JP2781983B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus

Info

Publication number
JP2781983B2
JP2781983B2 JP1096812A JP9681289A JP2781983B2 JP 2781983 B2 JP2781983 B2 JP 2781983B2 JP 1096812 A JP1096812 A JP 1096812A JP 9681289 A JP9681289 A JP 9681289A JP 2781983 B2 JP2781983 B2 JP 2781983B2
Authority
JP
Japan
Prior art keywords
air
column
heat exchanger
tower
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1096812A
Other languages
Japanese (ja)
Other versions
JPH02275281A (en
Inventor
修 宇多田
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP1096812A priority Critical patent/JP2781983B2/en
Publication of JPH02275281A publication Critical patent/JPH02275281A/en
Application granted granted Critical
Publication of JP2781983B2 publication Critical patent/JP2781983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離方法及びその装置に関し、特
に空気中の酸素及びアルゴンを併産できる空気液化分離
装置にあって、酸素あるいはアルゴンを優先的に採取す
ることのできる空気液化分離方法及びその装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an air liquefaction separation method and apparatus, and more particularly to an air liquefaction separation apparatus capable of co-producing oxygen and argon in air. The present invention relates to an air liquefaction separation method and an apparatus thereof that can be preferentially collected.

〔従来の技術〕[Conventional technology]

原料空気を圧縮精製した後に液化点付近まで冷却し、
精留塔に導入して液化精留分離し、窒素,酸素,アルゴ
ン等を得る空気液化分離方法が知られている。
After compressing and refining the raw air, it is cooled to near the liquefaction point,
There is known an air liquefaction separation method in which liquefaction rectification is carried out by introducing into a rectification column to obtain nitrogen, oxygen, argon and the like.

第5図は、酸素とアルゴンを併産する従来の空気液化
分離装置の一例を示すもので、この空気液化分離装置1
は、圧縮,精製した原料空気Aを冷却する主熱交換器2
と、該主熱交換器2で液化点付近まで冷却した原料空気
Aを精留する複精留塔3と、原料空気Aの一部Atを分岐
して昇圧する昇圧機4と、該昇圧機4で昇圧して前記主
熱交換器2で中間温度まで冷却した原料空気Atを膨張,
降圧させる膨張タ−ビン5と、該膨張タ−ビン5で膨
張,降圧した原料空気Atを前記複精留塔3の上部塔6に
導入する導入路7、及び該上部塔6に接続されたアルゴ
ン塔8とを備えている。
FIG. 5 shows an example of a conventional air liquefaction / separation apparatus which co-produces oxygen and argon.
Is the main heat exchanger 2 for cooling the compressed and purified raw air A
A double rectification tower 3 for rectifying the raw material air A cooled to the vicinity of the liquefaction point in the main heat exchanger 2, a booster 4 for branching and pressurizing a part At of the raw air A, and a booster The raw material air At, which has been pressurized at 4 and cooled to the intermediate temperature in the main heat exchanger 2, is expanded,
An expansion turbine 5 to be reduced in pressure, a feed line 7 for introducing the raw material air At expanded and reduced in pressure by the expansion turbine 5 into an upper column 6 of the double rectification column 3, and connected to the upper column 6. An argon column 8 is provided.

圧縮,精製された原料空気Aは、主熱交換器2の導入
前に2分され、その一方は主熱交換器2で分離後の製品
ガスや排ガス(図示せず)により液化点付近まで冷却さ
れて複精留塔3の下部塔9に導入される。この原料空気
Aは、下部塔9内で精留され、下部塔9頂部の窒素Nと
下部塔9底部の酸素富化液化空気LAとに分離する。この
酸素富化液化空気LAは、下部塔9塔底から導出されて過
冷器10を経た後に2分される。2分された酸素富化液化
空気LAの一方は、上部塔圧力に減圧されて上部塔6の中
段に導入され、他方の酸素富化液化空気LAは、同様に減
圧されてアルゴン塔8の凝縮器11に冷媒として導入さ
れ、大部分が蒸発気化して該凝縮器11から上部塔6に導
入される。また、下部塔9頂部の窒素Nは、主凝縮蒸発
器12で凝縮液化した後に一部は下塔部9から導出され、
過冷器10を経て、さらに上部塔圧力まで減圧されて上塔
部6の上部に導入される。
The compressed and purified raw material air A is divided into two parts before introduction into the main heat exchanger 2, and one of them is cooled to near the liquefaction point by the product gas or exhaust gas (not shown) separated in the main heat exchanger 2. Then, it is introduced into the lower tower 9 of the double rectification tower 3. The feed air A is rectified in the lower tower 9 and separated into nitrogen N at the top of the lower tower 9 and oxygen-enriched liquefied air LA at the bottom of the lower tower 9. The oxygen-enriched liquefied air LA is led out from the bottom of the lower tower 9 and passed through a subcooler 10 to be divided into two parts. One of the divided oxygen-enriched liquefied air LA is depressurized to the upper column pressure and introduced into the middle stage of the upper column 6, and the other oxygen-enriched liquefied air LA is similarly depressurized and condensed in the argon column 8. The refrigerant is introduced into the condenser 11 as a refrigerant, most of which is vaporized and vaporized, and is introduced from the condenser 11 into the upper tower 6. The nitrogen N at the top of the lower tower 9 is condensed and liquefied in the main condensing evaporator 12 and then partly led out of the lower tower 9.
After passing through the subcooler 10, the pressure is further reduced to the upper tower pressure and introduced into the upper part of the upper tower 6.

一方、前記主熱交換器2の導入前に2分された原料空
気の一部Atは、昇圧機4で昇圧した後に主熱交換器2に
導入され、該主熱交換器2で中間温度まで冷却された後
に膨張タ−ビン5に導入される。この原料空気Atは、膨
張タ−ビン5で上部塔圧力まで膨張,降圧した後に前記
導入路7を経て上部塔6の中段に導入される。
On the other hand, a part At of the raw air divided into two before the introduction of the main heat exchanger 2 is introduced into the main heat exchanger 2 after the pressure is increased by the booster 4, and reaches the intermediate temperature in the main heat exchanger 2. After being cooled, it is introduced into the expansion turbine 5. The raw material air At is expanded to the upper tower pressure by the expansion turbine 5 and reduced in pressure, and then introduced into the middle stage of the upper tower 6 through the introduction path 7.

上記のごとく、各ガス及び液が導入される上部塔6で
は、各ガス及び液が精留されて上部塔6底部の液化酸素
LOと上部塔6頂部の窒素ガスPNとに分離し、その中間部
にアルゴンが濃縮される。
As described above, in the upper tower 6 where each gas and liquid are introduced, each gas and liquid is rectified and the liquefied oxygen at the bottom of the upper tower 6 is removed.
It is separated into LO and nitrogen gas PN at the top of the upper tower 6, and argon is concentrated in the middle.

窒素ガスPNは、上部塔6頂部から導入されて過冷器10
及び主熱交換器2を経て温度回復した後に排出される。
また上部塔6底部の液化酸素LOは、その一部が液化酸素
LOのまま導出され、一部が凝縮蒸発器12で蒸発気化して
上塔部6の上昇ガスになるとともに、製品酸素ガスGOと
して採取される。
Nitrogen gas PN is introduced from the top of the upper tower 6 and is supplied to the subcooler 10.
And after the temperature is recovered through the main heat exchanger 2.
The liquefied oxygen LO at the bottom of the upper tower 6 is partially liquefied oxygen.
It is led out as LO, and a part is evaporated and vaporized in the condensing evaporator 12 to become a rising gas in the upper tower 6 and is collected as a product oxygen gas GO.

また、前記アルゴン塔8においては、その底部に上部
塔6中段のアルゴン富化ガスが導入されて上昇ガスとな
り、前記凝縮器11で酸素富化液化空気LAにより冷却され
て凝縮した凝縮液が還流液となって精留が行われてお
り、アルゴン塔8上部から粗アルゴンArが採取されると
ともに、アルゴン塔8底部から凝縮液が上部塔6に還流
している。
In the argon column 8, the argon-enriched gas in the middle stage of the upper column 6 is introduced into the bottom of the column to become an ascending gas, and the condensed liquid cooled and condensed by the oxygen-enriched liquefied air LA in the condenser 11 is refluxed. The rectification is performed as a liquid, and crude argon Ar is collected from the top of the argon column 8, and the condensate is refluxed to the upper column 6 from the bottom of the argon column 8.

このように酸素ガスGOとアルゴンArを併産する空気液
化分離装置1においては、製品需要の変動に応じて、ア
ルゴンを優先的に採取したり、酸素を優先的に採取でき
ることが望まれている。
As described above, in the air liquefaction / separation apparatus 1 that produces oxygen gas GO and argon Ar simultaneously, it is desired that argon can be preferentially collected or oxygen can be preferentially collected according to fluctuations in product demand. .

この採取製品の優先度の制御は、例えば、特公昭60−
44587号公報に記載の方法では、前記膨張タ−ビン5で
膨張,降圧した原料空気Atを上部塔6に導入する導入路
7に分岐管13を設けるとともに、導入路7と分岐管13に
弁14,15をそれぞれ設け、該弁14,15の開度を制御して上
部塔6に導入する原料空気Atの量を調節することにより
行っている。
The control of the priority of the extracted product is described in, for example,
In the method described in Japanese Patent No. 44587, a branch pipe 13 is provided in the introduction path 7 for introducing the raw material air At expanded and reduced in pressure by the expansion turbine 5 into the upper tower 6, and a valve is provided in the introduction path 7 and the branch pipe 13. 14 and 15 are provided, and the opening degree of the valves 14 and 15 is controlled to adjust the amount of the raw material air At introduced into the upper tower 6.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述の方法では、上部塔6内のL/V値
(塔内での向流接触する液量とガス量の比)を大きくし
て(1に近付けて)アルゴン収率を向上させているもの
の、アルゴンの回収率を向上させるために、原料空気圧
縮機で圧縮した後に精製し、冷却して膨張タ−ビン5に
導入した原料空気Atの大部分を精留に供せずに排出しな
ければならない。即ち、原料空気Atの一部に含まれる酸
素やアルゴンを精留分離せず、膨張タ−ビンによる発生
寒冷のみを回収して排出している。そのため、例えばア
ルゴンの収率を10%向上させた場合には、酸素の収率が
約2〜3%低下してしまう。さらに、原料空気圧縮機や
吸着器等の前処理設備も排出される原料空気の分、無駄
に作動していることになり、動力費等の無駄を生じ、製
品の動力原単位を悪化させる原因になっていた。
However, in the above-described method, the L / V value (the ratio of the amount of liquid and the amount of gas in countercurrent contact in the column) in the upper column 6 is increased (to approach 1) to improve the argon yield. However, in order to improve the recovery rate of argon, most of the raw material air At which has been purified by compressing with a raw material air compressor, cooled, and introduced into the expansion turbine 5 is discharged without being subjected to rectification. Must. That is, oxygen and argon contained in a part of the raw material air At are not rectified and separated, and only the cold generated by the expansion turbine is collected and discharged. Therefore, for example, when the argon yield is improved by 10%, the oxygen yield is reduced by about 2 to 3%. In addition, the pretreatment equipment such as a raw material air compressor and an adsorber is operating wastefully for the discharged raw material air, resulting in waste of power costs and the like, which deteriorates the power consumption unit of the product. Had become.

そこで、本発明は、酸素あるいはアルゴンの優先的採
取を容易に切換え可能にするとともに、圧縮,精製,冷
却された原料空気を無駄に排出せず、その全量を有効に
精留して各製品を得ることのできる空気液化分離方法及
びその装置を提供することを目的としている。
Therefore, the present invention makes it possible to easily switch the preferential collection of oxygen or argon, and does not wastefully discharge the compressed, purified, and cooled raw material air, but effectively rectifies the entire amount thereof to separate each product. It is an object of the present invention to provide an air liquefaction / separation method and an apparatus which can be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために本発明の空気液化分離
方法は、原料空気を圧縮,精製し、主熱交換器で冷却し
て複精留に導入し、液化精留分離して酸素及びアルゴン
を併産できる方法において、前記複精留塔に導入される
前の原料空気を分岐して、該分岐した一方の原料空気、
または前記複精留塔の下部塔から導出された空気の少な
くともいずれか一方を冷却または加温して中間温度とし
た後に膨張タ−ビンに導入し、複精留塔の上部塔圧力に
対応する圧力に膨張,降圧させた後、該膨張タービンで
膨張,降圧した原料及び/又は前記下部塔から導出され
た空気を、酸素を優先して採取する際には前記上部塔の
塔内気相組成が空気組成と略同一組成の精留段に導入し
て、アルゴンを優先して採取する際には前記上部塔の塔
内気相組成が空気組成より窒素富化組成の精留段に導入
し、さらに酸素及びアルゴンを同等に採取する際には前
記上部塔の両精留段に同時に導入することを特徴として
いる。
In order to achieve the above object, the air liquefaction separation method of the present invention comprises compressing and purifying raw air, cooling it with a main heat exchanger, introducing it into double rectification, liquefaction rectification and separating oxygen and argon. In a method capable of co-production, the raw material air before being introduced into the double rectification column is branched, and one of the branched raw material airs,
Alternatively, at least one of the air derived from the lower tower of the double rectification tower is cooled or heated to an intermediate temperature, and then introduced into an expansion turbine to correspond to the pressure of the upper tower of the double rectification tower. After the pressure is expanded and reduced, the raw material expanded and reduced by the expansion turbine and / or the air derived from the lower column is collected with priority on oxygen, and the gas phase composition in the column of the upper column is determined. When introduced into a rectification stage having substantially the same composition as the air composition, and argon is preferentially collected, the column gas phase composition of the upper column is introduced into the rectification stage with a nitrogen-enriched composition from the air composition, and When oxygen and argon are equally collected, they are simultaneously introduced into both rectification stages of the upper column.

また、本発明の空気液化分離装置は、圧縮,精製した
原料空気を冷却する主熱交換器と、該主熱交換器で液化
点付近まで冷却した原料空気を精留する複精留塔と、原
料空気の一部または複精留塔の下部塔から導出した空気
の少なくともいずれか一方を膨張,降圧させる膨張タ−
ビンと、該膨張タ−ビンを導出した空気を前記複精留塔
の上部塔に導入する導入回路、及び該上部に接続された
アルゴン塔とを備えた空気液化分離装置において、前記
膨張タ−ビンを導出した空気を上部塔に導入する導入回
路は、上部塔の塔内気相組成が空気組成と略同一の精留
段に接続する導入路と、該塔内気相組成が空気組成より
窒素富化組成の精留段に接続する導入路とを備えるとと
もに、該導入回路に、前記膨張タ−ビンを導出した空気
の両導入路への導入量を調節する導入量調節手段を備え
たことを特徴としている。
Further, the air liquefaction and separation apparatus of the present invention comprises a main heat exchanger for cooling the compressed and purified raw air, a double rectification column for rectifying the raw air cooled to near the liquefaction point in the main heat exchanger, An expansion stage for expanding and reducing the pressure of at least one of the raw air and / or the air derived from the lower column of the double rectification column.
An air liquefaction / separation apparatus comprising: a bottle; an introduction circuit for introducing air derived from the expansion turbine into an upper column of the double rectification column; and an argon column connected to the upper portion of the double rectification column. The introduction circuit that introduces the air from the bin into the upper tower is connected to a rectification stage in which the gas phase composition in the upper tower is substantially the same as the air composition. An introduction path connected to a rectification stage of the chemical composition, and an introduction amount adjusting means for adjusting an introduction amount of the air derived from the expansion turbine into both introduction paths. Features.

〔作 用〕(Operation)

上記のごとく、膨張タ−ビンで膨張,降圧した空気
を、上部塔の空気組成と略同一組成の精留段に導入する
ことにより、塔内を酸素を優先して採取するのに適した
精留条件にすることができる。また、膨張タ−ビンを導
出した空気を、気相組成が窒素富化組成である上部塔の
精留段に導入することにより、アルゴン塔への導出段近
傍に濃縮されるアルゴンが大量の原料空気等で希釈され
ることを防止でき、アルゴンの収率を向上させるととも
に、全原料空気を精留に供することができるので、酸素
収率の低下も抑制できる。また両精留段に同時に適宜な
割合で空気を導入することにより、所望の優先度で酸素
及びアルゴンを採取することができる。
As described above, the air expanded and reduced in pressure by the expansion turbine is introduced into a rectification stage having substantially the same composition as that of the air in the upper column, so that oxygen is preferentially collected in the column with priority given to oxygen. The staying condition can be set. In addition, by introducing the air derived from the expansion turbine into the rectification stage of the upper column, which has a nitrogen-enriched gas phase composition, a large amount of argon concentrated in the vicinity of the stage leading out to the argon column is concentrated. Since dilution with air or the like can be prevented, the argon yield can be improved, and all the raw material air can be used for rectification, a decrease in oxygen yield can be suppressed. In addition, by introducing air into both rectification stages simultaneously at an appropriate ratio, oxygen and argon can be collected with a desired priority.

また本発明の装置ごとく、膨張タ−ビンを導出した空
気を、上部等の気相組成が空気組成と略同一の精留段に
接続する導入路と、気相組成が窒素富化組成であるの精
留段に接続する導入路、及び両導入路への導入量を調節
する導入量調節手段を設けたことにより、該調節手段を
操作して上記導入位置を容易に切換えることができ、酸
素採取優先運転、あるいはアルゴン採取優先運転を容易
に切換えることができる。
Further, as in the apparatus of the present invention, an introduction path for connecting the air derived from the expansion turbine to a rectification stage having a gas phase composition substantially the same as the air composition, such as the upper portion, and a nitrogen-enriched gas phase composition. By providing the introduction path connected to the rectification stage and the introduction amount adjusting means for adjusting the introduction amount to both introduction paths, it is possible to easily switch the introduction position by operating the adjusting means, The sampling priority operation or the argon sampling priority operation can be easily switched.

〔実施例〕〔Example〕

以下、本発明を、図面に示す実施例に基づいてさらに
詳細に説明する。尚、以下の説明において、前記第5図
に示した従来例と同一要素のものには同一符号を付し
て、その詳細な説明を省略する。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In the following description, the same elements as those of the conventional example shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.

まず第1図は、本発明の空気液化分離装置の第一実施
例を示すものである。
First, FIG. 1 shows a first embodiment of the air liquefaction / separation apparatus of the present invention.

この空気液化分離装置20は、圧縮,精製された後の原
料空気Aを冷却する主熱交換器2の中間に分岐管21を設
け、分岐管21により原料空気の一部Atを分岐して膨張タ
−ビン5に導入するとともに、該膨張タ−ビン5を導出
した原料空気Atを上部塔6に導入する導入回路22に、上
部塔6の中段に接続する下部導入路23と、上部塔6の上
段に接続する上部導入路24とを設け、両導入路23,24
に、膨張タ−ビン5を導出した原料空気Atの該両導入路
23,24への導入量を調節する導入量調節手段としての弁2
5,26を設けたものである。
In the air liquefaction / separation apparatus 20, a branch pipe 21 is provided in the middle of the main heat exchanger 2 for cooling the compressed and purified raw air A, and a part At of the raw air is branched by the branch pipe 21 and expanded. A lower introduction passage 23 connected to a middle stage of the upper tower 6, a lower introduction path 23 connected to a middle circuit of the upper tower 6, and an introduction circuit 22 for introducing the raw material air At derived from the expansion turbine 5 to the upper tower 6 while introducing the expanded turbine 5. An upper introduction path 24 connected to the upper stage is provided, and both introduction paths 23 and 24 are provided.
And the two introduction paths of the raw material air At from which the expansion turbine 5 is derived.
Valve 2 as introduction amount adjustment means for adjusting the introduction amount to 23, 24
5, 26 are provided.

上記下部導入路23は、上部塔6の酸素富化液化空気LA
の導入段より下方で、かつ塔内の気相組成が空気組成と
略同一の精留段に接続されており、また上部導入路24
は、上部塔6内の気相組成が空気組成より窒素富化組成
の精留段に接続されている。この窒素富化組成の精留段
としては、酸素15vol%,窒素85vol%より窒素含有量が
多い組成の精留段であればよく、その最適段は、アルゴ
ン採取量,酸素採取量,タービン流体流量(ガス製品と
液製品の採取量比等により異なる)等の条件に応じて適
宜選択決定する。また、窒素富化組成精留段への導入路
をあらかじめ複数個設けておくこともできる。
The lower introduction passage 23 is connected to the oxygen-enriched liquefied air LA of the upper tower 6.
Is connected to a rectification stage whose gas phase composition is substantially the same as that of the air below the introduction stage of the column.
Is connected to a rectification stage in which the gas phase composition in the upper tower 6 is more nitrogen-rich than air. As the rectification stage having this nitrogen-enriched composition, any rectification stage having a composition having a nitrogen content larger than 15 vol% of oxygen and 85 vol% of nitrogen may be used. It is appropriately selected and determined according to conditions such as the flow rate (depending on the sampling ratio of the gas product and the liquid product). A plurality of introduction paths to the nitrogen-rich composition rectification stage may be provided in advance.

本実施例装置を用いて本発明の方法を実施するには、
上記両導入路23,24に設けた弁25,26の開度を制御して、
両導入路2324から上部塔6へ導入される原料空気Atの割
合を調節することにより行うことができる。例えば、酸
素ガスGOを優先的に採取する場合には、下部導入路23の
弁25を解放するとともに上部導入路24の弁26を閉じて、
膨張タ−ビン5で膨張,降圧した原料空気Atをを上部塔
6の塔内気相組成が空気組成と略同一の精留段に導入す
る。これにより、上部塔6内を窒素と酸素を分離するの
に適した組成分布することができ、酸素ガスGOの収率を
向上させることができる。この状態におけるアルゴンAr
の採取量は、従来の一般的なアルゴン採取を行う空気液
化分離装置のアルゴン採取量と略同じである。
In order to carry out the method of the present invention using the apparatus of the present embodiment,
By controlling the opening degree of the valves 25, 26 provided in the two introduction paths 23, 24,
It can be carried out by adjusting the ratio of the raw material air At introduced into the upper tower 6 from both the introduction paths 2324. For example, when preferentially collecting oxygen gas GO, the valve 25 of the lower introduction passage 23 is opened and the valve 26 of the upper introduction passage 24 is closed,
The raw material air At expanded and reduced in pressure by the expansion turbine 5 is introduced into the rectification stage in which the gas phase composition in the upper tower 6 is substantially the same as the air composition. Thereby, a composition distribution suitable for separating nitrogen and oxygen in the upper tower 6 can be obtained, and the yield of oxygen gas GO can be improved. Argon in this state
Is approximately the same as the amount of argon collected by a conventional general air liquefaction / separation apparatus for collecting argon.

またアルゴンArを優先的に採取する場合には、上部導
入路24の弁26を解放するとともに下部導入路23の弁25を
閉じて、膨張タ−ビン5で膨張,降圧した原料空気Atを
上部塔6内の気相が空気組成より窒素富化組成の精留
段、即ち前記酸素採取優先の際に導入する精留段より上
方に導入する。これにより、アルゴン塔8への導出段近
傍に濃縮されるアルゴンが大量の原料空気Atで希釈され
ることを防止でき、アルゴンArの収率を向上させること
ができる。
When argon Ar is to be collected preferentially, the valve 26 of the upper inlet channel 24 is opened and the valve 25 of the lower inlet channel 23 is closed, and the raw material air At expanded and reduced in pressure by the expansion turbine 5 is transferred to the upper portion. The gas phase in the column 6 is introduced above the rectification stage having a nitrogen-enriched composition over the air composition, that is, above the rectification stage introduced when the oxygen collection is prioritized. Thereby, it is possible to prevent the argon concentrated in the vicinity of the lead-out stage to the argon column 8 from being diluted with a large amount of the raw material air At, and to improve the argon Ar yield.

さらに、上記両導入路23,24の弁25,26を適宜な開度に
調節して上部塔6の塔内気相組成が略空気組成の精留段
(上部塔中段)と、空気組成より窒素富化組成の精留段
(上部塔上段)との両精留段に同時に適宜な割合で膨張
タ−ビン5を経た原料空気Atを導入することにより、所
望の優先度で酸素ガスGO及びアルゴンArを採取すること
ができる。
Further, the valves 25 and 26 of both the introduction paths 23 and 24 are adjusted to an appropriate opening degree, and the gas phase composition in the upper tower 6 is substantially equal to the air fractionation stage (the middle stage of the upper column). At the same time, the feed air At which has passed through the expansion turbine 5 is introduced at an appropriate ratio into both the rectification stages (the upper column in the upper column) and the rectification stage having the enriched composition, so that oxygen gas GO and argon Ar can be collected.

また、アルゴン採取優先運転の際にも、全原料空気を
精留に供しているので、酸素収率の低下を抑制すること
ができ、原料空気圧縮機や吸着器等の設備も有効に利用
することができる。
In addition, even during the argon collection priority operation, since all the raw material air is used for rectification, a decrease in the oxygen yield can be suppressed, and equipment such as a raw material air compressor and an adsorber can be effectively used. be able to.

第2図はアルゴン採取優先運転におけるアルゴン収率
の向上及び酸素収率の低下制御効果を示すもので、酸素
採取優先運転時における酸素収率及びアルゴン収率が同
一の装置構成において、本発明の方法を適用した場合
と、前記従来の原料空気の一部を排出する方法の場合と
を比較したものである。即ち、酸素採取優先運転におい
ては、図中点Aで示すごとく両方法共、同一の酸素収率
89%及びアルゴン収率54.1%を得ているが、アルゴン採
取優先運転において、酸素収率の低下率を両者共同じ2
%、即ち酸素収率87%とした場合には、本発明の方法で
は図中点Bで示すごとくアルゴン収率は60.5%となり、
酸素採取優先運転時の54.1%に比べをアルゴン収率を12
%向上させることができるのに対し、従来方法では図中
点Cで示すごとくアルゴン収率は59.4%となり、酸素採
取優先運転時の54.1%に比べをアルゴン収率は10%の向
上に止まる。また本発明方法でアルゴン収率の向上を従
来と同じ10%、即ちアルゴン収率59.4%とした場合に
は、図中点Dで示すごとく酸素収率87.4%となり、アル
ゴン採取優先時の87%と同程度であり、酸素収率の低下
を抑制することができる。
FIG. 2 shows the effect of controlling the improvement of the argon yield and the decrease of the oxygen yield in the argon collection priority operation. In the apparatus configuration in which the oxygen yield and the argon yield in the oxygen collection priority operation are the same, the present invention is applied. This is a comparison between the case where the method is applied and the case where the conventional method of discharging a part of the raw material air. That is, in the oxygen collection priority operation, both methods have the same oxygen yield as indicated by point A in the figure.
89% and an argon yield of 54.1% were obtained.
%, That is, when the oxygen yield is 87%, the argon yield becomes 60.5% as shown by the point B in the figure in the method of the present invention.
The argon yield is 12 compared to 54.1% in the oxygen sampling priority operation.
In contrast, in the conventional method, the argon yield is 59.4% as shown by the point C in the drawing, and the argon yield is only improved by 10% compared to 54.1% in the oxygen collection priority operation. In the case where the improvement of the argon yield by the method of the present invention is 10%, which is the same as the conventional case, that is, the argon yield is 59.4%, the oxygen yield is 87.4% as shown by the point D in the figure, and the oxygen yield is 87% when priority is given to argon collection. And a decrease in oxygen yield can be suppressed.

これを、例えば原料空気量53,600Nm3/h(タ−ビン流
量14,000Nm3/h)の装置における具体的な数値で表わす
と下表の通りんとなる。
This is shown in the table below, for example, in terms of specific numerical values in an apparatus having a raw material air amount of 53,600 Nm 3 / h (turbine flow rate of 14,000 Nm 3 / h).

次に第3図は、本発明の空気液化分離装置の第2実施
例を示すものである。
Next, FIG. 3 shows a second embodiment of the air liquefaction / separation apparatus of the present invention.

本実施例の空気液化分離装置30は、膨張タ−ビン5に
導入するタ−ビン流体Gtを、原料空気の一部At/及び又
は下部塔9から導出された空気Aoとしたものである。即
ち、圧縮,精製され、主熱交換器2で冷却された原料空
気Aを下部塔9に導入する管路31の途中に、弁32を有す
る分岐管33を設けるとともに、例えば下部塔9の塔底か
ら数段上の精留段部分に、弁34を有する導出管35を設
け、分岐管33の空気あるいは導出管35の空気のいずれか
を選択するか、又はこの分岐管33と導出管35を合流させ
て主熱交換器2の再熱流路2aに接続し、該再熱流路2aの
出口と膨張タービン5を接続したものであり、膨張タ−
ビン5の出口側には、前記実施例と同様に、それぞれ弁
25,26を有する下部導入路23と上部導入路24とが設けら
れている。
In the air liquefaction / separation apparatus 30 of this embodiment, the turbine fluid Gt introduced into the expansion turbine 5 is a part At / of the raw air and / or the air Ao derived from the lower tower 9. That is, a branch pipe 33 having a valve 32 is provided in the middle of a pipe 31 for introducing the raw material air A compressed and purified and cooled in the main heat exchanger 2 to the lower tower 9. An outlet pipe 35 having a valve 34 is provided in the rectification section several steps above the bottom, and either the air of the branch pipe 33 or the air of the outlet pipe 35 is selected, or the branch pipe 33 and the outlet pipe 35 are selected. Are connected to the reheat passage 2a of the main heat exchanger 2 and the outlet of the reheat passage 2a is connected to the expansion turbine 5.
Each of the outlets of the bottles 5 is provided with a valve as in the previous embodiment.
A lower introduction path 23 having 25 and 26 and an upper introduction path 24 are provided.

本実施例装置も、前記実施例装置と同様に、酸素採取
優先あるいはアルゴン採取優先に応じて下部導入路23と
上部導入路24のそれぞれの弁25,26を制御することによ
り、アルゴン採取優先運転におけるアルゴン収率の向上
と酸素収率の低下を抑制することができる。
The apparatus of this embodiment also controls the valves 25 and 26 of the lower introduction path 23 and the upper introduction path 24 in accordance with the priority of oxygen collection or the priority of argon collection in the same manner as the above-described apparatus, so that the argon collection priority operation is performed. In this case, the improvement in the argon yield and the decrease in the oxygen yield can be suppressed.

また、導出管35の下部塔9への取付け位置は、下部塔
9の構成,精留棚の構造,採取する製品の種類等各種条
件に応じて適宜設定することができる。即ち、導出管35
により導出される空気は、酸素富化組成,略空気組成,
窒素富化組成のいずれの場合も含むものであり、アルゴ
ン優先採取,酸素優先採取に応じて適宜選択することが
できる。
The position of the outlet pipe 35 to be attached to the lower tower 9 can be appropriately set according to various conditions such as the configuration of the lower tower 9, the structure of the rectification shelf, and the type of product to be collected. That is, the outlet pipe 35
Is derived from the oxygen-enriched composition, approximately air composition,
It includes any of the nitrogen-enriched compositions, and can be selected as appropriate according to the argon priority sampling and oxygen priority sampling.

第4図は、本発明の空気液化分離装置の第3実施例を
示すもので、膨張タ−ビンに導入する原料空気の一部を
昇圧し、膨張,降圧に際しての寒冷の発生量を増大させ
たものである。
FIG. 4 shows a third embodiment of the air liquefaction / separation apparatus according to the present invention, in which a part of the raw air introduced into the expansion turbine is pressurized to increase the amount of cold generated during expansion and pressure reduction. It is a thing.

この空気液化分離装置40に導入させる原料空気Aは、
圧縮,精製された後に分岐し、該分岐した原料空気の一
部Atが膨張タ−ビン制動ブロワ−41に導入されて昇圧さ
れる。昇圧後の原料空気Atは、アフタ−ク−ラ−42で常
温まで冷却されて主熱交換器2に導入され、中間温度ま
で冷却される。この中間温度の原料空気Atは、前記実施
例と同様に膨張タ−ビン5に導入され、膨張,降圧して
下部導入路23あるいは上部導入路24に、運転モードに応
じて適宜な割合で導入される。
The raw material air A introduced into the air liquefaction separation device 40 is
After being compressed and refined, it is branched, and a part At of the branched raw air is introduced into the expansion turbine braking blower 41 and pressurized. The pressurized raw material air At is cooled to normal temperature by the aftercooler 42, introduced into the main heat exchanger 2, and cooled to an intermediate temperature. The raw material air At at the intermediate temperature is introduced into the expansion turbine 5 in the same manner as in the previous embodiment, expanded and reduced in pressure, and introduced into the lower introduction passage 23 or the upper introduction passage 24 at an appropriate ratio according to the operation mode. Is done.

このように、膨張タ−ビン5に導入する前の原料空気
At(下部塔から導出した空気でも可能)を、あらかじめ
昇圧することにより、膨張タ−ビン5における発生寒冷
量を増大でき、例えば、液化酸素等の液製品を採取する
場合に好適である。
Thus, the raw material air before being introduced into the expansion turbine 5
The amount of cold generated in the expansion turbine 5 can be increased by increasing the pressure of At (also possible with air derived from the lower tower) in advance, which is suitable, for example, for collecting liquid products such as liquefied oxygen.

尚、以上各実施例の説明においては、本願発明の要旨
である膨張タービン部分を主に説明したが、他の構成機
器,操作方法等は、従来のこの種の空気液化分離装置と
同様に構成することができ、操作方法も通常行われてい
る手段により適宜行うことができる。例えば、膨張タ−
ビンに導入される空気が主熱交換器に導入される前の原
料空気から分岐して主熱交換器に導入され、中間温度ま
で冷却して導出した低温空気である場合も含むものであ
る。
In the above description of each embodiment, the expansion turbine portion, which is the gist of the present invention, has been mainly described. However, other components and operation methods are the same as those of this type of conventional air liquefaction / separation apparatus. The operation method can be appropriately performed by a commonly used means. For example, an expansion tar
This also includes the case where the air introduced into the bin is low-temperature air which is branched from the raw material air before being introduced into the main heat exchanger, introduced into the main heat exchanger, cooled to an intermediate temperature and led out.

また、アルゴン採取優先運転におけるアルゴン収率を
従来と同様にすれば、前述のごとく酸素収率を従来より
向上できるが、通常は、酸素ガスあるいは液化酸素より
も高価なアルゴンの収率向上を図り、アルゴンの動力原
単位を低減させる方が効果的である。
In addition, if the argon yield in the argon collection priority operation is the same as the conventional one, the oxygen yield can be improved as described above, but usually, the yield of argon, which is more expensive than oxygen gas or liquefied oxygen, is improved. It is more effective to reduce the power consumption unit of argon.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の空気液化分離方法は、
膨張タ−ビンで膨張した空気を、酸素あるいはアルゴン
の優先度に応じて上部塔の所定の位置に導入するから、
酸素採取優先運転の際には、従来と同様の酸素収率及び
アルゴン収率を得られるとともに、アルゴン採取優先運
転の際には、酸素収率の低下を従来と同様に維持した状
態でアルゴンの収率を向上させることができる。
As explained above, the air liquefaction separation method of the present invention
Since the air expanded by the expansion turbine is introduced to a predetermined position in the upper tower according to the priority of oxygen or argon,
In the oxygen collection priority operation, the same oxygen yield and argon yield as before can be obtained, and in the argon collection priority operation, the argon yield is maintained in a state where the decrease in oxygen yield is maintained as before. The yield can be improved.

また、本発明の装置は、膨張タ−ビンから上部塔に至
る導入回路に、上部塔の中段と上段に分岐する導入路
と、弁等の導入量調節手段を設けたので簡単な構成で上
記本発明の方法を実施することができ、設備費も安価で
あり、従来装置の改造も可能である。
In addition, the apparatus of the present invention has a simple configuration because the introduction circuit extending from the expansion turbine to the upper tower is provided with an introduction path branching into the middle and upper stages of the upper tower and an introduction amount adjusting means such as a valve. The method of the present invention can be performed, the equipment cost is low, and the conventional apparatus can be modified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す空気液化分離装置の
要部の系統図、第2図は酸素及びアルゴンのそれぞれの
優先運転における収率の変化を示す図、第3図は本発明
の第2実施例を示す空気液化分離装置の要部の系統図、
第4図は本発明の第3実施例を示す空気液化分離装置の
要部の系統図、第5図は従来の空気液化分離装置を示す
要部の系統図である。 2……主熱交換器、3……複精留塔、5……膨張タ−ビ
ン、6……上部塔、8……アルゴン塔、9……下部塔、
20,30,40……空気液化分離装置、21……分岐管、22……
導入回路、23……下部導入路、24……上部導入路、25,2
6……弁、33……分岐管、35……導出管、41……膨張タ
−ビン制動ブロワ−、A,At……原料空気、Ao……下部塔
から導出した空気、Ar……アルゴン、GO……酸素ガス
FIG. 1 is a system diagram of a main part of an air liquefaction / separation apparatus showing a first embodiment of the present invention, FIG. 2 is a view showing a change in yield in each priority operation of oxygen and argon, and FIG. System diagram of a main part of an air liquefaction separation device showing a second embodiment of the invention,
FIG. 4 is a system diagram of a main part of an air liquefaction / separation apparatus showing a third embodiment of the present invention, and FIG. 5 is a system diagram of a main part of a conventional air liquefaction / separation apparatus. 2 ... main heat exchanger, 3 ... double rectification column, 5 ... expansion turbine, 6 ... upper column, 8 ... argon column, 9 ... lower column,
20,30,40 …… Air liquefaction separator, 21… Branch pipe, 22 ……
Introductory circuit, 23 …… Lower introduction path, 24 …… Upper introduction path, 25,2
6 ... Valve, 33 ... Branch pipe, 35 ... Outflow pipe, 41 ... Expansion turbine braking blower, A, At ... Raw air, Ao ... Air out from the lower tower, Ar ... Argon , GO ... oxygen gas

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を圧縮,精製し、主熱交換器で冷
却して複精留塔に導入し、液化精留分離して酸素及びア
ルゴンを併産できる空気液化分離方法において、前記複
精留塔に導入される前の原料空気を分岐して、該分岐し
た一方の原料空気、または前記複精留塔の下部塔から導
出された空気の少なくともいずれか一方を冷却または加
温して中間温度とした後に膨張タ−ビンに導入し、複精
留塔の上部塔圧力に対応する圧力に膨張,降圧させた
後、該膨張タ−ビンで膨張,降圧した原料空気及び/又
は下部塔から導出された空気を、酸素を優先して採取す
る際には前記上部塔の塔内気相組成が空気組成と略同一
組成の精留段に導入し、アルゴンを優先して採取する際
には前記上部塔の塔内気相組成が空気組成より窒素富化
組成の精留段に導入し、さらに酸素及びアルゴンを同等
に採取する際には前記上部塔の両精留段に同時に導入す
ることを特徴とする空気液化分離方法。
An air liquefaction separation method capable of compressing and purifying raw air, cooling it in a main heat exchanger, introducing it into a double rectification column, and liquefying and separating to produce oxygen and argon simultaneously. The raw material air before being introduced into the rectification tower is branched, and at least one of the branched one of the raw material air and the air derived from the lower tower of the double rectification tower is cooled or heated. After being brought to the intermediate temperature, it is introduced into an expansion turbine, expanded and reduced to a pressure corresponding to the upper column pressure of the double rectification column, and then expanded and reduced in the expansion turbine by the raw air and / or lower column. When the air derived from is collected with priority on oxygen, the gas phase composition in the upper column is introduced into a rectification stage having substantially the same composition as the air composition. The gas phase composition in the upper tower is introduced into the rectification stage with a nitrogen-enriched composition rather than air composition Further cryogenic air separation method characterized by simultaneously introducing to both rectifying trays of the upper column when equally collected oxygen and argon.
【請求項2】前記分岐した一方の原料空気は、主熱交換
器で中間温度まで冷却され、該主熱交換器の途中から分
岐して導出された低温空気、又は主熱交換器に導入され
る前の原料空気から分岐して主熱交換器に導入され、中
間温度まで冷却して導出した低温空気であることを特徴
とする請求項1記載の空気液化分離方法。
2. The one of the branched raw material air is cooled to an intermediate temperature in a main heat exchanger, and is introduced into a low-temperature air branched out from the middle of the main heat exchanger or introduced into a main heat exchanger. The air liquefaction separation method according to claim 1, wherein the low temperature air is branched from the raw material air before being introduced, introduced into the main heat exchanger, and cooled to an intermediate temperature and led out.
【請求項3】前記分岐した一方の原料空気は、主熱交換
器で液化点付近まで冷却して導出した原料空気から分岐
し、該主熱交換器の再熱流路で中間温度まで加温された
低温空気であることを特徴とする請求項1記載の空気液
化分離方法。
3. One of the branched source airs is branched from the source air derived by cooling to a vicinity of a liquefaction point in a main heat exchanger, and is heated to an intermediate temperature in a reheat passage of the main heat exchanger. The air liquefaction separation method according to claim 1, wherein the low temperature air is used.
【請求項4】前記分岐した一方の原料空気は、主熱交換
器に導入される前の原料空気から分岐して昇圧機又は膨
張タ−ビン制動ブロワ−に導入され、昇圧した後に前記
主熱交換器で中間温度まで冷却された低温空気であるこ
とを特徴とする請求項1記載の空気液化分離方法。
4. One of the branched raw material air is branched from the raw material air before being introduced into the main heat exchanger and introduced into a booster or an expansion turbine braking blower. The air liquefaction separation method according to claim 1, wherein the air is low-temperature air cooled to an intermediate temperature in an exchanger.
【請求項5】圧縮,精製した原料空気を冷却する主熱交
換器と、該主熱交換器で液化点付近まで冷却した原料空
気を精留する複精留塔と、原料空気の一部または複精留
塔の下部塔から導出した空気の少なくともいずれか一方
を膨張,降圧させる膨張タ−ビンと、該膨張タ−ビンを
導出した原料空気または下部塔から導出した空気を前記
複精留塔の上部塔に導入する導入回路、及び該上部塔に
接続されたアルゴン塔とを備えた空気液化分離装置にお
いて、前記膨張タ−ビンを導出した空気を上部塔に導入
する導入回路は、上部塔の塔内気相組成が空気組成と略
同一の精留段に接続する導入路と、該塔内気相組成が空
気組成より窒素富化組成の精留段に接続する導入路とを
備えるとともに、該導入回路に、前記膨張タ−ビンを導
出した空気の両導入路への導入量を調節する導入量調節
手段を備えたことを特徴とする空気液化分離装置。
5. A main heat exchanger for cooling compressed and purified raw air, a double rectification column for rectifying raw air cooled to near a liquefaction point in the main heat exchanger, a part of raw air, An expansion turbine for expanding and reducing the pressure of at least one of the air derived from the lower column of the double rectification column, and a raw material air derived from the expansion turbine or air derived from the lower column. In the air liquefaction / separation apparatus including the introduction circuit for introducing the air into the upper tower, and the argon tower connected to the upper tower, the introduction circuit for introducing the air derived from the expansion turbine to the upper tower includes an upper tower. An introduction path connected to a rectification stage in which the gas phase composition in the tower is substantially the same as the air composition, and an introduction path connected to a rectification stage in which the gas phase composition in the column is more nitrogen-rich than the air composition, Introducing the inflating turbine to the introduction circuit Cryogenic air separation apparatus characterized by comprising the introduction amount adjusting means for adjusting the introduction amount of the road.
JP1096812A 1989-04-17 1989-04-17 Air liquefaction separation method and apparatus Expired - Fee Related JP2781983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096812A JP2781983B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096812A JP2781983B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH02275281A JPH02275281A (en) 1990-11-09
JP2781983B2 true JP2781983B2 (en) 1998-07-30

Family

ID=14175009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096812A Expired - Fee Related JP2781983B2 (en) 1989-04-17 1989-04-17 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2781983B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP4070023A1 (en) * 2019-12-06 2022-10-12 Linde GmbH Method for operating an air separation plant, having a distillation column system, a heat exchanger and an adsorber, and air separation plant

Also Published As

Publication number Publication date
JPH02275281A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
EP0412793B2 (en) Process and apparatus for producing nitrogen from air
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
JPH05231765A (en) Air separation
US2812645A (en) Process and apparatus for separating gas mixtures
AU656062B2 (en) Air separation
JP2781983B2 (en) Air liquefaction separation method and apparatus
JP2736543B2 (en) Air liquefaction separation method
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
JP2001165566A (en) Air separation
JPS6140909B2 (en)
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP4230094B2 (en) Nitrogen production method and apparatus
US5461872A (en) Air separation method and apparatus
JP3681187B2 (en) Air liquefaction separation method and apparatus
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JP3720863B2 (en) Air liquefaction separation method
JPH0399190A (en) Method of manufacturing oxygen
JPH0526114B2 (en)
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JPH0563718B2 (en)
JP3667889B2 (en) Nitrogen production method and apparatus
JPH05133682A (en) Method and device for liquefying separation of air
JP2917033B2 (en) Air liquefaction separation method and apparatus
JPH09303958A (en) Method and device for manufacturing nitrogen or nitrogen and oxygen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350