JPH02275282A - Air liquefaction separation method - Google Patents

Air liquefaction separation method

Info

Publication number
JPH02275282A
JPH02275282A JP1096813A JP9681389A JPH02275282A JP H02275282 A JPH02275282 A JP H02275282A JP 1096813 A JP1096813 A JP 1096813A JP 9681389 A JP9681389 A JP 9681389A JP H02275282 A JPH02275282 A JP H02275282A
Authority
JP
Japan
Prior art keywords
air
booster
product
heat exchanger
expansion turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1096813A
Other languages
Japanese (ja)
Other versions
JP2736543B2 (en
Inventor
Osamu Utada
宇多田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1096813A priority Critical patent/JP2736543B2/en
Publication of JPH02275282A publication Critical patent/JPH02275282A/en
Application granted granted Critical
Publication of JP2736543B2 publication Critical patent/JP2736543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Abstract

PURPOSE:To reduce the primitive unit of power while easily and sharply adjusting a sampling rate of a gaseous product and a liquefied product by allowing a half of feed air to introduce in a lower tower in a composite fractionator and permitting the other half to introduce in the composite fractionator through a booster, a main heat exchanger and an expansion turbine after feed air is divided into two halves and the half thereof is cooled by a heat exchanger. CONSTITUTION:After feed air (A) is allowed to introduce out from an adsorber 3, it is divided into two halves by conduits 20, 21. A great part of a half of the feed air (Am) is introduced in a main heat exchanger 4 through the conduit 20 and cooled to be introduced in a lower tower 7 of a composite fractionator 6. The other half of the feed air (At) is introduced in a booster circuit 25 serially provided with a first booster 22, a second booster 23 and a third booster 24 through the conduit 21. In accordance with a quantity of sampling of product oxygen gas (GO) and product liquefied oxygen (LO), the number of the boosters is selected to pressurize the feed air (At), so that the pressure of the feed air (At) introduced in the expansion turbine 8, that is, its quantity can be changed to obtain a cooled quantity corresponding to an operation condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気波化分離方法に関し、特にガス状製品と
液状製品とを併産するのに適した空気波化分離方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air wave separation method, and particularly to an air wave separation method suitable for co-producing gaseous products and liquid products.

〔従来の技術〕[Conventional technology]

原料空気を圧縮、精製した後に液化点付近まで冷却し、
精留塔に導入して液化精留分離し、窒素や酸素等を得る
空気波化分離方法が知られている。
After compressing and refining raw air, it is cooled to near the liquefaction point.
An air wave separation method is known in which air is introduced into a rectification column and subjected to liquefaction rectification separation to obtain nitrogen, oxygen, and the like.

この空気波化分離方法で液状の製品、例えば液化酸素を
得る場合には、プロセス成立上の必要寒冷を供給するた
めに系内に膨脹タービンを配している。
When a liquid product, such as liquefied oxygen, is obtained by this air wave separation method, an expansion turbine is disposed within the system to supply the necessary refrigeration to establish the process.

第2図は、ガス状の酸素(酸素ガス)と液状の酸素(液
化酸素)とを併産する従来の空気波化分離方法の一例を
示すもので、上記膨脹タービンを原料空気導入系に設け
たものである。
Figure 2 shows an example of a conventional air wave separation method that co-produces gaseous oxygen (oxygen gas) and liquid oxygen (liquefied oxygen). It is something that

原料空気圧縮機1て圧縮された原料空気Aは、冷却器2
で常温に冷却され、切替え使用される吸着器3.3の一
方で水分や炭酸ガス等の不純物を除去された後に、主熱
交換器4に導入される。この原料空気Aの大部分は、該
主熱交換器4で後述の製品酸素ガスGOや排ガスWによ
り液化点付近まで冷却された後に減圧弁5で下部塔圧力
に減圧されて複精留塔6の下部塔7に導入される。原料
空気Aの一部Atは、中間温度まで冷却された状態で主
熱交換器4の中部から導出され、膨脹タービン8に導入
されて下部塔圧力まで膨脹し、寒冷を発生して前記下部
塔7に導入される大部分の原料空気Aと略同じ温度に降
温した後に、原料空気Aと合流して下部塔7に導入され
る。
The raw air A compressed by the raw air compressor 1 is sent to the cooler 2.
After being cooled to room temperature and having impurities such as moisture and carbon dioxide removed by one of the adsorbers 3.3 which is switched to use, it is introduced into the main heat exchanger 4. Most of this raw air A is cooled to near the liquefaction point by the product oxygen gas GO and exhaust gas W, which will be described later, in the main heat exchanger 4, and then is reduced in pressure to the lower column pressure in the pressure reducing valve 5, and then transferred to the double rectification column 6. is introduced into the lower column 7. A part of the feed air A is led out from the middle part of the main heat exchanger 4 in a state where it has been cooled to an intermediate temperature, is introduced into the expansion turbine 8, is expanded to the pressure of the lower column, generates refrigeration, and is discharged from the lower column. After cooling down to approximately the same temperature as most of the raw material air A introduced into the lower column 7, it is combined with the raw material air A and introduced into the lower column 7.

下部塔7に導入された原料空気Aは、請合分離されて下
部塔7下部の液化空気LAと下部塔7上部の窒素ガスG
Nとに分離する。下部塔7下部の液化空気LAは、下部
塔7底部から導出され、適冷器9を経て上部塔10の中
部に導入される。また下部塔7上部の窒素ガスGNは、
主凝縮蒸発器11で凝縮液化され、下部塔7の還流液に
なるとともに、その一部が適冷器9を経て上部塔10の
上部に導入される。
The feed air A introduced into the lower column 7 is separated into liquefied air LA at the bottom of the lower column 7 and nitrogen gas G at the upper part of the lower column 7.
Separate into N. The liquefied air LA at the bottom of the lower column 7 is led out from the bottom of the lower column 7 and introduced into the middle of the upper column 10 through the appropriate cooler 9. In addition, the nitrogen gas GN at the top of the lower column 7 is
It is condensed and liquefied in the main condensing evaporator 11 to become a reflux liquid in the lower column 7 , and a part of it is introduced into the upper part of the upper column 10 via the appropriate cooler 9 .

上部塔10内での精留分離操作により、その底部に分離
した液化酸素LOは、一部が導管12を経て製品液化酸
素LOとして採取され、残部が主凝縮蒸発器11で蒸発
気化して上部塔10の上昇ガスになるとともに、その一
部が製品酸素ガスGOとして導管13から採取され、主
熱交換器4を経て導出される。また上部塔10上部に分
離した窒素ガスGNは、頂部の導管14から導出され、
適冷″a9.主熱交換器4を経て排ガスWとして排出さ
れる。
Due to the rectification separation operation in the upper column 10, part of the liquefied oxygen LO separated at the bottom is collected as a product liquefied oxygen LO through the conduit 12, and the remainder is evaporated in the main condenser evaporator 11 and sent to the upper part. It becomes the ascending gas of the column 10, and a part of it is collected from the conduit 13 as the product oxygen gas GO and led out via the main heat exchanger 4. Further, the nitrogen gas GN separated in the upper part of the upper column 10 is led out from the conduit 14 at the top,
Appropriate cooling "a9. It is discharged as exhaust gas W through the main heat exchanger 4.

通常、このような空気波化分離方法においては、製品酸
素ガスGOと製品液化酸素LOの量に応じて膨脹タービ
ン8のガス流量、即ち寒冷発生量を設定し、略一定の割
合でガス状製品を液状製品とを得ており、ガス状製品と
液状製品との割合を変える場合には、膨脹タービン8に
導入する原料空気量を弁5等により調整して膨脹タービ
ン8における寒冷発生量を増減させていた。
Normally, in such an air wave separation method, the gas flow rate of the expansion turbine 8, that is, the amount of refrigeration generated, is set according to the amount of the product oxygen gas GO and the product liquefied oxygen LO, and the gaseous product is produced at a substantially constant rate. is obtained as a liquid product, and when changing the ratio of gaseous product and liquid product, the amount of raw air introduced into the expansion turbine 8 is adjusted by the valve 5 etc. to increase or decrease the amount of cold generation in the expansion turbine 8. I was letting it happen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のごとく原料空気導入系に膨脹ター
ビンを配したものでは、膨脹タービンに導入する原料空
気の圧力を原料空気圧縮機で得ているために1.゛膨張
タービンに導入しない分の原料空気も高い圧力に圧縮し
なければならず、原料空気圧縮機の動力消費量が多くな
り、得られる製品の動力原単位を悪化させていた。
However, in the case where the expansion turbine is disposed in the raw material air introduction system as described above, the pressure of the raw material air introduced into the expansion turbine is obtained by the raw material air compressor. ``The raw air that is not introduced into the expansion turbine must also be compressed to a high pressure, which increases the power consumption of the raw air compressor and worsens the power consumption of the resulting product.

また、ガス状製品と液状製品との割合の調整幅にも限度
があり、大幅な需要変動には対処することができなかっ
た。
Furthermore, there is a limit to the adjustment range of the ratio of gaseous products to liquid products, and it has not been possible to cope with large fluctuations in demand.

そこで、本発明は、製品の動力原単位を低減するととも
に、ガス状製品と液状製品との採取割合を容易に、かつ
大幅に調整することのできる空気波化分離方法を提供す
ることを目的としている。
Therefore, the present invention aims to provide an air wave separation method that can reduce the power consumption of the product and easily and significantly adjust the sampling ratio of gaseous products and liquid products. There is.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために本発明は、原料空気を圧
縮し、吸着によって不純物を除去した後、主熱交換器で
冷却し、複精留塔に導入して液化精留分離し、ガス状及
び/又は液状の製品を得る方法において、吸着器を導出
した原料空気を2分し、その一方を主熱交換器に導入し
て液化点付近まで、又は一部液化するまで冷却後、複精
留塔の下部塔に導入するとともに、他方をガス状製品採
取量及び液状製品採取量に応じて複数段もしくは複数基
からなる昇圧機の任意の数を選択して導入昇圧後、主熱
交換器に導入して中間温度まで冷却して導出し、膨脹タ
ービンに導入して降圧、膨脹させた後に複精留塔に導入
することを特徴とする空気波化分離方法を提供するもの
である。
In order to achieve the above object, the present invention compresses raw air, removes impurities by adsorption, cools it in a main heat exchanger, introduces it into a double rectification column, liquefies it and rectifies it, and separates it into a gaseous state. And/or in a method for obtaining a liquid product, the raw air discharged from the adsorber is divided into two parts, one of which is introduced into the main heat exchanger and cooled to near the liquefaction point or until partially liquefied, and then subjected to double distillation. It is introduced into the lower column of the distillation column, and the other is introduced by selecting an arbitrary number of boosters consisting of multiple stages or multiple units depending on the amount of gaseous product collected and the amount of liquid product collected. After increasing the pressure, the main heat exchanger The present invention provides an air wave separation method characterized in that the air is introduced into the air, cooled to an intermediate temperature, extracted, introduced into an expansion turbine, reduced in pressure and expanded, and then introduced into a double rectification column.

〔作 用〕[For production]

上述のごとく、複数段もしくは複数基からなる昇圧機の
任意の数を選択して原料空気の一部を昇圧することによ
り、膨脹タービンに導入する原料ガス量及び圧力を容易
に、かつ大幅に変更することができ、膨脹タービンにお
ける寒冷量を大幅に増減させることができる。
As mentioned above, the amount and pressure of the raw material gas introduced into the expansion turbine can be easily and significantly changed by increasing the pressure of a part of the raw material air by selecting any number of boosters consisting of multiple stages or multiple units. This allows the amount of refrigeration in the expansion turbine to be significantly increased or decreased.

〔実施例〕〔Example〕

以下、本発明を第1図に示す一実施例に基づいてさらに
詳細に説明する。尚、以下の説明において前記第2図に
示した従来例と同一要素のものには同一符号を付して詳
細な説明を省略する。
Hereinafter, the present invention will be explained in more detail based on an embodiment shown in FIG. In the following description, the same elements as those in the conventional example shown in FIG.

原料空気圧縮機1で所定の圧力まで圧縮され、吸着器3
で精製された原料空気Aは、吸着器3を導出した後に導
管20.21に2分される。一方の大部分の原料空気A
mは、導管20を経て主熱交換器4に導入され、製品酸
素ガスGo及び排ガスWにより液化点付近まで、又は一
部液化されるまで冷却されて複精留塔6の下部塔7に導
入される。
The raw material air is compressed to a predetermined pressure by the compressor 1, and then transferred to the adsorber 3.
The purified raw material air A is divided into two pipes 20 and 21 after being led out of the adsorber 3. On the other hand, most of the raw material air A
m is introduced into the main heat exchanger 4 via the conduit 20, cooled by the product oxygen gas Go and exhaust gas W to near the liquefaction point or until partially liquefied, and introduced into the lower column 7 of the double rectification column 6. be done.

他方の一部の原料空気Atは、導管21を経て第−昇圧
機22.第二昇圧機23.及び第三昇圧機24を直列に
備えた昇圧回路25に導入される。
The other part of the raw air At passes through the conduit 21 to the second booster 22. Second booster 23. and is introduced into a booster circuit 25 including a third booster 24 in series.

これらの各昇圧機22,23.24には、その二次側に
それぞれアフタークーラー22 a、  23 a。
Each of these boosters 22, 23, 24 has an aftercooler 22a, 23a on its secondary side, respectively.

24aが配設されており、さらに第−昇圧機22及び第
二昇圧機23のアフタークーラー22a。
24a is provided, and furthermore, an aftercooler 22a of the first booster 22 and the second booster 23.

23Hの導出側には弁22b、23bを有するバイパス
管22c、23cが接続されている。
Bypass pipes 22c and 23c having valves 22b and 23b are connected to the outlet side of 23H.

この昇圧回路25は、ガス状製品(酸素ガスGO)採取
量及び液状製品(液化酸素LO)採取量に応じて制御さ
れるもので、例えば、製品酸素ガスGoを多く採取する
場合には、第二昇圧機23に付属する弁23bを開き、
第−昇圧機22に付属する弁22bを閉じて第三昇圧機
24のみを作動させて原料空気Atを昇圧して主熱交換
器4に導入し、中間温度まで冷却して膨脹タービン8に
導入する。
This booster circuit 25 is controlled according to the amount of gaseous product (oxygen gas GO) and liquid product (liquefied oxygen LO) collected. For example, when collecting a large amount of product oxygen gas Go, Open the valve 23b attached to the second booster 23,
The valve 22b attached to the first booster 22 is closed and only the third booster 24 is operated to boost the pressure of the feed air At, introduce it into the main heat exchanger 4, cool it to an intermediate temperature, and introduce it into the expansion turbine 8. do.

また、寒冷量を多く必要とする製品液化酸素LOを多く
採取する場合には、全昇圧機22,23゜24を作動さ
せるとともに、第−昇圧機22及び第二昇圧機23に付
属する弁22b、23bを閉じて原料空気Atを三段階
に圧縮して高圧とし、導管24cから主熱交換器4に導
入し、中間温度まで冷却して膨脹タービン8に導入する
In addition, when collecting a large amount of product liquefied oxygen LO that requires a large amount of refrigeration, all boosters 22, 23 and 24 are operated, and the valve 22b attached to the first booster 22 and second booster 23 is activated. , 23b are closed, and the raw air At is compressed in three stages to a high pressure, introduced into the main heat exchanger 4 through the conduit 24c, cooled to an intermediate temperature, and introduced into the expansion turbine 8.

さらに第二昇圧機23及び第三昇圧機24を作動させて
第−昇圧機22を不作動とすれば、膨脹タービン8に導
入する原料空気Atの圧力を上記両圧力の中間圧力とす
ることができる。
Further, by activating the second booster 23 and the third booster 24 and disabling the second booster 22, the pressure of the raw material air At introduced into the expansion turbine 8 can be set to an intermediate pressure between the above two pressures. can.

次表は、本実施例における運転モードを示すもので、製
品液化酸素LOを大量に得るための液製品採取モード、
製品液化酸素LOを少量として製品酸素ガスGOを主に
得るガス製品採取モード、及びその中間のモードにおけ
る各部の原料空気(A、Am、At)の流量と圧力、及
び採取される製品(LO,Go)Mkを示すものである
The following table shows the operation modes in this example: a liquid product collection mode to obtain a large amount of product liquefied oxygen LO;
The flow rate and pressure of the raw material air (A, Am, At) at each part in the gas product sampling mode where the product oxygen gas GO is mainly obtained with a small amount of the product liquefied oxygen LO, and the mode in between, and the sampled product (LO, Go) Mk.

このように、製品酸素ガスGoの採取量及び製品液化酸
素LOの採取量に応じて、昇圧機の数を選択して原料空
気Atを昇圧することにより、膨脹タービン8に導入す
る原料空気Atの圧力、即ちその量を変えることができ
、操作条件に合った寒冷量を得ることができる。
In this way, by selecting the number of boosters and boosting the pressure of the feed air At depending on the amount of product oxygen gas Go and the amount of product liquefied oxygen LO, the amount of feed air At introduced into the expansion turbine 8 can be increased. The pressure, and thus the amount, can be varied to obtain the amount of refrigeration that suits the operating conditions.

また、膨脹タービン8に導入する原料空気Atに必要な
圧力を昇圧機で得ているので、原料空気圧縮allにお
ける原料空気への圧縮圧力を下部塔7の精留操作に必要
な圧力にすることができるから、原料空気Aの全てを膨
脹タービン8に必要な圧力まで圧縮する必要がなくなり
、原料空気圧縮機1の所要動力を大幅に低減す、ること
かできる。
In addition, since the pressure necessary for the feed air At introduced into the expansion turbine 8 is obtained by the booster, the compression pressure for the feed air in the feed air compression all can be set to the pressure necessary for the rectification operation of the lower column 7. Therefore, there is no need to compress all of the raw material air A to the pressure required for the expansion turbine 8, and the power required for the raw material air compressor 1 can be significantly reduced.

このとき、前記昇圧回路25においては、全原料空気A
を分岐した一部の原料空気Atを昇圧するだけであるか
ら、流量が少ないことに加えて圧縮率が小さいので、そ
の所要動力も僅かであり、上記原料空気圧縮機1の大幅
な動力費低減により、得られる製品の動力原単位を低減
することができる。
At this time, in the booster circuit 25, all the raw material air A
Since only a part of the feed air At branched off is pressurized, the flow rate is small and the compression ratio is small, so the power required is small, and the power cost of the feed air compressor 1 is significantly reduced. As a result, the power consumption of the resulting product can be reduced.

特に、前記各昇圧機の内、常時作動状態に設定する昇圧
機、すなわち上記実施例に置いては第三昇圧機24を膨
脹タービン制動ブロワ−1あるいは原料空気圧縮機1と
のコンバイン型とすることにより、該昇圧機の動力費を
不要としたり、あるいはごく僅かなものにすることがで
きる。
In particular, among the boosters, the booster set to be in constant operation, that is, the third booster 24 in the above embodiment, is a combine type with the expansion turbine brake blower 1 or the raw air compressor 1. As a result, the power cost for the booster can be eliminated or reduced to a very small amount.

尚、上記実施例では、昇圧機を3台配置し、第三昇圧機
24を常時作動の昇圧機とした例で説明したが、2台の
昇圧機でも十分な作用を発揮することができ、導管の配
置や昇圧機の種類により、常時作動の昇圧機を前段とす
ることも可能である。
In the above embodiment, three boosters are arranged and the third booster 24 is a constantly operating booster, but even two boosters can provide sufficient effect. Depending on the arrangement of the conduits and the type of booster, it is also possible to use a constantly operating booster as the first stage.

さらに、多段式圧縮機を用いて、該多段式圧縮機の後段
あるいは前段を任意に切離したり、中…工部から中間圧
力の原料空気Atを取出したりすることにより、上記実
施例同様に、膨脹タービン8に導入する原料空気Atの
圧力及び流量の調節を行うことが可能である。
Furthermore, by using a multi-stage compressor, by arbitrarily separating the rear stage or the front stage of the multi-stage compressor, or by taking out the raw material air At at an intermediate pressure from the central part, expansion can be carried out in the same way as in the above embodiment. It is possible to adjust the pressure and flow rate of the raw material air At introduced into the turbine 8.

また、本実施例に示すように、膨脹タービン8で膨脹し
た後の原料空気Atを操作圧力の低い上部塔10に導入
することにより、膨脹タービン8における原料空気At
の膨張率を大きくとれ、寒冷量をより多くすることがで
きるが、従来と同様に下部塔7の操作圧力まで膨脹させ
て下部塔7に導入しても、必要な寒冷量を得ることは容
易である。
Further, as shown in this embodiment, by introducing the raw material air At after being expanded in the expansion turbine 8 into the upper column 10 where the operating pressure is low, the raw material air At in the expansion turbine 8 is
Although it is possible to increase the expansion rate of , and to increase the amount of refrigeration, it is easy to obtain the necessary amount of refrigeration even if it is expanded to the operating pressure of the lower column 7 and introduced into the lower column 7 as in the past. It is.

さらに、本発明方法で得られる液状製品としては、上記
酸素の他、窒素やアルゴン等、従来から液状で採取され
ているもの全てを含むことができ、ガス状製品と液状製
品の種類の組合せは任意に選定することができる。
Furthermore, in addition to the above-mentioned oxygen, the liquid product obtained by the method of the present invention can include all the substances conventionally collected in liquid form, such as nitrogen and argon. It can be selected arbitrarily.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、原料空気の一部をガス
状製品採取量及び液状製品採取量に応じて複数段もしく
は複数基からなる昇圧機の任意の数を選択して昇圧後、
中間温度まで冷却して膨脹タービンに導入するから、製
品の採取状態により膨脹タービンの吸入側圧力、即ち吸
入量が変化し、操作状態に合った最適な寒冷量を得るこ
とができる。また複数の昇圧機を選択して昇圧するから
、膨脹タービンの吸入側圧力及び流量を大きく変えるこ
とができるので、膨脹タービンにおける発生寒冷量を大
幅に変化させることができ、ガス状製品と液状製品との
採取割合の大幅な増減が可能となる。さらに、原料空気
全量を膨脹タービンの吸入圧力に合せて圧縮する必要が
ないので、原料空気圧縮機の動力費を大幅に低減させる
ことができる。
As explained above, in the present invention, after pressurizing a part of the raw air by selecting an arbitrary number of boosters consisting of multiple stages or multiple units depending on the amount of gaseous product and liquid product collected,
Since the product is cooled to an intermediate temperature and introduced into the expansion turbine, the pressure on the suction side of the expansion turbine, that is, the suction amount, changes depending on the state of product collection, making it possible to obtain the optimum amount of refrigeration that matches the operating conditions. In addition, since multiple boosters are selected to increase the pressure, the suction side pressure and flow rate of the expansion turbine can be greatly changed, so the amount of cooling generated in the expansion turbine can be greatly changed, and the pressure can be increased between gaseous products and liquid products. This makes it possible to significantly increase or decrease the sampling rate. Furthermore, since it is not necessary to compress the entire amount of feed air to match the suction pressure of the expansion turbine, the power cost of the feed air compressor can be significantly reduced.

特に、常時作動状態に設定する昇圧機を膨脹タービン制
動ブロワ−あるいは原料空気圧縮機とのコンバイン型と
することにより、該昇圧機の動力費を不要としたり、あ
るいはごく住かなものにできるので、採取する製品の動
力原単位をさらに低減することができる。
In particular, by making the booster that is always in operation a combination type with an expansion turbine brake blower or a raw air compressor, the power cost of the booster can be eliminated or it can be made very inconvenient. The power consumption of the product to be collected can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
例を示す系統図である。 1・・・原料空気圧縮機  3・・・吸若器  4・・
・主熱交換器  6・・・複精留塔  8・・・膨脹タ
ービン22・・・第−昇圧機  23・・・第二昇圧機
  24・・・第三昇圧機  A・・・原料空気  G
O・・・製品酸素ガス LO・・・製品液化酸素 特 許 出 願 人 日 本 酸 素 株 式
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. 1... Raw material air compressor 3... Young absorber 4...
・Main heat exchanger 6... Double rectifier 8... Expansion turbine 22... No. 1 booster 23... Second booster 24... Third booster A... Raw material air G
O... Product oxygen gas LO... Product liquefied oxygen Patent applicant Nippon Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】 1、原料空気を圧縮し、吸着によって不純物を除去した
後、主熱交換器で冷却し、複精留塔に導入して液化精留
分離し、ガス状及び/又は液状の製品を得る方法におい
て、吸着器を導出した原料空気を2分し、その一方を主
熱交換器に導入して液化点付近まで、又は一部液化する
まで冷却後、複精留塔の下部塔に導入するとともに、他
方をガス状製品採取量及び液状製品採取量に応じて複数
段もしくは複数基からなる昇圧機の任意の数を選択して
導入昇圧後、主熱交換器に導入して中間温度まで冷却し
て導出し、膨脹タービンに導入して降圧、膨脹させた後
に複精留塔に導入することを特徴とする空気液化分離方
法。 2、前記複数基の昇圧機の内、任意の1基が膨脹タービ
ン制動ブロワーであることを特徴とする請求項1記載の
空気液化分離方法。 3、前記複数基の昇圧機の内、任意数の昇圧機が原料空
気圧縮機とのコンバイン型であることを特徴とする請求
項1記載の空気波化分離方法。
[Claims] 1. After compressing the raw material air and removing impurities by adsorption, it is cooled in a main heat exchanger, introduced into a double rectification column, and separated by liquefaction rectification to produce gaseous and/or liquid In the method of obtaining the product, the raw air discharged from the adsorber is divided into two parts, one of which is introduced into the main heat exchanger and cooled to near the liquefaction point or until partially liquefied. At the same time as introducing it into the column, the other one is introduced by selecting an arbitrary number of boosters consisting of multiple stages or multiple units depending on the amount of gaseous product collected and the amount of liquid product collected. After increasing the pressure, it is introduced into the main heat exchanger. An air liquefaction separation method characterized by cooling the air to an intermediate temperature, leading it out, introducing it into an expansion turbine, reducing the pressure and expanding it, and then introducing it into a double rectification column. 2. The air liquefaction separation method according to claim 1, wherein any one of the plurality of boosters is an expansion turbine brake blower. 3. The air wave separation method according to claim 1, wherein any number of the boosters among the plurality of boosters are of a combine type with a raw material air compressor.
JP1096813A 1989-04-17 1989-04-17 Air liquefaction separation method Expired - Fee Related JP2736543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096813A JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096813A JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Publications (2)

Publication Number Publication Date
JPH02275282A true JPH02275282A (en) 1990-11-09
JP2736543B2 JP2736543B2 (en) 1998-04-02

Family

ID=14175035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096813A Expired - Fee Related JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP2736543B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052807A (en) * 2007-08-27 2009-03-12 Shinko Air Water Cryoplant Ltd Low-temperature air liquefaction separation device and its operation method
WO2009142799A2 (en) * 2008-03-27 2009-11-26 Praxair Technology, Inc. Distillation method and apparatus
JP2010531424A (en) * 2007-03-13 2010-09-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gas by cryogenic distillation in the form of a highly flexible gas and liquid from air
JP2010536003A (en) * 2007-08-10 2010-11-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for separating air by cryogenic distillation
JP2010536004A (en) * 2007-08-10 2010-11-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for separating air by cryogenic distillation
WO2014105293A3 (en) * 2012-12-26 2015-07-02 Praxair Technology, Inc. Air separation method and apparatus
US9574821B2 (en) 2014-06-02 2017-02-21 Praxair Technology, Inc. Air separation system and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531424A (en) * 2007-03-13 2010-09-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gas by cryogenic distillation in the form of a highly flexible gas and liquid from air
JP2010536003A (en) * 2007-08-10 2010-11-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for separating air by cryogenic distillation
JP2010536004A (en) * 2007-08-10 2010-11-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for separating air by cryogenic distillation
JP4908634B2 (en) * 2007-08-10 2012-04-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for separating air by cryogenic distillation
JP2009052807A (en) * 2007-08-27 2009-03-12 Shinko Air Water Cryoplant Ltd Low-temperature air liquefaction separation device and its operation method
WO2009142799A2 (en) * 2008-03-27 2009-11-26 Praxair Technology, Inc. Distillation method and apparatus
WO2009142799A3 (en) * 2008-03-27 2010-09-10 Praxair Technology, Inc. Distillation method and apparatus
WO2014105293A3 (en) * 2012-12-26 2015-07-02 Praxair Technology, Inc. Air separation method and apparatus
US9518778B2 (en) 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
US10113792B2 (en) 2012-12-26 2018-10-30 Praxair Technology, Inc. Air separation apparatus
US9574821B2 (en) 2014-06-02 2017-02-21 Praxair Technology, Inc. Air separation system and method
US10254040B2 (en) 2014-06-02 2019-04-09 Praxair Technology, Inc. Air separation system and method

Also Published As

Publication number Publication date
JP2736543B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US4555256A (en) Process and device for the production of gaseous oxygen at elevated pressure
CN1025068C (en) Method and apparatus for separating air by means of rectification
US6131407A (en) Natural gas letdown liquefaction system
US6477860B2 (en) Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
US2918802A (en) Process of separation of air into its elements
AU652864B2 (en) Air separation
CA2548797A1 (en) Process and apparatus for the separation of air by cryogenic distillation
CN113405318B (en) Application method of device for producing pure nitrogen by using single rectifying tower
RU2008128818A (en) METHOD FOR DIVIDING AIR INTO COMPONENTS BY USING CRYOGENIC DISTILLATION
US4964901A (en) Low-temperature separation of air using high and low pressure air feedstreams
US3605422A (en) Low temperature frocess for the separation of gaseous mixtures
CS145592A3 (en) Cryogenic method of air flow separation
US5412953A (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
US6257020B1 (en) Process for the cryogenic separation of gases from air
US5515687A (en) Process and installation for the production of oxygen and/or nitrogen under pressure
CN216716763U (en) Device for producing pure nitrogen by using single rectifying tower
JPH02275282A (en) Air liquefaction separation method
US5309721A (en) Air separation
US20220074656A1 (en) Apparatus and method for separating air by cryogenic distillation
CA1280360C (en) Air separation process with waste recycle for nitrogen and oxygen production
US3392536A (en) Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams
TW202140974A (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
US5461872A (en) Air separation method and apparatus
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees