JP3026091B2 - Air liquefaction separation device and start-up method thereof - Google Patents

Air liquefaction separation device and start-up method thereof

Info

Publication number
JP3026091B2
JP3026091B2 JP33016289A JP33016289A JP3026091B2 JP 3026091 B2 JP3026091 B2 JP 3026091B2 JP 33016289 A JP33016289 A JP 33016289A JP 33016289 A JP33016289 A JP 33016289A JP 3026091 B2 JP3026091 B2 JP 3026091B2
Authority
JP
Japan
Prior art keywords
gas
tower
air
valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33016289A
Other languages
Japanese (ja)
Other versions
JPH03191287A (en
Inventor
秀幸 本田
正人 長野
正和 鳴尾
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP33016289A priority Critical patent/JP3026091B2/en
Publication of JPH03191287A publication Critical patent/JPH03191287A/en
Application granted granted Critical
Publication of JP3026091B2 publication Critical patent/JP3026091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離装置及びその起動方法に関
し、特に原料空気の精製を吸着設備で行う空気液化分離
装置において、該装置の起動時間の短縮を図れる装置構
成及びその起動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction / separation apparatus and a method for starting the same, and more particularly, to an air liquefaction / separation apparatus in which raw air is purified by an adsorption facility, and the starting time of the apparatus is reduced. The present invention relates to an apparatus configuration that can be shortened and a method of starting the apparatus.

〔従来の技術〕[Conventional technology]

従来から、原料空気を圧縮,精製,冷却して精留塔に
導入し、液化精留分離して窒素や酸素塔を分離する空気
液化分離装置が広く用いられている。このような空気液
化分離装置では、定期的に装置を停止して加温し、装置
内で濃縮する慮のある不純物の除去を行うことが定めら
れている。
2. Description of the Related Art Conventionally, air liquefaction / separation apparatuses which compress, purify, cool, introduce raw material air into a rectification column, and liquefy and separate to separate nitrogen and oxygen columns have been widely used. In such an air liquefaction / separation apparatus, it is specified that the apparatus is periodically stopped and heated to remove impurities which may be concentrated in the apparatus.

第4図乃至第6図は、上記吸着設備を設けた従来の空
気液化分離装置の構成を示す系統図であって、それぞれ
膨張タービンの使用方法が異なった例を示している。
FIGS. 4 to 6 are system diagrams showing the configuration of a conventional air liquefaction / separation apparatus provided with the above-mentioned adsorption equipment, showing examples in which the expansion turbines are used in different ways.

まず、第4図に示す空気液化分離装置1において、圧
縮機2で圧縮されて昇圧した原料空気Aは、切替え使用
される一対の吸着器3,3からなる吸着設備4に導入さ
れ、該空気中の炭酸ガスや水分が吸着により除去されて
精製される。次いで精製後の原料空気Aは、管路5から
主熱交換器6に導入されて後述の排ガス,製品ガス等の
帰還ガスと熱交換を行い冷却される。大部分の原料空気
GAは、液化点付近まで冷却された後に管路7から複精留
塔8の下部塔9に導入され、周知のごとく液化精留され
て下部塔頂部の窒素ガスGNと下部塔底部の酸素富化液化
空気(以下、液化空気という)LAとに分離する。一部の
原料空気GBは、主熱交換器6の中間部から管路10に導出
され、制御弁11で流量を調節されて膨張タービン12に導
入され、膨張して寒冷を発生した後に一部が弁13,管路1
4を経て上部塔15の中段に導入され、残部が弁16を経て
管路17の排ガスWに合流し、主熱交換器6における原料
空気Aの冷却源として用いられた後に排出される。
First, in the air liquefaction / separation apparatus 1 shown in FIG. 4, the raw material air A compressed and pressurized by the compressor 2 is introduced into an adsorption equipment 4 composed of a pair of adsorbers 3, 3 used for switching. The carbon dioxide and water in it are removed by adsorption and purified. Next, the purified raw air A is introduced into the main heat exchanger 6 from the pipe 5 and exchanges heat with a return gas such as an exhaust gas or a product gas described later, and is cooled. Most raw air
After the GA is cooled to near the liquefaction point, it is introduced into the lower tower 9 of the double rectification column 8 through the pipe 7 and liquefied and rectified as is well known, and the nitrogen gas GN at the top of the lower tower and the oxygen rich Liquefied air (hereinafter, liquefied air) is separated into LA. A part of the raw air GB is led out of the intermediate portion of the main heat exchanger 6 to the pipeline 10, the flow rate of which is adjusted by the control valve 11, introduced into the expansion turbine 12, and expanded to generate cold. Is valve 13, line 1
After passing through 4, it is introduced into the middle stage of the upper tower 15, and the remainder merges with the exhaust gas W in the pipe line 17 via the valve 16 and is discharged after being used as a cooling source of the raw air A in the main heat exchanger 6.

前記下部塔9底部の液化空気LAは、管路18に導出され
て過冷器19,減圧弁20を経て上部塔中段に導入される。
一方の窒素ガスGNは、上部塔底部の主凝縮蒸発器21で液
化して液化窒素LNとなり、その大部分が下部塔8の還流
液として弁22を経て下部塔頂部に戻され、残部が過冷器
19,減圧弁23を経て上部塔15の還流液として管路24から
上部塔頂部に導入される。
The liquefied air LA at the bottom of the lower tower 9 is led out to a pipe 18 and is introduced into a middle stage of the upper tower via a supercooler 19 and a pressure reducing valve 20.
On the other hand, the nitrogen gas GN is liquefied in the main condensing evaporator 21 at the bottom of the upper column to become liquefied nitrogen LN, most of which is returned to the top of the lower column via the valve 22 as the reflux liquid of the lower column 8, and the remainder is excess Cooler
19, through a pressure reducing valve 23, a reflux liquid of the upper tower 15 is introduced from a pipe 24 to the top of the upper tower.

前記上部塔15に導入された原料空気GB,液化空気LA,液
化窒素LNは、該塔内で精留されて塔底部の液化酸素LOと
塔頂部の高純度窒素ガスHNとに分離する。上部塔底部の
液化酸素LOは、主凝縮蒸発器21で気化して酸素ガスGOと
なり、管路25に導出され、主熱交換器6を経て弁26から
採取される。また、上部塔頂部の窒素ガスNHは、管路27
から導出されて過冷器19,主熱交換器6を経て弁28から
採取される。さらに上部塔15の中段上部からは、前記管
路17の経路で排ガスWが導出されており、過冷器19,主
熱交換器6を経て排出されている。
The raw material air GB, liquefied air LA, and liquefied nitrogen LN introduced into the upper column 15 are rectified in the column and separated into liquefied oxygen LO at the bottom of the column and high-purity nitrogen gas HN at the top of the column. The liquefied oxygen LO at the bottom of the upper column is vaporized in the main condensing evaporator 21 to become oxygen gas GO, led out to the pipe 25, and collected from the valve 26 via the main heat exchanger 6. The nitrogen gas NH at the top of the upper tower is
From the valve 28 through the subcooler 19 and the main heat exchanger 6. Further, from the upper middle part of the upper tower 15, exhaust gas W is led out through the pipe 17, and is discharged through the subcooler 19 and the main heat exchanger 6.

第5図に示す空気液化分離装置30は、原料空気Aの圧
縮圧力を上記空気液化分離装置1における原料空気の圧
縮圧力より高め、主熱交換器6から管路7に導出した原
料空気GAを減圧弁31で複精留塔下部塔9の操作圧力に減
圧するとともに、膨張タービン12における膨張後の原料
空気GBの圧力も下部塔9の操作圧力とし、両者を管路32
に合流して下部塔9に導入するように構成したものであ
る。また、第6図に示す空気液化分離装置40は、膨張タ
ービン12に導入する流体を、下部塔9の中段から管路41
に導出され、主熱交換器6で所定温度まで昇温したガス
GXとしたものである。このガスは、膨張タービン12で膨
張した寒冷を発生した後に、管路17の排ガスWと合流
し、主熱交換器6を経て排出される。
The air liquefaction / separation device 30 shown in FIG. 5 increases the compression pressure of the raw material air A from the compression pressure of the raw material air in the air liquefaction / separation device 1 and converts the raw material air GA led out from the main heat exchanger 6 to the pipeline 7. The pressure in the lower tower 9 is reduced by the pressure reducing valve 31 to the operating pressure of the lower tower 9 of the double rectification tower, and the pressure of the raw material air GB after expansion in the expansion turbine 12 is also set to the operating pressure of the lower tower 9.
And is introduced into the lower tower 9. In addition, the air liquefaction / separation device 40 shown in FIG.
Gas that has been heated to a predetermined temperature in the main heat exchanger 6
GX. After generating the cold which expanded in the expansion turbine 12, this gas merges with the exhaust gas W in the pipeline 17, and is discharged through the main heat exchanger 6.

通常、この種の空気液化分離装置の起動は、圧縮機2
により原料空気Aの供給を開始するとともに、上記膨張
タービン12で発生した寒冷を主熱交換器6での熱交換に
より原料空気Aに伝え、冷却後の原料空気GAを主にガス
状のまま下部塔9,上部塔15に供給して複精留塔8等の精
留部を所定温度に冷却することにより行われている。
Normally, this type of air liquefaction / separation apparatus is started by the compressor 2
To start the supply of the raw material air A, and transmit the cold generated in the expansion turbine 12 to the raw material air A by heat exchange in the main heat exchanger 6, and the cooled raw material air GA is mainly kept in a gaseous state. The rectification is performed by cooling the rectification section such as the double rectification tower 8 to a predetermined temperature by supplying it to the tower 9 and the upper tower 15.

ここで、上記空気液化分離装置の原料空気の精製,冷
却手段として可逆式熱交換器を設けたものでは、該可逆
式熱交換器の冷端に、原料空気経路からパージガス(帰
還排ガス)経路への起動弁が設けられており、起動時に
は、該起動弁を開いて原料空気の一部を戻すことにより
可逆式熱交換器の負荷を増し、偏流を防止するとともに
経路内に析出している炭酸ガス,水等のパージを行って
いるが、上述のごとく原料空気の精製手段として吸着設
備を採用したものでは、主熱交換器での一時的な偏流が
許容されるため、上記の可逆式熱交換器のような起動用
としての弁は設けられていなかった。
Here, in the air liquefaction / separation apparatus in which a reversible heat exchanger is provided as a means for purifying and cooling the raw air, at the cold end of the reversible heat exchanger, from the raw air path to the purge gas (return exhaust gas) path. At startup, the startup valve is opened to return a part of the raw air to increase the load on the reversible heat exchanger to prevent drift and prevent carbon dioxide precipitated in the passage. Although gas and water are purged, as described above, in the case where the adsorption equipment is employed as a means for purifying the raw material air, temporary drift in the main heat exchanger is allowed. No start-up valve, such as an exchanger, was provided.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述の各種構成の空気液化分離装置に
おいて、下部塔9から液化ガス(液化空気,液化窒素)
を導出して上部塔15に導入するそれぞれの管路18,24に
設けられた減圧弁20,23は、通常運転では液体(液化ガ
ス)の流量を制御するものであるため、上記起動時に該
液量と略等量のガスを流通させることはできない。即ち
下部塔9から十分な量のガス(原料空気)を導出するこ
とができないため、下部塔9に導入できる原料空気量が
少なくなり、主熱交換器6で熱交換する量も少なくな
る。この結果、起動時における主熱交換器6での熱交換
量が十分でなく、下部塔9を含む各精留部に十分な寒冷
を導入することができなかった。従って、起動時に定格
の約2倍発生する膨張タービン12の発生寒冷を複精留塔
8側へ十分に持込めず、起動時間が長く必要であるとい
う不都合を生じていた。
However, the liquefied gas (liquefied air, liquefied nitrogen) is supplied from the lower tower 9 in the air liquefaction / separation apparatus having the various configurations described above.
The pressure reducing valves 20 and 23 provided in the respective pipelines 18 and 24 for introducing the liquid to the upper tower 15 control the flow rate of the liquid (liquefied gas) in the normal operation. It is not possible to distribute a gas having substantially the same volume as the liquid. That is, since a sufficient amount of gas (raw air) cannot be led out from the lower tower 9, the amount of raw air that can be introduced into the lower tower 9 decreases, and the amount of heat exchange in the main heat exchanger 6 also decreases. As a result, the amount of heat exchange in the main heat exchanger 6 at the time of startup was not sufficient, and sufficient cooling could not be introduced into each rectification section including the lower tower 9. Therefore, the cold generated by the expansion turbine 12, which is generated about twice as much as the rated value at the time of startup, cannot be sufficiently carried into the double rectification column 8, and a long startup time is required.

尚、上記第6図に示したように、膨張タービン12の作
動流体として下部塔9から導出したガスGXを用いる場合
には、他の第4図,第5図に示すものよりも多量のガス
を下部塔9から抜出すことができるが、膨張タービン12
の処理量自体が原料空気量の10〜30%程度であるため、
未だ十分に寒冷を移動させることのできる量ではない。
As shown in FIG. 6, when the gas GX derived from the lower tower 9 is used as the working fluid of the expansion turbine 12, a larger amount of gas is used than in the other FIGS. 4 and 5. Can be extracted from the lower tower 9, but the expansion turbine 12
Since the throughput of the raw material is about 10 to 30% of the raw material air volume,
It is still not enough to transfer the cold.

上述のごとく、精留部への寒冷移動が十分に行えない
ため、主熱交換器6のみが冷却されてしまい、膨張ター
ビン12に導入するガスのタービン入口側温度が次第に低
下する。そして膨張タービン出口側のガスの温度が液化
点に近付いた場合には、精留部が未だ十分に冷えていな
いにもかかわらず、寒冷発生源である膨張タービン12の
処理流体量を減らす必要が生じてしまう。このため、従
来の装置にあっては、起動時間が60〜70時間も必要であ
った。
As described above, since the cold transfer to the rectifying section cannot be performed sufficiently, only the main heat exchanger 6 is cooled, and the temperature of the gas introduced into the expansion turbine 12 on the turbine inlet side gradually decreases. When the temperature of the gas at the outlet of the expansion turbine approaches the liquefaction point, it is necessary to reduce the amount of processing fluid in the expansion turbine 12, which is a cold generation source, even though the rectification section is not yet sufficiently cooled. Will happen. For this reason, in the conventional apparatus, the start-up time required 60 to 70 hours.

そこで、本発明は、上気空気液化分離装置の起動時間
の短縮を図ることのできる空気液化分離装置及びその起
動方法を提供することを目的としている。
Therefore, an object of the present invention is to provide an air liquefaction / separation device capable of shortening the start-up time of the upper air / air liquefaction / separation device and a method of starting the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために、本発明の空気液化分
離装置は、少なくとも、昇圧した原料空気を精製する吸
着設備と、精製後の原料空気を帰還ガスとの熱交換によ
り冷却する主熱交換器と、冷却後の原料空気を精留分離
する下部塔上部塔及び主凝縮蒸発器を備えた複精留塔
と、下部塔導入前の原料空気の一部又は下部塔導出後の
分離ガスを膨張させて寒冷を発生する膨張タービンとを
備えた空気液化分離装置において、 (イ)前記下部塔内のガスを、前記上部塔から導出され
て前記主熱交換器に帰還するガス系統に導入する開閉弁
付管路, (ロ)前記下部塔内のガスを前記上部塔に導入する開閉
弁付管路, の少なくともいずれかの管路からなる装置起動用の回路
を設けたことを特徴としている。
In order to achieve the above object, the air liquefaction / separation apparatus of the present invention comprises at least an adsorption facility for purifying pressurized raw air and a main heat exchanger for cooling the purified raw air by heat exchange with a return gas. And a double rectification column equipped with a lower tower upper tower and main condensing evaporator for rectifying and separating the cooled raw material air, and expanding a part of the raw material air before introducing the lower tower or the separated gas after leaving the lower tower. An air liquefaction / separation apparatus having an expansion turbine that generates cold by causing the gas in the lower tower to be introduced into a gas system derived from the upper tower and returned to the main heat exchanger. A circuit for starting the apparatus is provided, which comprises at least one of a pipe with a valve, and (b) a pipe with an on-off valve for introducing the gas in the lower tower into the upper tower.

また、前記(ロ)の開閉弁付管路は、前記下部塔と前
記上部塔を接続する独立した開閉弁付管路、通常運転時
に前記上部塔にガスを導入する管路に接続して、該管路
に前記下部塔内のガスを導入する開閉弁付管路、通常運
転時に前記下部塔内の液化ガス又は前記主凝縮蒸発器で
液化した液化ガスを減圧弁で減圧して前記上部塔に導入
する系統の前記減圧弁をバイパスする開閉弁付管路、の
いずれかであることが好ましい。
Further, the (b) pipeline with an on-off valve is connected to an independent pipeline with an on-off valve connecting the lower tower and the upper tower, and a pipeline for introducing gas into the upper tower during normal operation, A pipe with an on-off valve for introducing the gas in the lower tower to the pipe, a liquefied gas in the lower tower or a liquefied gas liquefied in the main condensing evaporator during normal operation, the pressure of which is reduced by a pressure reducing valve to the upper tower. Or a pipe with an on-off valve that bypasses the pressure reducing valve of the system introduced into the system.

さらに、上記本発明に係る空気液化分離装置の起動方
法は、該空気液化分離装置の起動時に、定常運転時の略
半分量以上の原料空気を前記下部塔内に導入し、該下部
塔から前記装置起動用の回路を通して導出したガスを直
接又は前記上部塔を介して前記主熱交換器に導入するこ
とを特徴としている。
Further, the starting method of the air liquefaction / separation device according to the present invention, when starting the air liquefaction / separation device, introduces about half or more of the raw material air into the lower tower during the steady operation, and from the lower tower, The gas introduced through a circuit for starting the apparatus is introduced into the main heat exchanger directly or via the upper tower.

〔作 用〕(Operation)

上記のごとく構成することにより、下部塔又は下部塔
と上部塔から多量のガスを抜き出すことができるので、
主熱交換器で冷却された多量の原料空気を下部塔に導入
でき、迅速に精留部を冷却することができる。
By configuring as above, a large amount of gas can be extracted from the lower tower or the lower tower and the upper tower,
A large amount of raw material air cooled by the main heat exchanger can be introduced into the lower tower, and the rectifying section can be quickly cooled.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて、さらに
詳細に説明する。尚、以下の説明において前記従来例と
同一要素のもには同一符号を付して詳細な説明を省略す
る。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In the following description, the same elements as those of the conventional example are denoted by the same reference numerals, and detailed description will be omitted.

まず、第1図に示す空気液化分離装置50は、前記第4
図に示した空気液化分離装置1と略同様の機器を備えた
ものであって、前記同様に、圧縮機2,吸着設備4,主熱交
換器6,下部塔9及び上部塔15からなる複精留塔8,主凝縮
蒸発器21,過冷器19,各種弁11,13,16,20,22,23,26,28等
から構成されており、原料空気Aから製品として酸素ガ
スGO,窒素ガスHNを採取するように構成されている。
First, the air liquefaction / separation device 50 shown in FIG.
The apparatus includes substantially the same equipment as the air liquefaction / separation apparatus 1 shown in the figure, and comprises a compressor 2, an adsorption facility 4, a main heat exchanger 6, a lower tower 9, and an upper tower 15. It is composed of a rectification column 8, a main condensing evaporator 21, a subcooler 19, various valves 11, 13, 16, 20, 22, 23, 26, 28, and the like. It is configured to collect nitrogen gas HN.

そしてこの空気液化分離装置50には、前述の装置起動
時に用いる回路として、下部塔9の下部と前記膨張ター
ビン12で膨張した原料空気の一部GBを上部塔15に導入す
る管路14とを接続する管路51a及び該管路51aに設けられ
た開閉弁51bからなる起動用回路51,下部塔9の中段と前
記上部塔15から排ガスWを導出する管路17とを接続する
管路52a及び該管路52aに設けられた開閉弁52bからなる
起動用回路52,下部塔9の頂部と前記上部塔15から高純
度窒素ガスHNを導出する管路27とを接続する管路53a及
び該管路53aに設けられた開閉弁53bからなる起動用回路
53がそれぞれ設けられている。
The air liquefaction / separation apparatus 50 includes a lower part of the lower tower 9 and a pipe 14 for introducing a part of the raw material air expanded by the expansion turbine 12 into the upper tower 15 as a circuit used at the time of starting the apparatus. A starting circuit 51 composed of a connecting pipe 51a and an on-off valve 51b provided in the connecting pipe 51a, a pipe 52a connecting a middle stage of the lower tower 9 and a pipe 17 for extracting exhaust gas W from the upper tower 15. A starting circuit 52 comprising an on-off valve 52b provided in the pipe 52a, a pipe 53a connecting the top of the lower tower 9 and the pipe 27 for leading high-purity nitrogen gas HN from the upper tower 15; A start-up circuit comprising an on-off valve 53b provided in a pipe 53a
53 are provided respectively.

このように構成した空気液化分離装置50を起動する際
には、装置の常温状態で圧縮機2を始動して複精留塔8
への原料空気Aの供給を開始するとともに、膨張タービ
ン12へも原料空気の一部GBを供給する。このとき、下部
塔9から管路18,管路24に抜出されて上部塔15に導入さ
れるガス量は、前述のように減圧弁20,23の容量から約1
0%(通常運転時の原料空気量に対する割合、以下同
じ)であり、膨張タービン12を経て管路14から上部塔15
に導入される原料空気量は約30%である。したがって、
主熱交換器6を経て下部塔9に導入できる原料空気量は
下部塔9から導出されるガス量と等量の約10%である。
このままの状態では、主熱交換器6の冷端6aにおいて、
原料空気量の約10%の空気と管路17,管路25,管路27から
帰還する約40%の各帰還ガスとが熱交換を行うこととな
る。即ち、供給する温流体である原料空気量に比して冷
流体である帰還ガス量が多いことから、主熱交換器6の
中部温度差が大きくなり、前述のごとく膨張タービン12
に導入する流体(原料空気の一部GB)の温度が低下して
しまうための不都合を生じる。
When starting the air liquefaction / separation apparatus 50 thus configured, the compressor 2 is started at normal temperature of the apparatus and the double rectification column 8 is started.
Of the raw air A to the expansion turbine 12 is also supplied. At this time, the amount of gas extracted from the lower tower 9 to the pipes 18 and 24 and introduced into the upper tower 15 is, as described above, approximately 1% from the capacity of the pressure reducing valves 20 and 23.
0% (the ratio to the amount of raw material air during normal operation, the same applies hereinafter).
The amount of raw air introduced into the furnace is about 30%. Therefore,
The amount of raw air that can be introduced into the lower tower 9 via the main heat exchanger 6 is about 10% of the amount of gas discharged from the lower tower 9.
In this state, at the cold end 6a of the main heat exchanger 6,
About 10% of the raw material air is exchanged with about 40% of each return gas returning from the pipes 17, 25 and 27. That is, since the amount of the return gas, which is a cold fluid, is larger than the amount of the feed air, which is a hot fluid to be supplied, the temperature difference in the central portion of the main heat exchanger 6 increases, and as described above, the expansion turbine 12
Inconvenience occurs because the temperature of the fluid (part of the raw material air GB) to be introduced into the furnace decreases.

そこで、上部起動用回路51,52,53の一部もしくは全部
の開閉弁51b,52b,53bを開放し、前記管路51a,52a,53aを
介して下部塔9内のガスを上部塔15もしくは主熱交換器
6に帰還するガスの系統に抜出すことにより、下部塔9
に導入する原料空気量を大幅に増量することができる。
Therefore, the opening / closing valves 51b, 52b, 53b of part or all of the upper starting circuits 51, 52, 53 are opened, and the gas in the lower tower 9 is transferred to the upper tower 15 or the pipes via the pipes 51a, 52a, 53a. By extracting to the gas system returning to the main heat exchanger 6, the lower tower 9
The amount of raw material air introduced into the tank can be greatly increased.

例えば、上記起動用回路51,52,53を用いて下部塔9内
のガスを60%抜出すことにより、原料空気Aの供給量10
0%に対して下部塔9から液通路である管路18,24及び減
圧弁20,23を介して上部塔15に送給されるガス量が10
%,膨張タービン12を経て上部塔15に送給されるガス量
が30%,そして起動用回路51,52,53から抜出されるガス
量が60%となり、圧縮されて冷却された原料空気Aの内
70%を下部塔9に導入することができる。これにより、
主熱交換器6の冷端6aでは70%の原料空気Aと,100%の
帰還ガスとが熱交換を行うこととなり、十分な熱交換が
可能となるため、該主熱交換器6の中部温度差も小さく
なり、膨張タービン12の処理量を減らす必要がなくな
る。
For example, by extracting 60% of the gas in the lower tower 9 using the starting circuits 51, 52, 53, the supply amount of the raw air A is reduced to 10%.
For 0%, the amount of gas supplied from the lower tower 9 to the upper tower 15 via the liquid lines 18 and 24 and the pressure reducing valves 20 and 23 is 10%.
%, The amount of gas supplied to the upper tower 15 via the expansion turbine 12 is 30%, and the amount of gas extracted from the starting circuits 51, 52, 53 is 60%. Within
70% can be introduced into the lower tower 9. This allows
At the cold end 6a of the main heat exchanger 6, 70% of the raw air A and 100% of the return gas exchange heat, and sufficient heat exchange is possible. The temperature difference is also reduced, and there is no need to reduce the throughput of the expansion turbine 12.

このように、膨張タービン12で十分な量の寒冷を発生
できるとともに、多量の原料空気Aで寒冷を精留部に移
動させることができるので、精留部を迅速に冷却するこ
とが可能となり、空気液化分離装置50の起動時間を大幅
に短縮することができる。
In this way, a sufficient amount of cold can be generated in the expansion turbine 12 and the cold can be moved to the rectification unit by a large amount of the raw material air A, so that the rectification unit can be cooled quickly. The startup time of the air liquefaction / separation device 50 can be greatly reduced.

尚、上記各起動用回路51,52,53を介して抜出された各
ガスは、主熱交換器6に導入される前にいずれも過冷器
19を通るので、該過冷器19の冷却も十分に行うことがで
きる。
Each of the gases extracted through the above-mentioned starting circuits 51, 52, 53 is supplied to a subcooler before being introduced into the main heat exchanger 6.
Since it passes through 19, the supercooler 19 can be sufficiently cooled.

この起動時間短縮の作用効果は、上記各起動用回路5
1,52,53だけでなく、第2図に示すように、下部塔9の
中段と排ガスWを導出する管路17の過冷器19導出後とを
接続する管路54a及び開閉弁54bからなる起動用回路54,
下部塔9の頂部と前記高純度窒素ガスHNを導出する管路
27の過冷器19導出後とを接続する管路55a及び開閉弁55b
からなる起動用回路55,あるいは下部塔9の頂部と前記
酸素ガスGOを導出する管路25とを接続する管路56a及び
開閉弁56bからなる起動用回路56等によっても同様に発
現することができる。
The effect of the shortening of the start-up time is as follows.
As shown in FIG. 2, not only 1, 52 and 53, but also from the pipe 54a and the on-off valve 54b connecting the middle stage of the lower tower 9 and the pipe 17 for drawing the exhaust gas W after the supercooler 19 is drawn out. Starting circuit 54,
The top of the lower tower 9 and a conduit for leading the high-purity nitrogen gas HN
Pipeline 55a and open / close valve 55b connecting the 27 subcooler 19
The same applies to a starting circuit 55 composed of a starting circuit 55, or a starting circuit 56 including a pipe 56a connecting the top of the lower tower 9 and the pipe 25 for leading the oxygen gas GO and an on-off valve 56b. it can.

さらに第3図に示すように、通常運転時に液化空気L
A,液化窒素LNの流量,圧力を制御する減圧弁20,23をバ
イパスするようにバイパス管路57a,58aを設け、該バイ
パス管路57a,58aにそれぞれ開閉弁57b,58bを設けること
によっても起動用回路57,58を形成することができる。
即ち、起動時にバイパス管路57a,58aの開閉弁57b,58bを
開放することにより、該管路57a,58aを通して多量のガ
スを下部塔9から上部塔15に導入することができ、上記
同様に多量の原料空気Aを下部塔9に導入することが可
能となる。
Further, as shown in FIG. 3, the liquefied air L
A, It is also possible to provide bypass lines 57a, 58a so as to bypass the pressure reducing valves 20, 23 for controlling the flow rate and pressure of the liquefied nitrogen LN, and to provide on-off valves 57b, 58b in the bypass lines 57a, 58a, respectively. Starting circuits 57 and 58 can be formed.
That is, by opening the on-off valves 57b and 58b of the bypass pipes 57a and 58a at the time of startup, a large amount of gas can be introduced from the lower tower 9 to the upper tower 15 through the pipes 57a and 58a. A large amount of raw air A can be introduced into the lower tower 9.

これらの起動用回路は、通常運転時の製品純度保持を
考慮して、起動時に下部塔9から抜出すガスの組成と、
通常運転時における各管路内のガス組成とが近似するよ
うに接続することが好ましい。従って、前述の第2図に
おける下部塔9頂部から酸素ガス採取用の管路25に起動
用回路56を接続する場合には、第3図に示すように、該
起動用回路56の管路56aの2か所に開閉弁56b,56cを設け
るとともに、両開閉弁56b,56cの中間に開閉弁56dを有す
るブローライン56eを設け、起動時には開閉弁56b,56cを
開放して開閉弁56dを閉じることにより下部塔9内のガ
スを酸素ガス用の管路25に抜出すようにし、通常運転時
には、開閉弁56c,56dを閉じて開閉弁56dを開くことによ
り、管路25,56a内のガスが開閉弁56cや開閉弁56bより洩
れ込んでも、開閉弁56dから抜け、管路25,56aのガスが
混合しないようにすることが好ましい。
These starting circuits take into account the product purity during normal operation, and the composition of the gas extracted from the lower tower 9 at the time of starting,
It is preferable to connect them so that the gas composition in each pipe during normal operation is similar. Accordingly, when the starting circuit 56 is connected from the top of the lower tower 9 in FIG. 2 to the line 25 for oxygen gas collection, the line 56a of the starting circuit 56 is connected as shown in FIG. The opening and closing valves 56b and 56c are provided in two places, and a blow line 56e having an opening and closing valve 56d is provided between the two opening and closing valves 56b and 56c. At the time of startup, the opening and closing valves 56b and 56c are opened and the opening and closing valve 56d is closed. As a result, the gas in the lower tower 9 is extracted to the oxygen gas pipe 25, and during normal operation, the on-off valves 56c and 56d are closed and the on-off valve 56d is opened, whereby the gas in the pipes 25 and 56a is opened. Even if the gas leaks from the open / close valve 56c or the open / close valve 56b, it is preferable that the gas escapes from the open / close valve 56d and the gas in the conduits 25 and 56a is not mixed.

尚、本発明の起動用回路は、(イ)下部塔9内のガス
を、上部塔15から導出されて主熱交換器6に帰還するガ
ス系統に導入する開閉弁付管路や、(ロ)下部塔9内の
ガスを上部塔15に導入する開閉弁付管路であって、
(イ)の開閉弁付管路としては、下部塔9の中段と上部
塔15から排ガスWを導出する管路17とを接続する開閉弁
52b付管路52a、下部塔9の頂部と上部塔15から高純度窒
素ガスHNを導出する管路27とを接続する開閉弁53b付管
路53a、下部塔9の中段と上部塔15から排ガスWを導出
する管路17の過冷器19導出後とを接続する開閉弁54b付
管路54a、下部塔9の頂部と上部塔15から高純度窒素ガ
スHNを導出する管路27の過冷器19導出後とを接続する開
閉弁55b付管路55a、及び下部塔9の頂部と上部塔15から
酸素ガスGOを導出する管路25とを接続する開閉弁56b
(あるいは開閉弁56b,56c)付管路56aが上記実施例に開
示されており、また、(ロ)の開閉弁付管路としては、
通常運転時に上部塔15にガスを導入する管路に接続し
て、該管路に下部塔9内のガスを導入する開閉弁付管
路、通常運転時に下部塔9内の液化ガス(主凝縮蒸発
器21で液化した液化ガスを含む)を減圧弁で減圧して上
部塔15に導入する系統の減圧弁をバイパスする開閉弁付
管路を挙げることができ、前記の管路としては、下部
塔9の下部と膨張タービン12で膨張した原料空気の一部
GBを上部塔15に導入する管路14とを接続する開閉弁付管
路51aが上記実施例に開示されており、前記の管路と
しては、通常運転時に液化空気LAの流量,圧力を制御す
る減圧弁20をバイパスする開閉弁57b付バイパス管路57a
及び通路運転時に液化窒素LNの流量,圧力を制御する減
圧弁23をバイパスする開閉弁58b付バイパス管路58aが上
記実施例に開示されているが、本発明の起動用回路は、
上記実施例で例示した各回路をはじめとして、例えば、
前記(ロ)の開閉弁付回路として、下部塔9と上部塔15
を接続する独立した開閉弁付管路(図示せず)等も挙げ
ることができ、接続先の管路や該管路に設けられている
弁の容量、さらには下部塔から導出するガスのバランス
等を考慮して適宜複数箇所設けることができ、1か所の
みでも十分な作用を発揮させることが可能であり、適宜
合流あるいは分岐させることも可能である。
The starting circuit of the present invention includes (a) a pipe with an on-off valve for introducing the gas in the lower tower 9 into a gas system which is led out of the upper tower 15 and returns to the main heat exchanger 6; A) a pipe with an on-off valve for introducing gas in the lower tower 9 to the upper tower 15,
The pipe with an on-off valve (a) is an on-off valve that connects the middle stage of the lower tower 9 and the pipe 17 that leads the exhaust gas W from the upper tower 15.
A pipe 52a with 52b, a pipe 53a with an on-off valve 53b connecting the top of the lower tower 9 and a pipe 27 for leading high-purity nitrogen gas HN from the upper tower 15, exhaust gas from the middle and upper tower 15 of the lower tower 9 A pipe 54a with an on-off valve 54b connecting the pipe 17 for leading W to the supercooler 19 after the cooling, a subcooling of a pipe 27 for leading high-purity nitrogen gas HN from the top of the lower tower 9 and the upper tower 15 A pipe 55a with an on-off valve 55b connecting the outlet of the vessel 19 and an on-off valve 56b connecting the top of the lower tower 9 and the pipe 25 for leading out the oxygen gas GO from the upper tower 15.
The conduit 56a with (or on-off valves 56b, 56c) is disclosed in the above embodiment, and the conduit with on-off valve (b) is
A pipe with an on-off valve connected to a pipe for introducing gas into the upper tower 15 during normal operation and introducing gas in the lower tower 9 to the pipe, and a liquefied gas (main condensate) in the lower tower 9 during normal operation. A liquefied gas liquefied by the evaporator 21 is reduced by a pressure reducing valve and introduced into the upper tower 15 by a pressure reducing valve of a system that bypasses a pressure reducing valve. Part of the raw air expanded by the lower part of the tower 9 and the expansion turbine 12
A line 51a with an on-off valve connecting the line 14 for introducing the GB into the upper tower 15 is disclosed in the above embodiment, and the line controls the flow rate and pressure of the liquefied air LA during normal operation. Bypass line 57a with on-off valve 57b that bypasses pressure reducing valve 20
The bypass line 58a with the on-off valve 58b that bypasses the pressure reducing valve 23 that controls the flow rate and pressure of the liquefied nitrogen LN during the passage operation is disclosed in the above-described embodiment.
Including the respective circuits exemplified in the above embodiment, for example,
The lower tower 9 and upper tower 15
And a line with an on-off valve (not shown) for connecting the valve, the capacity of the line to be connected and the valve provided in the line, and the balance of gas derived from the lower tower. In consideration of the above, a plurality of portions can be provided as appropriate, a sufficient effect can be exerted even at only one portion, and it is also possible to appropriately join or branch.

また、本発明は、上記実施例に示す空気液化分離装置
に限らず、前記従来例として挙げた第5図及び第6図に
示す空気液化分離装置をはじめとして各種構成の空気液
化分離装置に同様に適用して、同様の作用効果を得るこ
とができる。
Further, the present invention is not limited to the air liquefaction / separation apparatus shown in the above-described embodiment, but may be applied to air liquefaction / separation apparatuses of various configurations including the air liquefaction / separation apparatus shown in FIGS. To obtain the same function and effect.

気液化分離装置に同様に適用して、同様の作用効果を
得ることができる。
The same operation and effect can be obtained by applying the present invention to a gas-liquid separation apparatus in the same manner.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、空気液化分離装置の
起動時に、下部塔内のガスを抜出して主熱交換器に帰還
させることのできる起動用回路を設けたから、装置の起
動時に十分な量の原料空気を、複精留塔を含む精留部に
導入することができ、膨張タービンの能力も十分に発揮
させることができるので、精留部に迅速に冷却すること
が可能となる。従って、装置の起動時間を大幅に短縮す
ることが可能となり、起動に要する動力費の低減や装置
の稼働効率の向上を図ることができる。
As described above, according to the present invention, when the air liquefaction / separation apparatus is started, a start-up circuit capable of extracting gas in the lower tower and returning the gas to the main heat exchanger is provided. Can be introduced into the rectification section including the double rectification column, and the ability of the expansion turbine can be sufficiently exhibited, so that the rectification section can be quickly cooled. Therefore, the start-up time of the device can be greatly reduced, and the power cost required for the start-up can be reduced and the operation efficiency of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第3図はそれぞれ本発明の実施例を示す空気
液化分離装置の系統図、第4図乃至第6図はそれぞれ従
来例を示す空気液化分離装置の系統図である。 2……圧縮機、4……吸着設備、6……主熱交換器、8
……複精留塔、9……下部塔、12……膨張タービン、15
……上部塔、50……空気液化分離装置、51,52,53,54,5
5,56,57,58……起動用回路
1 to 3 are system diagrams of an air liquefaction / separation device showing an embodiment of the present invention, and FIGS. 4 to 6 are system diagrams of a conventional air liquefaction / separation device. 2 ... Compressor, 4 ... Adsorption equipment, 6 ... Main heat exchanger, 8
... double rectification tower, 9 ... lower tower, 12 ... expansion turbine, 15
…… Top tower, 50 …… Air liquefaction separation equipment, 51,52,53,54,5
5,56,57,58 …… Startup circuit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、昇圧した原料空気を精製する
吸着設備と、精製後の原料空気を帰還ガスとの熱交換に
より冷却する主熱交換器と、冷却後の原料空気を精留分
離する下部塔、上部塔及び主凝縮蒸発器を備えた複精留
塔と、下部塔導入前の原料空気の一部又は下部塔導出後
の分離ガスを膨張させて寒冷を発生する膨張タービンと
を備えた空気液化分離装置において、 (イ)前記下部塔内のガスを、前記上部塔から導出され
て前記主熱交換器に帰還するガス系統に導入する開閉弁
付管路, (ロ)前記下部塔内のガスを前記上部塔に導入する開閉
弁付管路, の少なくともいずれかの管路からなる装置起動用の回路
を設けたことを特徴とする空気液化分離装置。
1. At least an adsorption facility for purifying pressurized raw air, a main heat exchanger for cooling the purified raw air by heat exchange with a return gas, and a lower part for rectifying and separating the cooled raw air. A double rectification column equipped with a tower, an upper tower and a main condensing evaporator, and an expansion turbine that generates a cold by expanding a part of the raw material air before the introduction of the lower tower or the separated gas after derivation from the lower tower. In the air liquefaction / separation apparatus, (a) a pipe with an on-off valve for introducing gas in the lower tower into a gas system which is led out of the upper tower and returns to the main heat exchanger; An air liquefaction / separation apparatus, comprising a circuit for starting the apparatus, the circuit including at least one of a pipe with an on-off valve for introducing the gas into the upper tower.
【請求項2】前記(ロ)の開閉弁付管路は、 前記下部塔と前記上部塔を接続する独立した開閉弁付管
路、 通常運転時に前記上部塔にガスを導入する管路に接続し
て、該管路に前記下部塔内のガスを導入する開閉弁付管
路、 通常運転時に前記下部塔内の液化ガス又は前記主凝縮蒸
発器で液化した液化ガスを減圧弁で減圧して前記上部塔
に導入する系統の前記減圧弁をバイパスする開閉弁付管
路、 のいずれかであることを特徴とする請求項1記載の空気
液化分離装置。
2. The pipeline with an on-off valve of (b) is connected to an independent pipeline with an on-off valve connecting the lower tower and the upper tower, and a pipeline for introducing gas into the upper tower during normal operation. A pipe with an on-off valve for introducing gas in the lower tower into the pipe, a liquefied gas in the lower tower or a liquefied gas liquefied in the main condensing evaporator during normal operation is depressurized by a pressure reducing valve. The air liquefaction / separation apparatus according to claim 1, wherein the pipe is a line with an on-off valve that bypasses the pressure reducing valve of the system introduced into the upper tower.
【請求項3】請求項1記載の空気液化分離装置の起動方
法において、該空気液化分離装置の起動時に、定常運転
時の略半分量以上の原料空気を前記下部塔内に導入し、
該下部塔から前記装置起動用の回路を通して導出したガ
スを直接又は前記上部塔を介して前記主熱交換器に導入
することを特徴とする空気液化分離装置の起動方法。
3. The method for starting an air liquefaction / separation apparatus according to claim 1, wherein at the time of start of the air liquefaction / separation apparatus, approximately half or more of the raw material air during steady operation is introduced into the lower tower,
A method for starting an air liquefaction / separation apparatus, wherein gas derived from the lower tower through the circuit for starting the apparatus is introduced into the main heat exchanger directly or via the upper tower.
JP33016289A 1989-12-19 1989-12-19 Air liquefaction separation device and start-up method thereof Expired - Lifetime JP3026091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33016289A JP3026091B2 (en) 1989-12-19 1989-12-19 Air liquefaction separation device and start-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33016289A JP3026091B2 (en) 1989-12-19 1989-12-19 Air liquefaction separation device and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH03191287A JPH03191287A (en) 1991-08-21
JP3026091B2 true JP3026091B2 (en) 2000-03-27

Family

ID=18229508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33016289A Expired - Lifetime JP3026091B2 (en) 1989-12-19 1989-12-19 Air liquefaction separation device and start-up method thereof

Country Status (1)

Country Link
JP (1) JP3026091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768319B1 (en) * 2001-12-05 2007-10-17 주식회사 포스코 Operating method for preventing air separation unit from cooling

Also Published As

Publication number Publication date
JPH03191287A (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US6131407A (en) Natural gas letdown liquefaction system
CA2063928C (en) Process for low-temperature air fractionation
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
US3736762A (en) Method of producing the gaseous and liquefied nitrogen and an apparatus used therefor
MXPA03010337A (en) Nitrogen rejection method and apparatus.
JP2002250586A (en) Method integrated for air separation and energy generation and plant for implementing that method
JPH02272289A (en) Method for separating air
JP2010536003A (en) Method and apparatus for separating air by cryogenic distillation
US4057407A (en) Method and apparatus for recovering argon from an air fractionating process
JPS63187088A (en) Air separating method and plant for executing said method
US5802874A (en) Process and apparatus for liquefying low boiling gas such as nitrogen
TW539840B (en) Process and apparatus for separating a gas mixture with emergency operation
AU656062B2 (en) Air separation
JPH07167554A (en) Gas compression method and its equipment
JP3026091B2 (en) Air liquefaction separation device and start-up method thereof
JPH04126988A (en) Separating method for air using external cold source
JP2001165566A (en) Air separation
JPH02293575A (en) Air separation device
JPH02275282A (en) Air liquefaction separation method
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JPH03117878A (en) Device for liquefying, separating and supplying air according to fluctuation in demand
JP2791580B2 (en) Air liquefaction separation method and apparatus
JP3331416B2 (en) Air liquefaction separation apparatus and method
JPH0792326B2 (en) Air liquefaction separation method
JPS62194178A (en) Method of liquefying and separating air

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100128

EXPY Cancellation because of completion of term