JP3331416B2 - Air liquefaction separation apparatus and method - Google Patents

Air liquefaction separation apparatus and method

Info

Publication number
JP3331416B2
JP3331416B2 JP29616492A JP29616492A JP3331416B2 JP 3331416 B2 JP3331416 B2 JP 3331416B2 JP 29616492 A JP29616492 A JP 29616492A JP 29616492 A JP29616492 A JP 29616492A JP 3331416 B2 JP3331416 B2 JP 3331416B2
Authority
JP
Japan
Prior art keywords
argon
heat exchanger
column
air
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29616492A
Other languages
Japanese (ja)
Other versions
JPH05248762A (en
Inventor
秀幸 本田
義行 桝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP29616492A priority Critical patent/JP3331416B2/en
Publication of JPH05248762A publication Critical patent/JPH05248762A/en
Application granted granted Critical
Publication of JP3331416B2 publication Critical patent/JP3331416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気液化分離装置及び
方法に関し、詳しくは原料空気圧縮機で圧縮した原料空
気を、複精留塔,粗アルゴン塔で液化精留分離して粗ア
ルゴンとし、該粗アルゴンをアルゴン精製設備で精製し
た後、高純アルゴン塔で液化精留分離して高純アルゴン
を採取する系統を備えた空気液化分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation apparatus and method, and more particularly, to liquefied rectification separation of raw air compressed by a raw air compressor using a double rectification column and a crude argon column to obtain crude argon. The present invention also relates to an air liquefaction / separation apparatus having a system for purifying the crude argon with an argon purification facility, and then liquefying and separating the crude argon with a high-purity argon column to collect high-purity argon.

【0002】[0002]

【従来の技術】一般に、アルゴンの製造は、空気液化分
離装置の複精留塔上部塔中段から10〜12%程度のア
ルゴンと微量の窒素を含む酸素ガスを原料ガスとして抜
出し、これを粗アルゴン塔に導入して精留を行い、純度
95%以上の粗アルゴンとする工程と、得られた粗アル
ゴンを常温に戻した後にアルゴン精製設備に導入し、含
有する酸素を水素と反応させて水として除去し、精製ア
ルゴンとする工程と、該精製アルゴンを再び冷却して高
純アルゴン塔に導入し、液化精留して窒素及び水素を除
去して高純アルゴンとする工程とにより行われている
(特開昭60−126572号公報参照)。
2. Description of the Related Art Generally, in the production of argon, oxygen gas containing about 10 to 12% of argon and a trace amount of nitrogen is extracted as a raw material gas from the middle stage of the upper column of a double rectification column of an air liquefaction separator, and this is extracted as crude argon. A step of introducing into a column for rectification to obtain crude argon having a purity of 95% or more, and returning the obtained crude argon to normal temperature, introducing the crude argon into an argon purification facility, and reacting the contained oxygen with hydrogen to produce water. And purifying the purified argon, cooling the purified argon again and introducing it into a high-purity argon column, and liquefying it to remove nitrogen and hydrogen to obtain high-purity argon. (See JP-A-60-126572).

【0003】上記工程において、粗アルゴン塔からアル
ゴン精製設備に向かう粗アルゴンを加熱して常温に戻す
とともに、アルゴン精製設備から高純アルゴン塔に向か
う精製アルゴンを冷却するための設備としては、両者を
熱交換させるアルゴン熱交換器が用いられている。
[0003] In the above process, the crude argon flowing from the crude argon column to the argon purifying equipment is returned to room temperature by heating, and the equipment for cooling the purified argon flowing from the argon purifying facility to the high-purity argon column is composed of two components. An argon heat exchanger for heat exchange is used.

【0004】このようなアルゴン採取系統を有する空気
液化分離装置において、上記アルゴン熱交換器は、装置
が定常運転を行っているときに粗アルゴンと精製アルゴ
ンとが所定の温度に加熱あるいは冷却されるように、そ
の仕様が設定されている。
In the air liquefaction / separation apparatus having such an argon sampling system, the argon heat exchanger heats or cools the crude argon and the purified argon to a predetermined temperature when the apparatus is in a steady operation. As such, its specifications are set.

【0005】ところが、アルゴン熱交換器における粗ア
ルゴンと精製アルゴンの流量が定常運転時と異なる場合
は、例えば、装置の起動時には、原料空気供給側の複精
留塔から順次定常運転の状態に近くなるため、粗アルゴ
ン塔からの粗アルゴンがアルゴン熱交換器を通ってコー
ルドボックス外に導出され始めたときに、未だアルゴン
精製設備が定常運転に入らず、精製アルゴンがアルゴン
熱交換器に導入されない時期が生じてしまう。
[0005] However, when the flow rates of the crude argon and the purified argon in the argon heat exchanger are different from those in the steady operation, for example, when the apparatus is started, the double rectification column on the raw air supply side sequentially approaches the steady operation state. Therefore, when the crude argon from the crude argon column starts to be led out of the cold box through the argon heat exchanger, the argon purification equipment has not yet entered the steady operation, and the purified argon has not been introduced into the argon heat exchanger. Time has come.

【0006】即ち、粗アルゴンが精製アルゴンにより加
温されることなく低温のままコールドボックス外に導出
される状態になることがあるため、従来は、アルゴン熱
交換器の粗アルゴン出口側に粗アルゴンを加温するため
の加熱器を設置したり、原料空気を冷却するための主熱
交換器に粗アルゴンの流路を設けて原料空気で加温した
りするようにしている。
That is, since the crude argon may be discharged outside the cold box at a low temperature without being heated by the purified argon, conventionally, the crude argon is provided at the crude argon outlet side of the argon heat exchanger. A heater for heating the raw air is provided, and a flow path of crude argon is provided in a main heat exchanger for cooling the raw air to heat the raw air.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、アルゴ
ン熱交換器の粗アルゴン出口側に加熱器を設置するもの
では、装置起動時の一時期だけのために加熱器をわざわ
ざ設置し、加温するための熱源(ユーティリティ)の接
続や、該ユーティリティの消費等、装置の製造コスト及
び運転コストに影響するという問題があった。
However, in the case where a heater is installed on the crude argon outlet side of the argon heat exchanger, the heater is bothersomely installed for only one time at the time of starting the apparatus, and heating is performed. There is a problem in that the connection between a heat source (utility) and the consumption of the utility affects the manufacturing cost and the operating cost of the device.

【0008】また、主熱交換器に粗アルゴンの流路を設
ける場合は、上記加熱器等の特別な機器の設置は不要で
あるが、装置が大型で、主熱交換器を多数の熱交換器ブ
ロックに分割して設置する必要があるものでは、各熱交
換器ブロックにおける熱交換量を同一にしなければなら
ないことから、全ての熱交換器ブロックのそれぞれに粗
アルゴン用の流路を設けるとともに、該流路に粗アルゴ
ンを導入・導出するための入口及び出口ヘッダーや、こ
れに接続する配管を設ける必要がある。
When the main heat exchanger is provided with a flow path for crude argon, it is not necessary to install special equipment such as the above-mentioned heater. In the case where it is necessary to divide the heat exchanger blocks, it is necessary to provide the same amount of heat exchange in each heat exchanger block. In addition, it is necessary to provide an inlet and an outlet header for introducing and leading crude argon into and out of the flow path, and a pipe connected thereto.

【0009】したがって、主熱交換器部分の構成が極め
て複雑になり、製造コストを上昇させるという問題があ
った。
Therefore, the configuration of the main heat exchanger becomes extremely complicated, which raises the problem of increasing the manufacturing cost.

【0010】そこで本発明は、特別な機器を設けず、ま
た、簡単な配管の追加程度で上記問題を解決することが
できる空気液化分離装置及び方法を提供することを目的
としている。
Accordingly, an object of the present invention is to provide an air liquefaction separation apparatus and method that can solve the above-mentioned problem without providing any special equipment and with the addition of simple piping.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の空気液化分離装置は、複精留塔,粗アル
ゴン塔,アルゴン精製設備,高純アルゴン塔を備え、原
料空気圧縮機で圧縮して主熱交換器で冷却した原料空気
複精留塔及び粗アルゴン塔で液化精留分離し、さらに
アルゴン精製設備及び高純アルゴン塔で精製して高純ア
ルゴンを採取する系統を設けた空気液化分離装置におい
て、前記粗アルゴン塔からアルゴン精製設備に向かう粗
アルゴンと、アルゴン精製設備から高純アルゴン塔に向
かう精製アルゴンとを熱交換させるアルゴン熱交換器
に、前記原料空気圧縮機と主熱交換器との間で分岐して
圧縮原料空気の一部を前記アルゴン熱交換器に導入する
経路を設けたことを特徴としている。
In order to achieve the above-mentioned object, an air liquefaction / separation apparatus of the present invention comprises a double rectification column, a crude argon column, an argon purification facility, a high-purity argon column, and a raw air compressor. The raw material air compressed and cooled by the main heat exchanger is liquefied and rectified and separated in a double rectification column and a crude argon column,
In an air liquefaction separator provided with an argon purifying facility and a system for purifying high-purity argon by purifying with a high-purity argon column, crude argon flowing from the crude argon column to the argon purifying facility, To the argon heat exchanger for exchanging heat with the purified argon heading toward the upstream, and branching between the raw material air compressor and the main heat exchanger. A part of the compressed raw material air is introduced into the argon heat exchanger. It is characterized by providing a path to be performed.

【0012】また、本発明の空気液化分離方法は、原料
空気圧縮機で圧縮した原料空気を主熱交換器で冷却して
複精留塔及び粗アルゴン塔で液化分離し、さらにアルゴ
ン精製設備及び高純アルゴン塔にて精製して高純アルゴ
ンを採取する空気液化分離方法において、前記粗アルゴ
ン塔からアルゴン精製設備に向かう粗アルゴンと、アル
ゴン精製設備から高純アルゴン塔に向かう精製アルゴン
とをアルゴン熱交換器にて熱交換させるとともに、該ア
ルゴン熱交換器出口における粗アルゴンの温度に応じ
て、前記原料空気圧縮機で圧縮した原料空気の一部を
主熱交換器導入前に分岐してアルゴン熱交換器に導入す
ることを特徴としている。
Further, in the air liquefaction separation method of the present invention, the raw material air compressed by the raw material air compressor is cooled by the main heat exchanger and liquefied and separated by the double rectification column and the crude argon column. in Argo <br/> emission purification equipment and high purity cryogenic air separation process in the argon column by hand purified collecting the high purity argon, and crude argon toward the argon purification equipment from the crude argon column, high-purity argon purification equipment While exchanging heat with the purified argon heading for the argon column in the argon heat exchanger, depending on the temperature of the crude argon at the argon heat exchanger outlet , a part of the raw air compressed by the raw air compressor ,
It is characterized in that it is branched before being introduced into the main heat exchanger and is introduced into the argon heat exchanger.

【0013】そして、前記アルゴン熱交換器から導出し
た原料空気は、前記複精留塔の下部塔又は該下部塔への
導入系統、前記複精留塔の上部塔又は該上部塔への導入
系統、前記粗アルゴン塔の凝縮器又は該凝縮器への導入
系統のいずれかに導入する。
The feed air derived from the argon heat exchanger is supplied to the lower tower of the double rectification column or an introduction system to the lower tower, an upper system of the double rectification column or an introduction system to the upper tower. The crude argon column is introduced into either the condenser or the introduction system to the condenser.

【0014】[0014]

【作 用】上記構成によれば、装置起動時等、温流体で
ある精製アルゴンがアルゴン熱交換器に流れないとき
に、原料空気圧縮機で圧縮された原料空気の一部をアル
ゴン熱交換器に導入することにより、加熱器等の特別な
機器を設けることなく粗アルゴンを所定温度に加温する
ことができる。
According to the above configuration, when purified argon, which is a warm fluid, does not flow into the argon heat exchanger, such as when the apparatus is started, a part of the raw air compressed by the raw air compressor is replaced with the argon heat exchanger. , The crude argon can be heated to a predetermined temperature without providing a special device such as a heater.

【0015】また、装置が大型で、主熱交換器を複数の
熱交換器ブロックで構成する場合でも、アルゴン熱交換
器における粗アルゴンの流量は、原料空気に比べて遥か
に少く、一つの熱交換器で製作可能であるため、配管等
が複雑になることもない。
Further, even when the apparatus is large and the main heat exchanger is composed of a plurality of heat exchanger blocks, the flow rate of the crude argon in the argon heat exchanger is much smaller than that of the raw air, and one heat exchanger is used. Since it can be manufactured with an exchanger, piping and the like do not become complicated.

【0016】さらに、粗アルゴンを加温した原料空気
は、粗アルゴンにより十分に冷却されるため、主熱交換
器で冷却された原料空気と合流させて分離工程に導入で
きる。
Further, the raw air heated with the crude argon is sufficiently cooled by the crude argon, so that the raw air can be combined with the raw air cooled by the main heat exchanger and introduced into the separation step.

【0017】[0017]

【実施例】以下、本発明を、図面に示す実施例に基づい
て、さらに詳細に説明する。まず、図1は本発明の第1
実施例を示す空気液化分離装置の概略系統図であり、従
来のアルゴン採取系統を有するものと略同様に、原料空
気圧縮機1,精製設備2,主熱交換器3,複精留塔4,
粗アルゴン塔5,アルゴン熱交換器6,アルゴン精製設
備7,高純アルゴン塔8等が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the embodiments shown in the drawings. First, FIG. 1 shows the first embodiment of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic system diagram of the air liquefaction separation apparatus which shows an Example, and a raw material air compressor 1, a refinement installation 2, a main heat exchanger 3, a double rectification column 4, and the same as what has a conventional argon collection system.
A crude argon column 5, an argon heat exchanger 6, an argon purification facility 7, a high-purity argon column 8, and the like are provided.

【0018】原料空気は、上記原料空気圧縮機1で圧縮
され、吸着器等を用いた精製設備2で水分,炭酸ガス等
の不純物を除去された後、管11からコールドボックス
9内の主熱交換器3に導入される。
The raw material air is compressed by the raw material air compressor 1, and after removing impurities such as moisture and carbon dioxide in a purifying facility 2 using an adsorber or the like, the main heat in the cold box 9 is passed through a pipe 11. It is introduced into the exchanger 3.

【0019】この主熱交換器3は、複数の熱交換器ブロ
ック3a,3aからなるもので、原料空気は、分配管1
2,集合管13を介して各熱交換器ブロック3aに均等
に流れ、低温戻りガスと熱交換して飽和温度付近まで冷
却される。
The main heat exchanger 3 is composed of a plurality of heat exchanger blocks 3a, 3a.
2. Flow evenly through each heat exchanger block 3a via the collecting pipe 13, exchange heat with the low-temperature return gas, and cool to near the saturation temperature.

【0020】冷却された原料空気は、管14から複精留
塔4の下部塔4aに導入され、複精留塔4における周知
の精留操作により、酸素ガス,窒素ガス,液化酸素,液
化窒素に分離し、それぞれ必要に応じて図示しない配管
から採取される。
The cooled raw material air is introduced from a pipe 14 into the lower tower 4a of the double rectification column 4, and is subjected to a well-known rectification operation in the double rectification column 4 to carry out oxygen gas, nitrogen gas, liquefied oxygen, and liquefied nitrogen. And each is collected from a pipe (not shown) as needed.

【0021】上記複精留塔4の上部塔4b中段に設けら
れた管15からは、10〜12%程度のアルゴンと微量
の窒素を含む酸素ガスが抜き出され、粗アルゴン塔5の
下部に導入される。このアルゴン含有酸素ガスは、粗ア
ルゴン塔5における精留により、純度95%以上の粗ア
ルゴンと液化酸素とに分離し、塔底部に溜まる液化酸素
は、管16により上部塔中段に戻される。
An oxygen gas containing about 10 to 12% of argon and a small amount of nitrogen is extracted from a pipe 15 provided in the middle of the upper column 4b of the double rectification column 4, and be introduced. This argon-containing oxygen gas is separated into crude argon having a purity of 95% or more and liquefied oxygen by rectification in the crude argon column 5, and the liquefied oxygen accumulated at the bottom of the column is returned to the middle stage of the upper column by the pipe 16.

【0022】一方、粗アルゴン塔5の上部から管17に
抜き出される粗アルゴンは、前記アルゴン熱交換器6に
導入され、その粗アルゴン流路6aで後述の精製アルゴ
ンと熱交換を行い、略常温まで昇温して管18によりコ
ールドボックス9から導出され、アルゴン精製設備7に
導入される。
On the other hand, the crude argon extracted from the upper part of the crude argon tower 5 into the pipe 17 is introduced into the argon heat exchanger 6 and heat-exchanges with the purified argon described later in the crude argon flow path 6a, thereby to perform a heat exchange. The temperature is raised to room temperature, taken out of the cold box 9 by a pipe 18, and introduced into the argon purification equipment 7.

【0023】アルゴン精製設備7においては、上記粗ア
ルゴンに含まれる酸素量に応じて水素を添加し、酸素を
水に変換して除去する周知の精製工程が行われる。
In the argon purification equipment 7, a well-known purification step is performed in which hydrogen is added according to the amount of oxygen contained in the crude argon, and oxygen is converted into water and removed.

【0024】酸素が除去された精製アルゴンは、管19
により再びコールドボックス9内に導入され、前記アル
ゴン熱交換器6に入る。この精製アルゴンは、略常温で
アルゴン熱交換器6の精製アルゴン流路6bに導入さ
れ、前記管17の粗アルゴン及び高純アルゴン塔8から
管20,21により導出され、該熱交換器6の流路6
c,6dを流れる回収水素やパージガスにより冷却され
た後、管22を介して高純アルゴン塔8の下部に導入さ
れる。この高純アルゴン塔8での精留操作で分離した高
純アルゴンは、管23から製品として抜き出される。
The purified argon from which oxygen has been removed is supplied to tube 19
Is again introduced into the cold box 9 and enters the argon heat exchanger 6. This purified argon is introduced into the purified argon flow path 6b of the argon heat exchanger 6 at a substantially normal temperature, and is led out of the crude argon of the pipe 17 and the high-purity argon tower 8 by the pipes 20 and 21. Channel 6
After being cooled by the recovered hydrogen or the purge gas flowing through c and 6d, it is introduced into the lower part of the high-purity argon column 8 through the pipe 22. The high-purity argon separated by the rectification operation in the high-purity argon column 8 is extracted from the pipe 23 as a product.

【0025】なお、周知のように、前記複精留塔4の下
部塔4a底部には、酸素富化液化空気を導出する管24
が設けられており、該管24に導出された酸素富化液化
空気は、減圧弁25a,25bで減圧された後に、管2
6及び管27を経て上部塔4b上部あるいは粗アルゴン
塔5の凝縮器5aに導入される。また、粗アルゴン塔5
の凝縮器5aには、該凝縮器5a内の液や蒸発ガスを上
部塔4bに導入する管28が設けられている。さらに、
このような空気液化分離装置には、通常、系内の寒冷量
を適切に保つための膨張タービンが設けられており、原
料空気系統あるいは下部塔4aのような高圧系統のガス
を一部導出し、熱交換器で寒冷の一部を回収した後に膨
張タービンで膨張させて寒冷を発生させ、膨張して低圧
となったガスを上部塔4b等の低圧系統に導入するよう
にしている。
As is well known, a pipe 24 for discharging oxygen-enriched liquefied air is provided at the bottom of the lower column 4a of the double rectification column 4.
The oxygen-enriched liquefied air led out to the pipe 24 is depressurized by the pressure reducing valves 25a and 25b,
The gas is introduced into the upper part of the upper column 4b or the condenser 5a of the crude argon column 5 through the pipe 6 and the pipe 27. The crude argon tower 5
The condenser 5a is provided with a pipe 28 for introducing the liquid and the evaporative gas in the condenser 5a to the upper tower 4b. further,
Such an air liquefaction / separation apparatus is usually provided with an expansion turbine for appropriately maintaining the amount of cooling in the system, and partially derives a gas from a raw air system or a high pressure system such as the lower tower 4a. After a part of the cold is recovered by the heat exchanger, it is expanded by the expansion turbine to generate cold, and the expanded low-pressure gas is introduced into a low-pressure system such as the upper tower 4b.

【0026】そして、本実施例における前記アルゴン熱
交換器6には、前記原料空気圧縮機1で圧縮され、精製
設備2で精製された常温の原料空気の一部を導入する経
路が設けられている。この経路は、前記管11から分岐
する管31と、該管31に設けられた流量制御弁32
と、アルゴン熱交換器6の圧縮空気流路6eと、アルゴ
ン熱交換器6導出後の原料空気を前記管14に合流させ
る管33とにより構成されている。
The argon heat exchanger 6 in the present embodiment is provided with a path for introducing a part of the room temperature raw air compressed by the raw air compressor 1 and purified by the purification equipment 2. I have. This path includes a pipe 31 branched from the pipe 11 and a flow control valve 32 provided in the pipe 31.
, A compressed air flow path 6 e of the argon heat exchanger 6, and a pipe 33 that joins the raw air after being led out of the argon heat exchanger 6 to the pipe 14.

【0027】上記流量制御弁32は、前記アルゴン熱交
換器6における粗アルゴン出口の管18に設けられた温
度支持調節計(TIC)34により制御されるもので、
コールドボックス9から導出する粗アルゴンの温度に応
じて分岐管31を流れる原料空気の流量を調節する。
The flow rate control valve 32 is controlled by a temperature support controller (TIC) 34 provided in the pipe 18 of the crude argon outlet in the argon heat exchanger 6.
The flow rate of the raw air flowing through the branch pipe 31 is adjusted according to the temperature of the crude argon derived from the cold box 9.

【0028】即ち、管18内の粗アルゴンの温度が所定
の温度よりも低くなったとき、TIC34が温度低下を
検出して流量制御弁32を開き、原料空気をアルゴン熱
交換器6の圧縮空気流路6eに温流体として導入するよ
うに構成されている。
That is, when the temperature of the crude argon in the pipe 18 becomes lower than the predetermined temperature, the TIC 34 detects the temperature drop and opens the flow control valve 32 to supply the raw air to the compressed air of the argon heat exchanger 6. It is configured to be introduced as a warm fluid into the flow path 6e.

【0029】したがって、装置の起動時のように、温流
体である精製アルゴンがアルゴン熱交換器6に流れず、
粗アルゴンを十分に加温できない時期でも、原料空気の
一部が温流体としてアルゴン熱交換器6に導入されるた
め、コールドボックス9から導出され、アルゴン精製設
備7に導入される粗アルゴンを、所定の温度まで加温す
ることができる。
Therefore, unlike when the apparatus is started, purified argon as a warm fluid does not flow to the argon heat exchanger 6,
Even during the period when the crude argon cannot be sufficiently heated, a part of the raw air is introduced into the argon heat exchanger 6 as a warm fluid, so the crude argon extracted from the cold box 9 and introduced into the argon purification equipment 7 is It can be heated to a predetermined temperature.

【0030】上記のように構成することにより、加熱器
等の特別な機器を設ける必要がなくあるいは、主熱交換
器3部分に複雑な配管を設ける必要もなくなる。さら
に、アルゴン熱交換器6は、その熱負荷が、主熱交換器
3に比べて百分の一以下であるから、主熱交換器6とし
て多数の熱交換器ブロック3aを必要とするような大型
の装置でも、アルゴン熱交換器6は小型の熱交換器を1
基用意すれば十分なため、原料空気を導入するための配
管も、導入導出用にそれぞれ1本設けるだけで実施で
き、流量も少ないので小径の配管を用いることができ、
流量制御弁32にも小型の弁を用いることができる。
With the above configuration, there is no need to provide special equipment such as a heater or the like, and it is not necessary to provide complicated piping in the main heat exchanger 3. Further, since the heat load of the argon heat exchanger 6 is less than one-hundredth of that of the main heat exchanger 3, the argon heat exchanger 6 requires a large number of heat exchanger blocks 3a as the main heat exchanger 6. Even in a large-sized device, the argon heat exchanger 6 requires one small heat exchanger.
Since it is enough to prepare the base, the piping for introducing the raw material air can also be implemented by providing only one pipe for introduction and derivation, and the flow rate is small, so a small-diameter pipe can be used.
A small valve can also be used as the flow control valve 32.

【0031】このため、従来に比べて装置製作コストを
低減できるとともに、粗アルゴン加温用のユーティリテ
ィも必要としないので、ユーティリティ用の配管や消費
にかかるコストも削減することができる。
As a result, the manufacturing cost of the apparatus can be reduced as compared with the prior art, and a utility for heating the crude argon is not required, so that the cost for the piping for the utility and the consumption can be reduced.

【0032】一方、主熱交換器3においては、原料空気
の一部がアルゴン熱交換器6に分岐することにより、そ
の流量が減少するが、前述のようにアルゴン熱交換器6
の熱負荷が主熱交換器3の百分の一以下であり、分岐量
が僅かであるため、問題となることはない。
On the other hand, in the main heat exchanger 3, a part of the raw material air is branched to the argon heat exchanger 6, so that the flow rate is reduced.
Is less than one-hundredth of the heat load of the main heat exchanger 3 and the amount of branching is small, so that there is no problem.

【0033】ここで、上記第1実施例では、アルゴン熱
交換器6を導出した原料空気を、高圧系統である管14
に導入しているが、この原料空気は、圧力に応じて低圧
系統の各部にも導入することができる。なお、以下の説
明において、前記第1実施例と同一要素のものには同一
符号を付して、その詳細な説明は省略する。
Here, in the first embodiment, the raw air derived from the argon heat exchanger 6 is supplied to the pipe 14 as a high-pressure system.
The raw material air can be introduced into each part of the low-pressure system according to the pressure. In the following description, the same elements as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0034】まず、図2に示す第2実施例は、アルゴン
熱交換器6を導出した原料空気を、上部塔4bに直接導
入する管41を設けたものであり。図3に示す第3実施
例は、アルゴン熱交換器6を導出した原料空気を、前記
減圧後の酸素富化液化空気を上部塔4bに導入する管2
6に合流させる管42を設けたものである。また、図4
に示す第4実施例は、アルゴン熱交換器6を導出した原
料空気を、前記粗アルゴン凝縮器5aから上部塔4bに
至る管28に合流させる管43を設けたものである。
First, the second embodiment shown in FIG. 2 is provided with a pipe 41 for directly introducing the raw air from the argon heat exchanger 6 into the upper tower 4b. In the third embodiment shown in FIG. 3, the raw material air led out of the argon heat exchanger 6 is supplied to the pipe 2 for introducing the oxygen-enriched liquefied air after the pressure reduction into the upper tower 4b.
6 is provided with a pipe 42 to be joined. FIG.
In the fourth embodiment, a pipe 43 is provided for joining the raw air derived from the argon heat exchanger 6 to the pipe 28 extending from the crude argon condenser 5a to the upper tower 4b.

【0035】さらに、図5に示す第5実施例のように、
膨張タービン44を導出したガスを上部塔4bに導入す
る管45を備えた装置の場合には、該管45にアルゴン
熱交換器6を導出した原料空気を合流させる管46を設
けてもよい。
Further, as in the fifth embodiment shown in FIG.
In the case of an apparatus provided with a pipe 45 for introducing the gas derived from the expansion turbine 44 to the upper tower 4b, a pipe 46 for joining the raw material air derived from the argon heat exchanger 6 may be provided in the pipe 45.

【0036】その他、図6及び図7に示すように、粗ア
ルゴン塔5の凝縮器5aに直接導入する管47を設けた
り、該凝縮器5aに酸素富化液化空気を導入する管27
に合流させる管48を設けて、アルゴン熱交換器6を導
出した原料空気を粗アルゴン凝縮器5aに導入するよう
にしてもよい。
In addition, as shown in FIGS. 6 and 7, a pipe 47 for introducing directly into the condenser 5a of the crude argon column 5, a pipe 27 for introducing oxygen-enriched liquefied air into the condenser 5a, or the like is provided.
May be provided so that the raw air from the argon heat exchanger 6 is introduced into the crude argon condenser 5a.

【0037】なお、アルゴン熱交換器6における原料空
気の流量は、前述のように、該熱交換器6の入口側の流
量制御弁32で行う以外に、図7に示すように、出口側
に流量制御弁49を設けても同様に行うことが可能であ
る。
The flow rate of the raw air in the argon heat exchanger 6 is controlled by the flow control valve 32 on the inlet side of the heat exchanger 6 as described above. The same operation can be performed even when the flow control valve 49 is provided.

【0038】図2乃至図7に示したように、アルゴン熱
交換器6を導出した原料空気を、原料空気に比べて低圧
で運転される複精留塔4の上部塔4b又は該上部塔4b
への導入系統である管26や粗アルゴン凝縮器5aから
上部塔4bに向かう管28あるいは膨張タービン44か
ら上部塔4bに向かう管45に導入したり、粗アルゴン
凝縮器5a又は該凝縮器5aへの導入系統である管27
に導入したりすることにより、アルゴン熱交換器6を導
出する原料空気の圧力を低く設定することができる。
As shown in FIGS. 2 to 7, the feed air from the argon heat exchanger 6 is supplied to the upper column 4b or the upper column 4b of the double rectification column 4 operated at a lower pressure than the feed air.
Into the pipe 26, the pipe 28 from the crude argon condenser 5a to the upper tower 4b, or the pipe 45 from the expansion turbine 44 to the upper tower 4b, or to the crude argon condenser 5a or the condenser 5a. Tube 27 which is the introduction system of
, It is possible to set the pressure of the raw air from the argon heat exchanger 6 low.

【0039】すなわち、前記第1実施例に示すように、
アルゴン熱交換器6を導出した原料空気を、複精留塔4
の下部塔4aや該下部塔4aに原料空気を導入する管1
4に導入させる場合は、アルゴン熱交換器6を導出した
原料空気も他の原料空気と同様に酸素や窒素に有効に液
化精留分離することが可能ではあるが、アルゴン熱交換
器6を経由する分の圧力損失に対応するための配慮が必
要であり、アルゴン熱交換器6の流路面積を大きくした
り、前後の配管及び弁等の口径も大きくしなければなら
ない。
That is, as shown in the first embodiment,
The raw material air derived from the argon heat exchanger 6 is separated into the double rectification column 4
Lower tower 4a and pipe 1 for introducing raw material air into lower tower 4a
In the case where the raw material air is introduced into the raw material air 4, it is possible to effectively liquefy and separate the raw material air from the argon heat exchanger 6 into oxygen and nitrogen similarly to other raw material air. Care must be taken to cope with the reduced pressure loss, and the flow path area of the argon heat exchanger 6 must be increased, and the diameters of the front and rear piping and valves must also be increased.

【0040】一方、アルゴン熱交換器6を導出した原料
空気を、前記のように低圧系統にすれば、アルゴン熱交
換器6を経由する分の圧力損失を考慮する必要がほとん
どなくなり、流量制御弁32での流量調整が容易に行え
るとともに、アルゴン熱交換器6の流路面積を小さくで
き、該熱交換器6の小型化が図れ、さらに、前後の配管
及び弁等の口径も小さくすることができる。
On the other hand, if the raw material air from the argon heat exchanger 6 is made into a low pressure system as described above, there is almost no need to consider the pressure loss through the argon heat exchanger 6, and the flow rate control valve 32, the flow area of the argon heat exchanger 6 can be reduced, the size of the heat exchanger 6 can be reduced, and the diameter of the front and rear pipes and valves can be reduced. it can.

【0041】このとき、アルゴン熱交換器6を導出した
原料空気が下部塔4aに導入されないことから、製品収
率は低下することになるが、このアルゴン熱交換器6に
導入される原料空気量は、装置起動時のアルゴン熱交換
器6における温流体が不足する間だけが多く、定常運転
に入り、温流体である精製アルゴンが所定量流れるよう
になれば、ほとんど零に近くできるので、製品収率の低
下はほとんど問題にならない。
At this time, since the raw material air led out of the argon heat exchanger 6 is not introduced into the lower tower 4a, the product yield decreases, but the amount of the raw air introduced into the argon heat exchanger 6 is reduced. In most cases, when the warm fluid in the argon heat exchanger 6 at the time of starting the apparatus is insufficient, the operation can be almost close to zero if a predetermined amount of purified argon, which is a warm fluid, flows into a steady operation and the warm fluid flows. The reduction in yield is of little concern.

【0042】例えば、原料空気量128000Nm3
hの装置の場合、装置起動時にアルゴン熱交換器6に必
要な原料空気最大量は、1000Nm3 /h程度であ
り、定常運転時には、50〜60Nm3 /h程度で十分
になる。したがって、定常運転時に下部塔4aに導入さ
れない原料空気量は、全体の0.05%以下であるか
ら、酸素収率の低下も0.01%以下になり、一般の流
量計の誤差よりも小さくなる。すなわち、原料空気の一
部をアルゴン熱交換器6に常時分岐させても、収率の低
下は、無視し得る範囲になり、問題になることはない。
For example, the raw material air amount is 128000 Nm 3 /
For h of the apparatus, feed air maximum amount required argon heat exchanger 6 during device activation is about 1000 Nm 3 / h, at the time of steady operation becomes sufficient at about 50 to 60 nm 3 / h. Therefore, the amount of the raw material air not introduced into the lower tower 4a during the steady operation is 0.05% or less of the whole, so that the decrease in the oxygen yield is also 0.01% or less, which is smaller than the error of a general flow meter. Become. That is, even if a part of the raw air is always branched to the argon heat exchanger 6, the decrease in the yield is in a negligible range and does not cause any problem.

【0043】なお、空気液化分離装置の構成は、上記実
施例に限定されるものではなく、高純アルゴン以外の酸
素や窒素の採取状態に応じて適宜最適な構成とすること
が可能である。また、アルゴン熱交換器における原料空
気の流量は、任意に設定することができ、定常運転時に
は零にしても良い。さらに、アルゴン熱交換器導出後の
原料空気の経路も任意に設定でき、複数に分岐させて異
なる部分に導入したり、排ガス系統に合流させて排出し
てもよく、膨張タービンのタービン流体が空気等の場合
は、その入口側に導入してもよい。
The configuration of the air liquefaction / separation apparatus is not limited to the above-described embodiment, but may be appropriately optimized according to the state of collecting oxygen and nitrogen other than high-purity argon. In addition, the flow rate of the raw air in the argon heat exchanger can be set arbitrarily, and may be set to zero during a steady operation. Furthermore, the route of the raw material air after derivation of the argon heat exchanger can be arbitrarily set, and may be branched into a plurality of portions and introduced into different portions, or may be discharged after being joined to an exhaust gas system. In such a case, it may be introduced at the entrance side.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
高純アルゴンを生産する空気液化分離装置において、ア
ルゴン熱交換器で粗アルゴンを加温するための温流体で
ある精製アルゴンが流れないときでも、特別な機器や複
雑な配管を設けることなく粗アルゴンを所定温度まで加
温することができ、これにより、装置製作コストの低減
や運転コストの低減を図れる。
As described above, according to the present invention,
In an air liquefaction / separation unit that produces high-purity argon, even when purified argon, which is a warm fluid for heating crude argon in an argon heat exchanger, does not flow, crude argon can be used without installing special equipment or complicated piping. Can be heated to a predetermined temperature, whereby the manufacturing cost of the apparatus and the operating cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の空気液化分離装置の第1実施例を示
す系統図である。
FIG. 1 is a system diagram showing a first embodiment of an air liquefaction / separation apparatus of the present invention.

【図2】 同じく第2実施例を示す要部の系統図であ
る。
FIG. 2 is a system diagram of a main part showing a second embodiment in the same manner.

【図3】 同じく第3実施例を示す要部の系統図であ
る。
FIG. 3 is a system diagram of a main part similarly showing a third embodiment.

【図4】 同じく第4実施例を示す要部の系統図であ
る。
FIG. 4 is a system diagram of a main part of the fourth embodiment.

【図5】 同じく第5実施例を示す要部の系統図であ
る。
FIG. 5 is a system diagram of a main part, similarly showing a fifth embodiment.

【図6】 同じく第6実施例を示す要部の系統図であ
る。
FIG. 6 is a system diagram of a main part showing a sixth embodiment in the same manner.

【図7】 同じく第7実施例を示す要部の系統図であ
る。
FIG. 7 is a system diagram of a main part showing a seventh embodiment in the same manner.

【符号の説明】[Explanation of symbols]

1…原料空気圧縮機、2…精製設備、3…主熱交換器、
4…複精留塔、4a…下部塔、4b…上部塔、5…粗ア
ルゴン塔、5a…凝縮器、6…アルゴン熱交換器、7…
アルゴン精製設備、8…高純アルゴン塔、9…コールド
ボックス、32…流量制御弁
1 ... raw material air compressor, 2 ... purification equipment, 3 ... main heat exchanger,
4 Double rectification column, 4a Lower column, 4b Upper column, 5 Crude argon column, 5a Condenser, 6 Argon heat exchanger, 7
Argon purification equipment, 8 high purity argon tower, 9 cold box, 32 flow control valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F25J 1/00-5/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複精留塔,粗アルゴン塔,アルゴン精製
設備,高純アルゴン塔を備え、原料空気圧縮機で圧縮し
て主熱交換器で冷却した原料空気を複精留塔及び粗アル
ゴン塔で液化精留分離し、さらにアルゴン精製設備及び
高純アルゴン塔で精製して高純アルゴンを採取する系統
を設けた空気液化分離装置において、前記粗アルゴン塔
からアルゴン精製設備に向かう粗アルゴンと、アルゴン
精製設備から高純アルゴン塔に向かう精製アルゴンとを
熱交換させるアルゴン熱交換器に、前記原料空気圧縮機
と主熱交換器との間で分岐して圧縮原料空気の一部を
記アルゴン熱交換器に導入する経路を設けたことを特徴
とする空気液化分離装置。
1. A double rectification column, a crude argon column, an argon purification facility, a high-purity argon column, and compressed by a raw material air compressor.
Feed air cooled by the main heat exchanger
Liquefaction and separation in a Gon tower
In an air liquefaction / separation apparatus provided with a system for purifying and purifying high-purity argon with a high-purity argon column, crude argon flowing from the crude argon column to the argon purification facility, and purified argon traveling from the argon purification facility to the high-purity argon tower. And an argon heat exchanger for exchanging heat with the raw material air compressor.
Before some of the branches to compressed feed air between the main heat exchanger
An air liquefaction / separation apparatus characterized in that a path for introducing into the argon heat exchanger is provided.
【請求項2】 前記アルゴン熱交換器を導出した原料空
気を、前記複精留塔の下部塔又は該下部塔への導入系統
に導入する経路を設けたことを特徴とする請求項1記載
の空気液化分離装置。
2. The method according to claim 1, wherein a path is provided for introducing the raw material air discharged from the argon heat exchanger to a lower column of the double rectification column or an introduction system to the lower column. Air liquefaction separator.
【請求項3】 前記アルゴン熱交換器を導出した原料空
気を、前記複精留塔の上部塔又は該上部塔への導入系統
に導入する経路を設けたことを特徴とする請求項1記載
の空気液化分離装置。
3. The method according to claim 1, wherein a path is provided for introducing the raw material air derived from the argon heat exchanger to an upper column of the double rectification column or an introduction system to the upper column. Air liquefaction separator.
【請求項4】 前記アルゴン熱交換器を導出した原料空
気を、前記粗アルゴン塔の凝縮器又は該凝縮器への導入
系統に導入する経路を設けたことを特徴とする請求項1
記載の空気液化分離装置。
4. A path is provided for introducing the raw material air led out of the argon heat exchanger into a condenser of the crude argon column or an introduction system to the condenser.
An air liquefaction separation device as described.
【請求項5】 原料空気圧縮機で圧縮した原料空気を
熱交換器で冷却して複精留塔及び粗アルゴン塔で液化分
離し、さらにアルゴン精製設備及び高純アルゴン塔に
精製して高純アルゴンを採取する空気液化分離方法にお
いて、前記粗アルゴン塔からアルゴン精製設備に向かう
粗アルゴンと、アルゴン精製設備から高純アルゴン塔に
向かう精製アルゴンとをアルゴン熱交換器にて熱交換さ
せるとともに、該アルゴン熱交換器出口における粗アル
ゴンの温度に応じて、前記原料空気圧縮機で圧縮した原
料空気の一部を、主熱交換器導入前に分岐してアルゴン
熱交換器に導入することを特徴とする空気液化分離方
法。
5. The raw material air compressed by the raw material air compressor is mainly used.
Cooled by heat exchanger and liquefied by double rectification column and crude argon column
Release, further hand to argon purification equipment and high purity argon column
In the air liquefaction separation method of purifying and collecting high-purity argon, crude argon flowing from the crude argon column to the argon purification facility and purified argon flowing from the argon purification facility to the high-purity argon tower are heated by an argon heat exchanger. A part of the raw air compressed by the raw air compressor is branched and introduced into the argon heat exchanger according to the temperature of the crude argon at the outlet of the argon heat exchanger. Air liquefaction separation method.
JP29616492A 1991-11-07 1992-11-05 Air liquefaction separation apparatus and method Expired - Fee Related JP3331416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29616492A JP3331416B2 (en) 1991-11-07 1992-11-05 Air liquefaction separation apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29133291 1991-11-07
JP3-291332 1991-11-07
JP29616492A JP3331416B2 (en) 1991-11-07 1992-11-05 Air liquefaction separation apparatus and method

Publications (2)

Publication Number Publication Date
JPH05248762A JPH05248762A (en) 1993-09-24
JP3331416B2 true JP3331416B2 (en) 2002-10-07

Family

ID=26558498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29616492A Expired - Fee Related JP3331416B2 (en) 1991-11-07 1992-11-05 Air liquefaction separation apparatus and method

Country Status (1)

Country Link
JP (1) JP3331416B2 (en)

Also Published As

Publication number Publication date
JPH05248762A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
US20050265919A1 (en) Method and apparatus for cooling in hydrogen plants
JPH028235B2 (en)
EP0798524B1 (en) Ultra high purity nitrogen and oxygen generator unit
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
US4696689A (en) Method and apparatus for separating of product gas from raw gas
JP7451532B2 (en) Apparatus and method for separating air by cryogenic distillation
JPH05203346A (en) Gas cooling in air-component gas equipment and its equipment
JPH07167554A (en) Gas compression method and its equipment
JP3331416B2 (en) Air liquefaction separation apparatus and method
JPH0933166A (en) Method and apparatus for producing ultrahigh-purity nitrogen
JPH1163810A (en) Method and device for manufacturing low purity oxygen
KR100427138B1 (en) Air separation method and apparatus therefor
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH0399190A (en) Method of manufacturing oxygen
JP3026091B2 (en) Air liquefaction separation device and start-up method thereof
JP3674895B2 (en) Dry air supply system and supply method
JP3175003B2 (en) Nitrogen production equipment
JPH0792326B2 (en) Air liquefaction separation method
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JPS638395B2 (en)
JPH0563716B2 (en)
JPH11132653A (en) Air separating method and device therefor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees