることを示している。従っ
て、b=40〜48の範囲が有用な組成範囲である。
Table 4 shows that ΔL T becomes remarkably large when the range of b = 40 to 48 is exceeded. Therefore, the range of b = 40 to 48 is a useful composition range.

【0034】(実施例3)化学組成比が、aFe23
bNiO、cCuO(mol%)+Bi23:0.2w
t%・CoO:0.2wt%・MnO:0.2wt%で表
され、但し、a+b+c=100、b=46、c=3、
4、5、6、7、8、9となるように各原料を調製し、
実施例1と同様に積層型インダクタンス素子を作製し
た。作製した素子を実施例1と同様の評価を行った。そ
の結果を表5に示す。
Example 3 The chemical composition ratio is aFe 2 O 3 ,
bNiO, cCuO (mol%) + Bi 2 O 3 : 0.2w
t% · CoO: 0.2 wt% · MnO: 0.2 wt%, provided that a + b + c = 100, b = 46, c = 3,
Prepare each material so that it becomes 4, 5, 6, 7, 8, and 9,
A laminated inductance element was produced in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 5 shows the results.

【0035】 [0035]

【0036】表5より、c=4〜8の範囲を越えると△
LTが著しく大きくなることを示している。さらに、c
>8では、共振周波数が低下する。従って、c=4〜8
の範囲が有用な組成範囲である。
According to Table 5, when c = 4 to 8 is exceeded, Δ
It shows that LT is significantly increased. Furthermore, c
At> 8, the resonance frequency decreases. Therefore, c = 4 to 8
Is a useful composition range.

【0037】(実施例4)化学組成比が、48Fe
23、bNiO、cCuO(mol%)+dBi23
CoO:0.2wt%・CoO:0.2wt%・MnO:
0.2wt%で表され、但し、a+b+c=100、a
=48、b=46、c=6、d=0、0.01、0.0
5、0.1、0.2、0.3、0.4、0.5、0.6wt%
となるように各原料を調製し、実施例1と同様に積層型
インダクタンス素子を作製した。作製した素子を実施例
1と同様の評価を行った。その結果を表6に示す。
(Example 4) The chemical composition ratio was 48Fe.
2 O 3 , bNiO, cCuO (mol%) + dBi 2 O 3 ·
CoO: 0.2 wt%, CoO: 0.2 wt%, MnO:
It is represented by 0.2 wt%, where a + b + c = 100, a
= 48, b = 46, c = 6, d = 0, 0.01, 0.0
5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 wt%
The respective raw materials were prepared so as to obtain the laminated inductance element in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 6 shows the results.

【0038】[0038]

【表6】 [Table 6]

【0039】表6より、d=0の場合は、QMAX及び△
Tが低い。d>0ではQMAXが向上し、さらに、△LT
も向上するが、d=0.5を越えると、QMAXは、さらに
向上するが、共振周波数が低下する。従ってd=0〜
0.5(0は含まない)の範囲が有用な組成範囲であ
る。
From Table 6, when d = 0, Q MAX and Δ
L T is low. When d> 0, Q MAX improves, and ΔLT
However, when d = 0.5 is exceeded, Q MAX is further improved, but the resonance frequency is lowered. Therefore d = 0
The range of 0.5 (excluding 0) is a useful composition range.

【0040】(実施例5)化学組成比が、aFe23
bNiO、cCuO(mol%)+Bi23:0.2w
t%・eCoO・MnO:0.2wt%で表され、但
し、a+b+c=100、a=48、b=46、c=
6、e=0、0.01、0.05、0.1、0.2、0.
3、0.4、0.5、0.6wt%となるように各原料を
調製し、実施例1と同様に積層型インダクタンス素子を
作製した。作製した素子を実施例1と同様の評価を行っ
た。その結果を表7に示す。
Example 5 The chemical composition ratio is aFe 2 O 3 ,
bNiO, cCuO (mol%) + Bi 2 O 3 : 0.2w
t% · eCoO · MnO: Represented by 0.2 wt%, provided that a + b + c = 100, a = 48, b = 46, c =
6, e = 0, 0.01, 0.05, 0.1, 0.2, 0.0.
The respective raw materials were prepared so as to be 3, 0.4, 0.5, and 0.6 wt%, and a laminated inductance element was manufactured in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 7 shows the results.

【0041】[0041]

【表7】 [Table 7]

【0042】表7より、e=0の場合はQMAXが低い。
e>0ではQMAXが向上し、さらに共振周波数が高周波
帯域まで向上するが、d=0.5を越えると、△LTが著
しく低下する。従って、e=0〜0.5(0は含まな
い)の範囲が有用な組成範囲である。
From Table 7, when e = 0, Q MAX is low.
When e> 0, Q MAX is improved and the resonance frequency is further improved to a high frequency band. However, when d = 0.5 is exceeded, ΔLT is significantly reduced. Therefore, the range of e = 0 to 0.5 (0 is not included) is a useful composition range.

【0043】(実施例6)化学組成比が、aFe23
bNiO、cCuO(mol%)+Bi23:0.2w
t%・CoO:0.2wt%・fMnO:0.2wt%で
表され、但し、a+b+c=100、a=48、b=4
6、c=6、f=0、0.01、0.05、0.1、0.
2、0.3、0.4、0.5、0.6wt%となるように各
原料を調製し、実施例1と同様に積層型インダクタンス
素子を作製した。作製した素子を実施例1と同様の評価
を行った。その結果を表8に示す。
Example 6 The chemical composition ratio is aFe 2 O 3 ,
bNiO, cCuO (mol%) + Bi 2 O 3 : 0.2w
t% / CoO: 0.2 wt% / fMnO: 0.2 wt%, provided that a + b + c = 100, a = 48, b = 4
6, c = 6, f = 0, 0.01, 0.05, 0.1, 0.0.
The respective raw materials were prepared so that the amounts were 2, 0.3, 0.4, 0.5, and 0.6 wt%, and a laminated inductance element was manufactured in the same manner as in Example 1. The produced device was evaluated in the same manner as in Example 1. Table 8 shows the results.

【0044】[0044]

【表8】 [Table 8]

【0045】表8より、f>0でQMAXが向上するが、
添加量がd=0.5を越えると、逆に、QMAXが低下す
る。従って、d=0〜0.5(0は含まない)の範囲が
有用な組成範囲である。
[0045] From Table 8, but Q MAX is improved at f> 0,
On the contrary, when the addition amount exceeds d = 0.5, Q MAX decreases. Therefore, the range of d = 0 to 0.5 (0 is not included) is a useful composition range.

【0046】(実施例7)化学組成比は、主成分が48
Fe23−46Ni−6CuOであり、添加物として、
Bi23:0.1wt%・CoO:0.3wt%・Mn
O:0.2wt%を各々添加した粉末を使用し、実施例
1と同様に、積層型インダクタンス素子を作製した。
(Embodiment 7) The chemical composition ratio is such that the main component is 48
A Fe 2 O 3 -46Ni-6CuO, as additives,
Bi 2 O 3 : 0.1 wt% CoO: 0.3 wt% Mn
A laminated inductance element was manufactured in the same manner as in Example 1 using powders to which O: 0.2 wt% was added.

【0047】作製した積層型インダクタンス素子の周波
数とL及びQの関係を図2に示し、共振周波数を表9に
示す。なお、図2及び表9中には、比較例として、磁性
部は実施例と同じスピネル系Ni−Cu−Znフェライ
トを用いて作製した積層インダクタンス素子の周波数と
L及びQの関係と共振周波数を示す。
The relationship between the frequency and L and Q of the manufactured laminated inductance element is shown in FIG. 2, and the resonance frequency is shown in Table 9. In addition, in FIG. 2 and Table 9, as a comparative example, the magnetic part shows the relationship between the frequency, the relationship between L and Q, and the resonance frequency of the laminated inductance element manufactured using the same spinel Ni-Cu-Zn ferrite as that of the example. Show.

【0048】 [0048]

【0049】図2より、本実施例で示した組成範囲の磁
性部用ペーストを用いることにより、実効透磁率が若干
低下し、よって、インダクタンスLも低下するが、10
0MHz以上までは、Lがフラットな特性を示し、又、
Qピークを示す周波数帯域も100MHz以上に到着し
ており、さらに、QMAXも従来の積層型インダクタンス
素子より高く、従って、広い周波帯域で適用できる積層
型インダクタンス素子であることがわかった。又、表9
からもわかるように、共振周波数も高い周波数域である
ことがわかった。
From FIG. 2, by using the paste for the magnetic portion having the composition range shown in this embodiment, the effective magnetic permeability is slightly lowered, and the inductance L is also lowered, but 10
Up to 0MHz, L shows a flat characteristic, and
The frequency band showing the Q peak has also reached 100 MHz or more, and Q MAX is also higher than that of the conventional laminated inductance element. Therefore, it was found that the laminated inductance element can be applied in a wide frequency band. Also, Table 9
As can be seen from the above, it was found that the resonance frequency is also in a high frequency range.

【0050】[0050]

【発明の効果】以上、述べたように、本発明によれば、
高周波帯域でのインダクタンス及びQ特性に優れ、広い
周波数帯域での適用が可能な積層型インダクタンス素子
が得られる。
As described above, according to the present invention,
It is possible to obtain a laminated inductance element that has excellent inductance and Q characteristics in a high frequency band and can be applied in a wide frequency band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の積層インダクタの構成を示す図。図
1(a)は平面図。図1(b)は断面図。
FIG. 1 is a diagram showing a configuration of a laminated inductor of this embodiment. FIG. 1A is a plan view. FIG. 1B is a sectional view.

【図2】実施例7の積層型インダクタンス素子と比較例
の積層型インダクタンス素子の周波数とL、及びQの関
係を示す図。図2(a)は、周波数とQの関係を示す
図。図2(b)は、周波数とLの関係を示す図。
FIG. 2 is a diagram showing a relationship between frequencies, L, and Q of a laminated inductance element of Example 7 and a laminated inductance element of a comparative example. FIG. 2A is a diagram showing the relationship between frequency and Q. FIG. 2B is a diagram showing the relationship between frequency and L.

【符号の説明】[Explanation of symbols]

1 磁性体 2 導電体 3 外部電極 A 実施例7 B 比較例 1 Magnetic Material 2 Conductor 3 External Electrode A Example 7 B Comparative Example

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末を含有する磁性体層
と、導電体の積層巻線を形成するための銀の金属粉末を
含有する導電体層を印刷法により交互に積層し、内部に
導電体のコイルを形成し、これを同時に焼結した積層型
インダクタンス素子において、前記磁性体層にNi−C
u系フェライトとエチルセルロース樹脂とからなる磁性
体を用いたことを特徴とする積層型インダクタンス素
子。
1. A magnetic material layer containing a ceramic powder and a conductor layer containing a silver metal powder for forming a laminated winding of a conductor are alternately laminated by a printing method, and a conductor layer is formed inside the conductor layer. In a laminated inductance element in which a coil is formed and is sintered at the same time, a Ni-C layer is formed on the magnetic layer.
A laminated inductance element using a magnetic material made of u-based ferrite and ethyl cellulose resin.
【請求項2】 請求項1記載の積層型インダクタンス素
子において、前記磁性体が主成分として、各々42<a
<50、40<b<48、4<c<8、a+b+c=1
00となるaFe23、bNiO、cCuO(mol
%)と、副成分として、各々0〜0.5wt%(各元素
とも0wt%を含まない)となるBi23、MnO、C
oOとからなることを特徴とする積層型インダクタンス
素子。
2. The laminated inductance element according to claim 1, wherein the magnetic substance is a main component, and 42 <a.
<50, 40 <b <48, 4 <c <8, a + b + c = 1
AFe 2 O 3 , bNiO, cCuO (mol
%) And Bi 2 O 3 , MnO, and C as subcomponents of 0 to 0.5 wt% (each element does not include 0 wt%).
and a laminated inductance element.
JP7296077A 1995-10-18 1995-10-18 Multilayer inductance element Expired - Fee Related JP3035479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7296077A JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7296077A JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Publications (2)

Publication Number Publication Date
JPH09115730A true JPH09115730A (en) 1997-05-02
JP3035479B2 JP3035479B2 (en) 2000-04-24

Family

ID=17828827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7296077A Expired - Fee Related JP3035479B2 (en) 1995-10-18 1995-10-18 Multilayer inductance element

Country Status (1)

Country Link
JP (1) JP3035479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362155A (en) * 2000-05-12 2001-11-14 Murata Manufacturing Co Laminated electronic component
JP2008288332A (en) * 2007-05-16 2008-11-27 Tdk Corp Ferrite paste and method of manufacturing laminated ceramic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362155A (en) * 2000-05-12 2001-11-14 Murata Manufacturing Co Laminated electronic component
GB2362155B (en) * 2000-05-12 2002-09-04 Murata Manufacturing Co Laminated electronic component
US6492733B2 (en) 2000-05-12 2002-12-10 Murata Manufacturing Co., Ltd. Laminated electronic component
JP2008288332A (en) * 2007-05-16 2008-11-27 Tdk Corp Ferrite paste and method of manufacturing laminated ceramic component

Also Published As

Publication number Publication date
JP3035479B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
JP5322429B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component
JP2000182834A (en) Laminate inductance element and manufacture thereof
WO2005005341A1 (en) Magnetic ferrite and magnetic device using same
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP5106350B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component using the same
JP3035479B2 (en) Multilayer inductance element
JP3381939B2 (en) Ferrite sintered body, chip inductor parts, composite laminated parts and magnetic core
JP3174398B2 (en) Ferrite sintered body, chip inductor parts, composite laminated parts and magnetic core
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JP2005053761A (en) Dielectric ceramic composition and ceramic electronic component using this
JPH08124746A (en) Laminated inductor
JP3297429B2 (en) Laminated chip beads
JPH08167523A (en) Laminated inductor and manufacture thereof
JPH10106840A (en) Multilayer inductance element
JPH08236354A (en) Laminated inductor
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering
JP2010100511A (en) Composite sintered compact of magnetic substance and dielectric substance, and lc composite electronic component
JPH1022129A (en) Laminated impedance element
JPH08148338A (en) Multilayer chip inductor and production thereof
JPH09129432A (en) Laminated inductor and manufacture thereof
JPH09180938A (en) Laminated inductor and manufacture thereof
JP2005183702A (en) Composite electronic part and its manufacturing method
JPH0897025A (en) Chip transformer magnetic material and chip transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees