JP2736543B2 - Air liquefaction separation method - Google Patents

Air liquefaction separation method

Info

Publication number
JP2736543B2
JP2736543B2 JP1096813A JP9681389A JP2736543B2 JP 2736543 B2 JP2736543 B2 JP 2736543B2 JP 1096813 A JP1096813 A JP 1096813A JP 9681389 A JP9681389 A JP 9681389A JP 2736543 B2 JP2736543 B2 JP 2736543B2
Authority
JP
Japan
Prior art keywords
air
raw material
separation method
expansion turbine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1096813A
Other languages
Japanese (ja)
Other versions
JPH02275282A (en
Inventor
修 宇多田
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP1096813A priority Critical patent/JP2736543B2/en
Publication of JPH02275282A publication Critical patent/JPH02275282A/en
Application granted granted Critical
Publication of JP2736543B2 publication Critical patent/JP2736543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離方法に関し、特にガス状製品
と液状製品とを併産するのに適した空気液化分離方法に
関する。
Description: FIELD OF THE INVENTION The present invention relates to an air liquefaction separation method, and more particularly to an air liquefaction separation method suitable for co-producing gaseous products and liquid products.

〔従来の技術〕[Conventional technology]

原料空気を圧縮,精製した後に液化点付近まで冷却
し、精留塔に導入して液化精留分離し、窒素や酸素等を
得る空気液化分離方法が知られている。この空気液化分
離方法で液状の製品、例えば液化酸素を得る場合には、
プロセス成立上の必要寒冷を供給するために系内に膨脹
タービンを配している。
There is known an air liquefaction separation method in which raw air is compressed and purified, then cooled to near a liquefaction point, introduced into a rectification column and liquefied and rectified to obtain nitrogen, oxygen, and the like. When obtaining a liquid product, for example, liquefied oxygen by this air liquefaction separation method,
An expansion turbine is provided in the system to supply the necessary cold for the establishment of the process.

第2図は、ガス状の酸素(酸素ガス)と液状の酸素
(液化酸素)とを併産する従来の空気液化分離方法の一
例を示すもので、上記膨脹タービンを原料空気導入系に
設けたものである。
FIG. 2 shows an example of a conventional air liquefaction separation method for simultaneously producing gaseous oxygen (oxygen gas) and liquid oxygen (liquefied oxygen). The expansion turbine is provided in a raw material air introduction system. Things.

原料空気圧縮機1で圧縮された原料空気Aは、冷却器
2で常温に冷却され、切替え使用される吸着器3,3の一
方で水分や炭酸ガス等の不純物を除去された後に、主熱
交換器4に導入される。この原料空気Aの大部分は、該
主熱交換器4で後述の製品酸素ガスGOや排ガスWにより
液化点付近まで冷却された跡に減圧弁5で下部塔圧力に
減圧されて複精留塔6の下部塔7に導入される。原料空
気Aの一部Atは、中間温度まで冷却された状態で主熱交
換器4の中部から導出され、膨脹タービン8に導入され
て下部塔圧力まで膨脹し、寒冷を発生して前記下部塔7
に導入される大部分の原料空気Aと略同じ温度に降温し
た後に、原料空気Aと合流して下部塔7に導入される。
The raw material air A compressed by the raw material air compressor 1 is cooled to a normal temperature by a cooler 2, and after removing impurities such as moisture and carbon dioxide gas in one of the adsorbers 3, 3 used for switching, the main air A is cooled. It is introduced into the exchanger 4. Most of the raw material air A is depressurized to the lower tower pressure by the pressure reducing valve 5 after being cooled to the vicinity of the liquefaction point by the product oxygen gas GO or the exhaust gas W described later in the main heat exchanger 4, and 6 is introduced into the lower tower 7. A part At of the raw material air A is taken out from the central part of the main heat exchanger 4 in a state cooled to the intermediate temperature, introduced into the expansion turbine 8 and expanded to the pressure of the lower tower, generating cold and causing the lower tower to cool. 7
After being cooled to a temperature substantially the same as that of most of the raw material air A introduced into the lower column 7, the raw material air A is combined with the raw material air A and introduced into the lower tower 7.

下部塔7に導入された原料空気Aは、精留分離されて
下部塔7下部の液化空気LAと下部塔7上部の窒素ガスGN
とに分離する。下部塔7下部の液化空気LAは、下部塔7
底部から導出され、過冷器9を経て上部塔10の中部に導
入される。また下部塔7上部の窒素ガスGNは、主凝縮蒸
発器11で凝縮液化され、下部塔7の還流液になるととも
に、その一部が過冷器9を経て上部塔10の上部に導入さ
れる。
The raw material air A introduced into the lower tower 7 is rectified and separated, and the liquefied air LA at the lower part of the lower tower 7 and the nitrogen gas GN at the upper part of the lower tower 7
And separated into The liquefied air LA in the lower part of the lower tower 7
It is drawn from the bottom and passed through a subcooler 9 into the middle of the upper tower 10. The nitrogen gas GN in the upper part of the lower tower 7 is condensed and liquefied in the main condenser evaporator 11 to become a reflux liquid in the lower tower 7, and a part thereof is introduced into the upper part of the upper tower 10 through the supercooler 9. .

上部塔10内での精留分離操作により、その底部に分離
した液化酸素LOは、一部が導管12を経て製品液化酸素LO
として採取され、残部が主凝縮蒸発器11で蒸発気化して
上部塔10の上昇ガスになるとともに、その一部が製品酸
素ガスGOとして導管13から採取され、主熱交換器4を経
て導出される。また上部塔10上部に分離した窒素ガスGN
は、頂部の導管14から導出され、過冷器9,主熱交換器4
を経て排ガスWとして排出される。
The liquefied oxygen LO separated at the bottom by the rectification and separation operation in the upper tower 10 is partially passed through the conduit 12 to the product liquefied oxygen LO.
And the remainder is evaporated and vaporized in the main condensing evaporator 11 to become ascending gas in the upper tower 10, and a part thereof is collected from the conduit 13 as product oxygen gas GO and is led out through the main heat exchanger 4. You. In addition, nitrogen gas GN separated above the upper tower 10
Is discharged from the top conduit 14 and is connected to the subcooler 9, the main heat exchanger 4
And is discharged as exhaust gas W.

通常、このような空気液化分離方法においては、製品
酸素ガスGOと製品液化酸素LOの量に応じて膨脹タービン
8のガス流量、即ち寒冷発生量を設定し、略一定の割合
でガス状製品と液状製品とを得ており、ガス状製品と液
状製品との割合を変える場合には、膨脹タービン8に導
入する原料空気量を弁5等により調整して膨脹タービン
8における寒冷発生量を増減させていた。
Normally, in such an air liquefaction separation method, the gas flow rate of the expansion turbine 8, that is, the amount of generated cold is set according to the amounts of the product oxygen gas GO and the product liquefied oxygen LO, and the gaseous product and the gaseous product are separated at a substantially constant rate. When a liquid product is obtained and the ratio between the gaseous product and the liquid product is changed, the amount of raw air introduced into the expansion turbine 8 is adjusted by the valve 5 or the like to increase or decrease the amount of cold generated in the expansion turbine 8. I was

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のごとく原料空気導入系に膨脹タ
ービンを配したものでは、膨脹タービンに導入する原料
空気の圧力を原料空気圧縮機で得ているために、膨脹タ
ービンに導入しない分の原料空気も高い圧力に圧縮しな
ければならず、原料空気圧縮機の動力消費量が多くな
り、得られる製品の動力原単位を悪化させていた。
However, in the case where the expansion turbine is provided in the raw air introduction system as described above, since the pressure of the raw air introduced into the expansion turbine is obtained by the raw air compressor, the raw air not introduced into the expansion turbine is also high. Since it has to be compressed to a pressure, the power consumption of the raw material air compressor is increased, and the power consumption of the obtained product is deteriorated.

また、ガス状製品と液状製品との割合の調整幅にも限
度があり、大幅な需要変動には対処することができなか
った。
In addition, there is a limit in the range of adjustment of the ratio between the gaseous product and the liquid product, and it was not possible to cope with a large fluctuation in demand.

そこで、本発明は、製品の動力原単位を低減するとと
もに、ガス状製品と液状製品との採取割合を容易に、か
つ大幅に調整することのできる空気液化分離方法を提供
することを目的としている。
Therefore, an object of the present invention is to provide an air liquefaction / separation method capable of reducing the power consumption unit of a product and easily and largely adjusting the sampling ratio between a gaseous product and a liquid product. .

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために本発明は、原料空気を
圧縮し、吸着によって不純物を除去した後、主熱交換器
で冷却し、複精留塔に導入して液化精留分離し、ガス状
及び/又は液状の製品を得る方法において、吸着器を導
出した原料空気を2分し、その一方を主熱交換器に導入
して液化点付近まで、又は一部液化するまで冷却後、複
精留塔の下部塔に導入するとともに、他方をガス状製品
採取量及び液状製品採取量に応じて複数段もしくは複数
基からなる昇圧機の任意の数を選択して導入昇圧後、主
熱交換器に導入して中間温度まで冷却して導出し、膨脹
タービンに導入して降圧,膨脹させた後に複精留塔に導
入することを特徴とする空気液化分離方法を提供するも
のである。
In order to achieve the above object, the present invention provides a method for compressing raw air, removing impurities by adsorption, cooling in a main heat exchanger, introducing into a double rectification column, performing liquefied rectification separation, And / or a method for obtaining a liquid product, in which the raw material air led out of the adsorber is divided into two parts, one of which is introduced into the main heat exchanger and cooled to near the liquefaction point or until it is partially liquefied, Introduce to the lower tower of the distillation tower, select the number of boosters consisting of multiple stages or multiple units according to the amount of gaseous product and the amount of liquid product to be collected and introduce the other. And an air liquefaction separation method characterized in that it is cooled down to an intermediate temperature, is taken out, is introduced into an expansion turbine, is depressurized and expanded, and is then introduced into a double rectification column.

〔作用〕[Action]

上述のごとく、複数段もしくは複数器からなる昇圧器
の任意の数を選択して原料空気の一部を昇圧することに
より、膨脹タービンに導入する原料ガス量及び圧力を容
易に、かつ大幅に変更することができ、膨脹タービンに
おける寒冷量を大幅に増減させることができる。
As described above, the amount and pressure of the source gas introduced into the expansion turbine can be easily and drastically changed by selecting an arbitrary number of boosters consisting of a plurality of stages or a plurality of units and boosting a part of the feed air. The amount of cold in the expansion turbine can be greatly increased or decreased.

〔実施例〕〔Example〕

以下、本発明を第1図に示す一実施例に基づいてさら
に詳細に説明する。尚、以下の説明において前記第2図
に示した従来例と同一要素のものには同一符号を付して
詳細な説明を省略する。
Hereinafter, the present invention will be described in more detail based on one embodiment shown in FIG. In the following description, the same elements as those in the conventional example shown in FIG. 2 are denoted by the same reference numerals, and detailed description is omitted.

原料空気圧縮機1で所定の圧力まで圧縮され、吸着器
3で精製された原料空気Aは、吸着器3を導出した後に
導管20,21に2分される。一方の大部分の原料空気Am
は、導管20を経て主熱交換器4に導入され、製品酸素ガ
スGO及び排ガスWにより液化点付近まで、又は一部液化
されるまで冷却されて複精留塔6の下部塔7に導入され
る。
The raw material air A compressed to a predetermined pressure by the raw material air compressor 1 and purified by the adsorber 3 is split into two conduits 20, 21 after the adsorber 3 is drawn out. Most of the feed air Am on one side
Is introduced into the main heat exchanger 4 via the conduit 20, cooled to near the liquefaction point or partially liquefied by the product oxygen gas GO and the exhaust gas W, and introduced into the lower column 7 of the double rectification column 6. You.

他方の一部の原料空気Atは、導管21を経て第一昇圧機
22,第二昇圧機23,及び第三昇圧機24を直列に備えた昇圧
回路25に導入される。これらの各昇圧機22,23,24には、
その二次側にそれぞれアフタークーラー22a,23a,24aが
配設されており、さらに第一昇圧機22及び第二昇圧機23
側のアフタークーラー22a,23aの導出側には弁22b,23bを
有するバイパス管22c,23cが接続されている。
The other part of the feed air At passes through conduit 21 to the first booster
22, a second booster 23 and a third booster 24 are introduced into a booster circuit 25 provided in series. Each of these boosters 22, 23, 24 has
Aftercoolers 22a, 23a, and 24a are provided on the secondary side, respectively, and the first booster 22 and the second booster 23 are further provided.
The outlet pipes of the after-coolers 22a and 23a are connected to bypass pipes 22c and 23c having valves 22b and 23b.

この昇圧回路25は、ガス状製品(酸素ガスGO)採取量
及び液状製品(液化酸素LO)採取量に応じて制御される
もので、例えば、製品酸素ガスGOを多く採取する場合に
は、第二昇圧機23に付属する弁23bを開き、第一昇圧機2
2に付属する弁22bを閉じて第三昇圧機24のみを作動させ
て原料空気Atを昇圧して主熱交換器4に導入し、中間温
度まで冷却して膨脹タービン8に導入する。
This booster circuit 25 is controlled in accordance with the amount of gaseous product (oxygen gas GO) collected and the amount of liquid product (liquefied oxygen LO) collected. For example, when a large amount of product oxygen gas GO is collected, Open the valve 23b attached to the second booster 23 and open the first booster 2
By closing the valve 22b attached to 2 and operating only the third booster 24, the raw air At is boosted and introduced into the main heat exchanger 4, cooled to an intermediate temperature and introduced into the expansion turbine 8.

また、寒冷量を多く必要とする製品液化酸素LOを多く
採取する場合には、全昇圧機22,23,24を作動させるとと
もに、第一昇圧機22及び第二昇圧機23に付属する弁22b,
23bを閉じて原料空気Atを三段階に圧縮して高圧とし、
導管24cから主熱交換器4に導入し、中間温度まで冷却
して膨脹タービン8に導入する。
When a large amount of product liquefied oxygen LO requiring a large amount of cold is collected, all the boosters 22, 23, and 24 are operated, and the valve 22b attached to the first booster 22 and the second booster 23 is operated. ,
23b is closed and the raw material air At is compressed in three stages to a high pressure,
The gas is introduced into the main heat exchanger 4 through a conduit 24c, cooled to an intermediate temperature, and introduced into the expansion turbine 8.

さらに第二昇圧機23及び第三昇圧機24を作動させて第
一昇圧機22を不作動とすれば、膨脹タービン8に導入す
る原料空気Atの圧力を上記両圧力の中間圧力とすること
ができる。
Further, if the second booster 23 and the third booster 24 are operated to deactivate the first booster 22, the pressure of the feed air At introduced into the expansion turbine 8 can be set to an intermediate pressure between the above two pressures. it can.

次表は、本実施例における運転モードを示すもので、
製品液化酸素LOを大量に得るめの液製品採取モード、製
品液化酸素LOを少量として製品酸素ガスGOを主に得るガ
ス製品採取モード、及びその中間のモードにおける各部
の原料空気(A,Am,At)の流量と圧力、及び採取される
製品(LO,GO)量を示すものである。
The following table shows the operation modes in this embodiment.
Liquid product sampling mode for obtaining a large amount of product liquefied oxygen LO, gas product sampling mode for mainly obtaining product oxygen gas GO with a small amount of product liquefied oxygen LO, and raw air (A, Am, At) the flow rate and pressure, and the amount of sampled product (LO, GO).

このように、製品酸素ガスGOの採取量及び製品液化酸
素LOの採取量に応じて、昇圧機の数を選択して原料空気
Atを昇圧することにより、膨脹タービン8に導入する原
料空気Atの圧力、即ちその量を変えることができ、操作
条件に合った寒冷量を得ることができる。
As described above, the number of boosters is selected according to the amount of product oxygen gas GO collected and the amount of product liquefied oxygen LO collected, and the feed air is selected.
By increasing the pressure of At, the pressure of the raw material air At to be introduced into the expansion turbine 8, that is, the amount thereof, can be changed, and a refrigeration amount suitable for the operating conditions can be obtained.

また、膨脹タービン8に導入する原料空気Atに必要な
圧力を昇圧機で得ているので、原料空気圧縮機1におけ
る原料空気Aの圧縮圧力を下部塔7の精留操作に必要な
圧力にすることができるから、原料空気Aの全てを膨脹
タービン8に必要な圧力まで圧縮する必要がなくなり、
原料空気圧縮機1の所要動力を大幅に低減することがで
きる。
Further, since the pressure required for the raw material air At introduced into the expansion turbine 8 is obtained by the booster, the compression pressure of the raw material air A in the raw material air compressor 1 is set to a pressure necessary for the rectification operation of the lower tower 7. Therefore, it is not necessary to compress all of the raw material air A to a pressure required for the expansion turbine 8,
The required power of the raw material air compressor 1 can be greatly reduced.

このとき、前記昇圧回路25においては、全原料空気A
を分岐した一部の原料空気Atを昇圧するだけであるか
ら、流量が少ないことに加えて圧縮率が小さいので、そ
の所要動力も僅かであり、上記原料空気圧縮機1の大幅
な動力費低減により、得られる製品の動力原単位を低減
することができる。
At this time, in the booster circuit 25, all the raw material air A
Since only part of the raw material air At branching off is pressurized, the flow rate is small and the compression ratio is low, so the required power is also small, and the power cost of the raw material air compressor 1 is greatly reduced. Thereby, the power consumption unit of the obtained product can be reduced.

特に、前記各昇圧機の内、常時作動状態に設定する昇
圧機、すなわち上記実施例に置いては第三昇圧機24を膨
脹タービン制動ブロワー、あるいは原料空気圧縮機1と
のコンバイン型とすることにより、該昇圧機の動力費を
不要としたり、あるいはごく僅かなものにすることがで
きる。
In particular, among the above-mentioned boosters, the booster which is set to be always in operation, that is, in the above embodiment, the third booster 24 is an expansion turbine braking blower or a combine type with the raw material air compressor 1. Thereby, the power cost of the booster can be made unnecessary or negligible.

尚、上記実施例では、昇圧機を3台配置し、第三昇圧
機24を常時作動の昇圧機とした例で説明したが、2台の
昇圧機でも十分な作用を発揮することができ、導管の配
置や昇圧機の種類により、常時作動の昇圧機を前段とす
ることも可能である。さらに、多段式圧縮機を用いて、
該多段式圧縮機の後段あるいは前段を任意に切離した
り、中間部から中間圧力の原料空気Atを取出したりする
ことにより、上記実施例同様に、膨脹タービン8に導入
する原料空気Atの圧力及び流量の調節を行うことが可能
である。
In the above embodiment, three boosters are arranged, and the third booster 24 is described as an always-operating booster. However, two boosters can also exhibit a sufficient operation. Depending on the arrangement of the conduits and the type of the booster, it is possible to use a booster that is always operating as a preceding stage. Furthermore, using a multi-stage compressor,
The pressure and flow rate of the raw material air At to be introduced into the expansion turbine 8 can be reduced by arbitrarily separating the latter or former stage of the multi-stage compressor or extracting the raw material air At at an intermediate pressure from the intermediate part. It is possible to make adjustments.

また、本実施例に示すように、膨脹タービン8で膨脹
した後の原料空気Atを操作圧力の低い上部塔10に導入す
ることにより、膨脹タービン8における原料空気Atの膨
脹率を大きくとれ、寒冷量をより多くすることができる
が、従来と同様に下部塔7の操作圧力まで膨脹させて下
部塔7に導入しても、必要な寒冷量を得ることは容易で
ある。
Further, as shown in the present embodiment, by introducing the raw material air At expanded by the expansion turbine 8 into the upper tower 10 having a low operating pressure, the expansion rate of the raw material air At in the expansion turbine 8 can be increased, and Although the amount can be increased, it is easy to obtain the necessary amount of cooling even if the amount is expanded to the operating pressure of the lower tower 7 and introduced into the lower tower 7 as in the conventional case.

さらに、本発明方法で得られる液状製品としては、上
記酸素の他、窒素やアルゴン等、従来から液状で採取さ
れているもの全てを含むことができ、ガス状製品と液状
製品の種類の組合せは任意に選定することができる。
Furthermore, the liquid product obtained by the method of the present invention can include all of those conventionally collected in liquid form, such as nitrogen and argon, in addition to the above-described oxygen. It can be arbitrarily selected.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、原料空気の一部をガ
ス状製品採取量及び液状製品採取量に応じて複数段もし
くは複数基からなる昇圧機の任意の数を選択して昇圧
後、中間温度まで冷却して膨脹タービンに導入するか
ら、製品の採取状態により膨脹タービンの吸入側圧力、
即ち吸入量が変化し、操作状態に合った最適な寒冷量を
得ることができる。また複数の昇圧機を選択して昇圧す
るから、膨脹タービンの吸入側圧力及び流量を大きく変
えることができるので、膨脹タービンにおける発生寒冷
量を大幅に変化させることができ、ガス状製品と液状製
品との採取割合の大幅な増減が可能となる。さらに、原
料空気全量を膨脹タービンの吸入圧力に合せて圧縮する
必要がないので、原料空気圧縮機の動力費を大幅に低減
させることができる。
As described above, the present invention selects an arbitrary number of multi-stage or multi-stage boosters according to the amount of gaseous product collected and the amount of liquid product collected, and pressurizes a part of the raw air. After cooling to the temperature and introducing it into the expansion turbine, the pressure on the suction side of the expansion turbine,
That is, the amount of suction changes, and an optimal amount of cold according to the operation state can be obtained. Also, since a plurality of boosters are selected to increase the pressure, the suction side pressure and flow rate of the expansion turbine can be greatly changed, so that the amount of cold generated in the expansion turbine can be greatly changed, and gaseous products and liquid products can be obtained. It is possible to greatly increase and decrease the sampling ratio. Further, since it is not necessary to compress the entire amount of the raw air in accordance with the suction pressure of the expansion turbine, the power cost of the raw air compressor can be greatly reduced.

特に、常時作動状態に設定する昇圧機を膨脹タービン
制動ブロワーあるいは原料空気圧縮機とのコンバイン型
とすることにより、該昇圧機の動力費を不要としたり、
あるいはごく僅かなものにできるので、採取する製品の
動力原単位をさらに低減することができる。
In particular, by using a booster that is set to the always-on state as a combine type with an expansion turbine braking blower or a raw material air compressor, the power cost of the booster becomes unnecessary,
Alternatively, since it can be made very small, the power consumption unit of the product to be collected can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
例を示す系統図である。 1…原料空気圧縮機、3…吸着器、4…主熱交換器、6
…複精留塔、8…膨脹タービン、22…第一昇圧機、23…
第二昇圧機、24…第三昇圧機、A…原料空気、GO…製品
酸素ガス、LO…製品液化酸素
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. DESCRIPTION OF SYMBOLS 1 ... Raw material air compressor, 3 ... Adsorber, 4 ... Main heat exchanger, 6
... double rectification tower, 8 ... expansion turbine, 22 ... first booster, 23 ...
Second booster, 24 ... Third booster, A: Raw material air, GO: Product oxygen gas, LO: Product liquefied oxygen

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を圧縮し、吸着によって不純物を
除去した後、主熱交換器で冷却し、複精留塔に導入して
液化精留分離し、ガス状及び/又は液状の製品を得る方
法において、吸着器を導出した原料空気を2分し、その
一方を主熱交換器に導入して液化点付近まで、又は一部
液化するまで冷却後、複精留塔の下部塔に導入するとと
もに、他方をガス状製品採取量及び液状製品採取量に応
じて複数段もしくは複数基からなる昇圧機の任意の数を
選択して導入昇圧後、主熱交換器に導入して中間温度ま
で冷却して導出し、膨脹タービンに導入して降圧,膨脹
させた後に複精留塔に導入することを特徴とする空気液
化分離方法。
After compressing raw air and removing impurities by adsorption, the raw air is cooled in a main heat exchanger, introduced into a double rectification column and liquefied and rectified to separate gaseous and / or liquid products. In the method of obtaining, the raw material air led out of the adsorber is divided into two, and one of them is introduced into the main heat exchanger and cooled to near the liquefaction point or until it is partially liquefied and then introduced into the lower column of the double rectification column In addition, the other is selected according to the amount of gaseous product collected and the amount of liquid product collected, and an optional number of multi-stage or multi-stage pressurizers is selected and introduced. After the pressure is increased, the mixture is introduced into the main heat exchanger to reach an intermediate temperature. An air liquefaction / separation method, wherein the air liquefaction / separation method is characterized in that it is cooled, led out, introduced into an expansion turbine, reduced in pressure and expanded, and then introduced into a double rectification column.
【請求項2】前記複数基の昇圧機の内、任意の1基が膨
脹タービン制動ブロワーであることを特徴とする請求項
1記載の空気液化分離方法。
2. An air liquefaction separation method according to claim 1, wherein an arbitrary one of said plurality of boosters is an expansion turbine braking blower.
【請求項3】前記複数基の昇圧機の内、任意数の昇圧機
が原料空気圧縮機とのコンバイン型であることを特徴と
する請求項1記載の空気液化分離方法。
3. The air liquefaction / separation method according to claim 1, wherein an arbitrary number of the plurality of boosters are of a combine type with a raw material air compressor.
JP1096813A 1989-04-17 1989-04-17 Air liquefaction separation method Expired - Fee Related JP2736543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096813A JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096813A JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Publications (2)

Publication Number Publication Date
JPH02275282A JPH02275282A (en) 1990-11-09
JP2736543B2 true JP2736543B2 (en) 1998-04-02

Family

ID=14175035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096813A Expired - Fee Related JP2736543B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP2736543B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
BRPI0721931A2 (en) * 2007-08-10 2014-03-18 Air Liquide PROCESS FOR CRYGEN DISTILLATION AIR SEPARATION
WO2009021351A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
JP4594360B2 (en) * 2007-08-27 2010-12-08 神鋼エア・ウォーター・クライオプラント株式会社 Cryogenic air liquefaction separation device and operation method thereof
US20090241595A1 (en) * 2008-03-27 2009-10-01 Praxair Technology, Inc. Distillation method and apparatus
US9518778B2 (en) 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
WO2015187117A1 (en) 2014-06-02 2015-12-10 Praxair Technology, Inc. Air separation system and method

Also Published As

Publication number Publication date
JPH02275282A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP5425100B2 (en) Cryogenic air separation method and apparatus
US6477860B2 (en) Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
TW201607599A (en) Method and device for the low-temperature separation of air at variable energy consumption
AU652864B2 (en) Air separation
US3605422A (en) Low temperature frocess for the separation of gaseous mixtures
JPH07198249A (en) Method and equipment for separating air
JP2736543B2 (en) Air liquefaction separation method
CA3122855A1 (en) Apparatus and method for separating air by cryogenic distillation
AU656062B2 (en) Air separation
JPH11325717A (en) Separation of air
CN1277347A (en) Separation of air
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
US20080264101A1 (en) Process and Apparatus for Nitrogen Production
CA1280360C (en) Air separation process with waste recycle for nitrogen and oxygen production
US3392536A (en) Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams
CN111542723A (en) Method for producing air product based on cryogenic rectification process and air separation system
TW202140974A (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP2781983B2 (en) Air liquefaction separation method and apparatus
JP2001336876A (en) Method and system for producing nitrogen
JP2003028569A (en) Method and apparatus for separating air
CN114041034B (en) Air separation device and air separation method
JPH0792326B2 (en) Air liquefaction separation method
JP3623850B2 (en) Method and apparatus for producing nitrogen or nitrogen / oxygen

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees