JP3010919B2 - Field effect type compound semiconductor device - Google Patents

Field effect type compound semiconductor device

Info

Publication number
JP3010919B2
JP3010919B2 JP4218059A JP21805992A JP3010919B2 JP 3010919 B2 JP3010919 B2 JP 3010919B2 JP 4218059 A JP4218059 A JP 4218059A JP 21805992 A JP21805992 A JP 21805992A JP 3010919 B2 JP3010919 B2 JP 3010919B2
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor device
compound semiconductor
algaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4218059A
Other languages
Japanese (ja)
Other versions
JPH0669246A (en
Inventor
高治 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4218059A priority Critical patent/JP3010919B2/en
Publication of JPH0669246A publication Critical patent/JPH0669246A/en
Application granted granted Critical
Publication of JP3010919B2 publication Critical patent/JP3010919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チャネルにヘテロ接合
を用いた高周波電力用電界効果型化合物半導体装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect compound semiconductor device for high frequency power using a heterojunction in a channel.

【0002】[0002]

【従来の技術】従来からのヘテロ接合をチャネルとした
電界効果型化合物半導体装置は、通常、電子供給層であ
るn−AlGaAsとヘテロ接合するGaAsとInG
aAsの界面に生じる2次元電子ガスを利用して動作さ
せる。特に、電子供給層中のドナー準位と空間的に分離
されるので、電気的散乱を受けにくいため、高速動作が
可能になり、現在では衛星通信用の低雑音素子として実
用化されるまでに至っている。
2. Description of the Related Art A conventional field-effect compound semiconductor device using a heterojunction as a channel usually includes GaAs and InG which are heterojunction with n-AlGaAs as an electron supply layer.
The device is operated using a two-dimensional electron gas generated at the interface of aAs. In particular, since it is spatially separated from the donor level in the electron supply layer, it is less susceptible to electrical scattering, enabling high-speed operation. Has reached.

【0003】ところで最近、これらのヘテロ接合をチャ
ネルとした電界効果型化合物半導体装置を高周波電力用
の電界効果半導体装置として開発する動きがでできた。
高周波電力用の素子とするためには、低雑音素子の開発
で行ってきた方法を修正しなければならない。そのため
に、まず大電流を得るために2次元電子ガス濃度を増大
させる方法をとってきている。
Recently, there has been a movement to develop field-effect compound semiconductor devices using these heterojunctions as channels as field-effect semiconductor devices for high-frequency power.
In order to make a device for high-frequency power, the method used in the development of a low-noise device must be modified. For this purpose, first, a method of increasing the two-dimensional electron gas concentration to obtain a large current has been adopted.

【0004】その従来例の素子断面図を図4に示す。図
4は、半絶縁性GaAs基板11上にアンドープAlG
aAsバッファ層12、その上に電子供給層であるn−
AlGaAs層13、その上にアンドープのGaAsも
しくはInGaAsのチャネル層14、その上に電子供
給層であるn−AlGaAs層15、それにゲート電極
18、キャップ層であるn−GaAs層にソース電極1
7、ドレイン電極19が設けられている。通常は、電子
供給層はチャネル層の上部のみに設けられるが、ダブル
へテロ接合のため、チャネル層の下部に設けられるn−
AlGaAs層13より生じる2次元電子ガスのため、
チャネル中の2次元電子ガス濃度は倍となる。
FIG. 4 shows a cross-sectional view of the conventional device. FIG. 4 shows an undoped AlG on a semi-insulating GaAs substrate 11.
aAs buffer layer 12, on which n-
An AlGaAs layer 13, an undoped GaAs or InGaAs channel layer 14, an n-AlGaAs layer 15 as an electron supply layer, a gate electrode 18, a source electrode 1 on an n-GaAs layer as a cap layer.
7, a drain electrode 19 is provided. Normally, the electron supply layer is provided only above the channel layer. However, due to the double hetero junction, the n-type layer provided below the channel layer is used.
Because of the two-dimensional electron gas generated from the AlGaAs layer 13,
The two-dimensional electron gas concentration in the channel is doubled.

【0005】図5に、従来のn−AlGaAs/GaA
s系へテロ接合FETのバンド図を示す。チャネルの両
界面に生じる2次元電子ガス濃度のため電流の増大が見
込める。しかし、チャネル層の下部に設けられるn−A
lGaAs層13は、高濃度であると活性化率が著しく
低下し、基板部分を電子が暗電流として流れ、素子特性
を劣化させる。また、高周波大信号動作させると、ゲー
ト以外の電極間にある上層n−AlGaAs層15中の
空乏層が2次元電子ガスに影響を及ぼすことが無視でき
なくなり、出力飽和や、低効率といった特性劣化が生じ
る。
FIG. 5 shows a conventional n-AlGaAs / GaAs.
1 shows a band diagram of an s-system heterojunction FET. An increase in current can be expected due to the two-dimensional electron gas concentration generated at both interfaces of the channel. However, the n-A provided below the channel layer
When the concentration of the lGaAs layer 13 is high, the activation rate is remarkably reduced, and electrons flow as dark current through the substrate, thereby deteriorating the device characteristics. In addition, when a high-frequency large-signal operation is performed, the depletion layer in the upper n-AlGaAs layer 15 between the electrodes other than the gate cannot affect the two-dimensional electron gas, and cannot be ignored. Occurs.

【0006】[0006]

【発明が解決しようとする課題】上述のように、ヘテロ
接合をチャネルとした電界効果型化合物半導体装置を高
周波電力用の電界効果半導体装置として開発するため
に、ダブルヘテロ接合により2次元電子ガス濃度を増大
させるが、チャネル層の下部に設けられる高濃度のn−
AlGaAs層は、2次元電子ガスを発生させるための
活性化率を著しく低下させるため、素子のピンチオフ特
性を劣化させ、基板部分を電子が暗電流として流れ、素
子特性を劣化させるという問題点があった。また、実際
に電力用として高周波大信号動作させると、ゲート以外
の電極間にある上層n−AlGaAs層中の空乏層が2
次元電子ガスに影響を及ぼすため、静動作時と違った状
態となり、電極間直下の2次元電子ガス濃度が著しく低
下し、早い出力飽和や、電力付加効率が低下するという
問題があった。
As described above, in order to develop a field-effect compound semiconductor device having a heterojunction as a channel as a field-effect semiconductor device for high-frequency power, a two-dimensional electron gas concentration is required by a double heterojunction. But the high concentration n-
Since the AlGaAs layer significantly lowers the activation rate for generating a two-dimensional electron gas, the pinch-off characteristics of the device are degraded, and electrons flow as dark currents through the substrate, deteriorating the device characteristics. Was. When a high-frequency large-signal operation is actually performed for power, the depletion layer in the upper n-AlGaAs layer between the electrodes other than the gate becomes 2
Since this affects the two-dimensional electron gas, the state becomes different from that during the static operation, and the concentration of the two-dimensional electron gas immediately below the electrodes is remarkably reduced.

【0007】本発明の目的は、チャネル層の下部に設け
られたn−AlGaAs層の活性化率が高く、高周波大
信号動作時において、ゲート以外の電極間にある上層n
−AlGaAs層中の空乏層が2次元電子ガスに影響を
及ぼさない電界効果型化合物半導体装置を提供すること
にある。
An object of the present invention is to provide an n-AlGaAs layer provided below a channel layer having a high activation rate and, during high-frequency large-signal operation, an upper layer n located between electrodes other than a gate.
-To provide a field-effect compound semiconductor device in which a depletion layer in an AlGaAs layer does not affect a two-dimensional electron gas.

【0008】[0008]

【0009】[0009]

【課題を解決するための手段】本発明 は、チャネルにダ
ブルヘテロ接合を用いたn−AlGaAs/GaAs系
またはn−AlGaAs/InGaAs系の電界効果型
化合物半導体装置において、チャネル層下層の電子供給
層またはドーピング層をドーピング濃度5×1017cm
-3以上、1×1018cm-3未満のn−GaAsとするこ
とを特徴としている。
SUMMARY OF THE INVENTION The present invention provides an n-AlGaAs / GaAs-based or n-AlGaAs / InGaAs-based field-effect compound semiconductor device using a double heterojunction for a channel, in an electron supply layer below a channel layer. Or doping layer with a doping concentration of 5 × 10 17 cm
-3 or more and less than 1 × 10 18 cm −3 n-GaAs.

【0010】[0010]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0011】図1は、本発明の電界効果型化合物半導体
装置の一実施例の断面図であり、図2は、そのバンド図
である。図1に示すように、半絶縁性GaAs基板1上
に、エピタキシャル成長を用いて、アンドープAlGa
Asバッファ層2、その上に電子供給層であるドーピン
グ濃度5×1017cm-3から1×1018cm-3のn−G
aAs層3、その上にアンドープのGaAsもしくはI
nGaAsのチャネル層4、その上に電子供給層である
n−AlGaAs層5、さらに、ゲート電極9以外には
ドーピング濃度2×1017cm-3から5×1017
-3、厚さ約500オングストロームから100オング
ストロームの低濃度n−GaAs層6、それにゲート電
極9、キャップ層であるn−GaAs層にソース電極
8、ドレイン電極10が設けられている。
FIG. 1 is a sectional view of an embodiment of a field-effect compound semiconductor device according to the present invention, and FIG. 2 is a band diagram thereof. As shown in FIG. 1, undoped AlGa is formed on a semi-insulating GaAs substrate 1 by epitaxial growth.
As buffer layer 2, and n-G having a doping concentration of 5 × 10 17 cm −3 to 1 × 10 18 cm −3 as an electron supply layer thereon
aAs layer 3, on which undoped GaAs or I
A channel layer 4 of nGaAs, an n-AlGaAs layer 5 as an electron supply layer thereon, and a doping concentration of 2 × 10 17 cm −3 to 5 × 10 17 c other than the gate electrode 9
m -3, a low concentration n-GaAs layer of 100 Angstroms to about 500 Angstroms thick 6, it gate electrode 9, the source electrode 8 in n-GaAs layer is a cap layer, the drain electrode 10 are provided.

【0012】本実施例では、チャネルにヘテロ構造を持
つn−AlGaAs/GaAs系ヘテロ接合FETまた
はn−AlGaAs/InGaAs系ヘテロ接合FET
において、電子供給層であるn−AlGaAs層5とn
−GaAsオーミックコンタクト層7の間にドーピング
濃度2×1017cm-3から5×1017cm-3、厚さ約5
00オングストロームから100オングストロームの低
濃度のドーピング層が設けられており、これで表面側の
ゲート電極以外の低濃度n−GaAs層6により、2次
元電子ガスが高周波大信号動作時のn−AlGaAs層
5中の空乏層の影響を受けず、2次電子ガス濃度を劣化
させることがない。
In this embodiment, an n-AlGaAs / GaAs heterojunction FET or an n-AlGaAs / InGaAs heterojunction FET having a heterostructure in the channel is used.
The n-AlGaAs layer 5 which is an electron supply layer and n
A doping concentration of 2 × 10 17 cm −3 to 5 × 10 17 cm −3 between the GaAs ohmic contact layer 7 and a thickness of about 5
A low-concentration doping layer of 00 to 100 Å is provided. With this, the low-concentration n-GaAs layer 6 other than the gate electrode on the front side allows the two-dimensional electron gas to be supplied to the n-AlGaAs layer during high-frequency large-signal operation. 5 is not affected by the depletion layer, and the secondary electron gas concentration is not deteriorated.

【0013】電子供給層とオーミックコンタクト層の間
に低濃度のドーピング層を設けたのは、次の理由によ
る。
The reason why the low-concentration doping layer is provided between the electron supply layer and the ohmic contact layer is as follows.

【0014】電子供給層とオーミックコンタクト層の間
にドーピング濃度2×1017cm-3から5×1017cm
-3、厚さ約500オングストロームから100オングス
トロームの低濃度のドーピング層を設けることにより、
n−AlGaAs層と2次元電子ガスが生じないように
なり、しかも保護膜との界面状態により完全に空乏化す
る。この空乏層は、n−AlGaAs層に及ばない。こ
の空乏層の幅は、ほぼ、低濃度のドーピング層の厚さに
対応している。これにより、高周波大信号動作時のゲー
ト直下のポテンシャルの変調によりゲート以外の電極間
にある上層n−AlGaAs層中の空乏層が2次元電子
ガスに影響を及ぼさないため完全にゲート直下の空乏層
と分離されるために、電力用として大きな出力が得られ
るのである。
The doping concentration between the electron supply layer and the ohmic contact layer is 2 × 10 17 cm -3 to 5 × 10 17 cm.
-3 , by providing a lightly doped layer having a thickness of about 500 Å to 100 Å,
The two-dimensional electron gas and the n-AlGaAs layer are not generated, and the depletion is completely caused by the state of the interface with the protective film. This depletion layer does not reach the n-AlGaAs layer. The width of this depletion layer approximately corresponds to the thickness of the lightly doped layer. As a result, the depletion layer in the upper n-AlGaAs layer between the electrodes other than the gate does not affect the two-dimensional electron gas due to the modulation of the potential immediately below the gate during high-frequency large signal operation. Therefore, a large output is obtained for electric power.

【0015】また、本実施例では、ダブルヘテロ構造を
持つn−AlGaAs/GaAs系ヘテロ接合FETま
たはn−AlGaAs/InGaAs系ヘテロ接合FE
Tにおいて、チャネル層下層の電子供給層のみをドーピ
ング濃度5×1017cm-3から1×1018cm-3のn−
GaAsとしており、これにより、チャネル層下層に多
くの2次元電子ガスが生じるようになり、同時に基板中
に3次元電子として暗電流に寄与するものが飛躍的に激
減する。
In this embodiment, an n-AlGaAs / GaAs heterojunction FET or n-AlGaAs / InGaAs heterojunction FE having a double heterostructure is used.
In T, only the electron supply layer below the channel layer is doped with n-type with a doping concentration of 5 × 10 17 cm −3 to 1 × 10 18 cm −3 .
Since GaAs is used, a large amount of two-dimensional electron gas is generated in the lower layer of the channel layer. At the same time, those that contribute to dark current as three-dimensional electrons in the substrate are drastically reduced.

【0016】チャネル層下層の電子供給層のみをドーピ
ング濃度5×1017cm-3から1×1018cm-3のn−
GaAsとしたのは、次の理由による。
Only the electron supply layer below the channel layer is doped with an n-type impurity having a doping concentration of 5 × 10 17 cm −3 to 1 × 10 18 cm −3 .
The reason for using GaAs is as follows.

【0017】図3は、n−GaAsにドーピングした濃
度(横軸)と発生するキャリア濃度(縦軸)との活性化
率を示したグラフである。ドーピング濃度が5×1017
cm-3から1×1018cm-3の時、約活性化率が60〜
80%の高い割合となっていることがわかる。ところ
が、従来のように2×1018cm-3以上の高ドーピング
の時、活性化率が45%以下に低下することがわかる。
つまり、n−GaAs中のドナー準位から生じる2次元
電子ガスは、できるだけチャネル層界面に存在するため
に、n−GaAs中や、基板中の3次元的バルク電子と
して振舞わなくなる。そのために、暗電流の存在確立が
激減し、素子のピンチオフ特性を劣化させることはなく
なる。また、できるだけ多くの2次元電子ガスがチャネ
ル下層界面に存在するために、高出力用途としての電流
増大に寄与する。
FIG. 3 is a graph showing the activation rates of the concentration (horizontal axis) of n-GaAs doping and the concentration of generated carriers (vertical axis). Doping concentration is 5 × 10 17
When the cm -3 of 1 × 10 18 cm -3, 60~ about activation rate
It can be seen that the ratio is as high as 80%. However, it can be seen that the activation rate is reduced to 45% or less at the time of high doping of 2 × 10 18 cm −3 or more as in the conventional case.
That is, the two-dimensional electron gas generated from the donor level in n-GaAs exists at the channel layer interface as much as possible, so that it does not behave as three-dimensional bulk electrons in n-GaAs or in the substrate. Therefore, the existence probability of the dark current is drastically reduced, and the pinch-off characteristics of the element are not deteriorated. In addition, since as much two-dimensional electron gas as possible exists at the channel lower layer interface, it contributes to an increase in current for high-power applications.

【0018】[0018]

【発明の効果】以上の実施例から明らかのように、本発
明によれば、電子供給層とオーミックコンタクト層の間
にドーピング濃度2×1017cm-3から5×1017cm
-3、厚さ約500オングストロームから100オングス
トロームの低濃度のドーピング層を設けることにより、
低濃度のドーピング層と保護膜との界面に発生する深い
準位の影響をなくし、低濃度のドーピング層を完全に空
乏化し、かつ、チャネル層上層の界面に発生する2次元
電子ガス濃度を低減しないために、高周波大信号動作時
においてn−AlGaAs層中の空乏層の影響を受けな
い。
As is clear from the above embodiments, according to the present invention, the doping concentration between the electron supply layer and the ohmic contact layer is 2 × 10 17 cm -3 to 5 × 10 17 cm.
-3 , by providing a lightly doped layer having a thickness of about 500 Å to 100 Å,
Eliminates the effect of deep levels generated at the interface between the low-concentration doping layer and the protective film, completely depletes the low-concentration doping layer, and reduces the concentration of two-dimensional electron gas generated at the interface above the channel layer Therefore, it is not affected by the depletion layer in the n-AlGaAs layer at the time of high frequency large signal operation.

【0019】また、従来より、2次元電子ガス濃度を増
大させるために行われているダブルヘテロ構造につい
て、n−AlGaAs/GaAs系ヘテロ接合FETま
たは、n−AlGaAs/InGaAsヘテロ接合FE
Tのチャネル層下層の電子供給層のみをドーピング濃度
5×1017cm-3から1×1018cm-3のn−GaAs
とすることにより、特にチャネル層下層の2次元電子ガ
ス濃度を高めつつ、基板中に流れる暗電流を激減させ
る。これは、素子のピンチオフ特性を向上させるもので
ある。
Further, regarding a double hetero structure conventionally used to increase the two-dimensional electron gas concentration, an n-AlGaAs / GaAs heterojunction FET or an n-AlGaAs / InGaAs heterojunction FE is used.
Only the electron supply layer below the channel layer of T is doped with n-GaAs having a doping concentration of 5 × 10 17 cm −3 to 1 × 10 18 cm −3.
By doing so, the dark current flowing through the substrate is drastically reduced while increasing the two-dimensional electron gas concentration particularly in the lower layer of the channel layer. This is to improve the pinch-off characteristics of the device.

【0020】本発明は、チャネルにヘテロ接合を用いた
高周波電力用電界効果型化合物半導体装置の高出力化、
高効率化に寄与するところきわめて大である。
According to the present invention, there is provided a field-effect type compound semiconductor device for high-frequency power using a heterojunction in a channel,
It is extremely large that contributes to higher efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電界効果型化合物半導体装置の素子断
面図である。
FIG. 1 is a sectional view of an element of a field-effect compound semiconductor device of the present invention.

【図2】本発明の電界効果型化合物半導体装置のバンド
図である。
FIG. 2 is a band diagram of the field-effect compound semiconductor device of the present invention.

【図3】n−GaAsにドーピングしたキャリア濃度と
発生する自由電子濃度との活性化率を示す図である。
FIG. 3 is a diagram showing the activation rates of the concentration of carriers doped into n-GaAs and the concentration of generated free electrons.

【図4】従来の電界効果型化合物半導体装置の素子断面
図である。
FIG. 4 is an element cross-sectional view of a conventional field-effect compound semiconductor device.

【図5】従来の電界効果型化合物半導体装置のバンド図
である。
FIG. 5 is a band diagram of a conventional field-effect compound semiconductor device.

【符号の説明】[Explanation of symbols]

1,11 半絶縁性GaAs基板 2,12 アンドープAlGaAsバッファ層 3 n−GaAs層 13 n−AlGaAs層 4,14 チャネル層 5,15 n−AlGaAs層 6 低濃度n−GaAs層 7,16 n−GaAsオーミックコンタクト層 8,17 ソース電極 9,18 ゲート電極 10,19 ドレイン電極 Reference Signs List 1,11 semi-insulating GaAs substrate 2,12 undoped AlGaAs buffer layer 3 n-GaAs layer 13 n-AlGaAs layer 4,14 channel layer 5,15 n-AlGaAs layer 6 low concentration n-GaAs layer 7,16 n-GaAs Ohmic contact layer 8,17 Source electrode 9,18 Gate electrode 10,19 Drain electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チャネルにダブルヘテロ接合を用いたn−
AlGaAs/InGaAs系の電界効果型化合物半導
体装置において、チャネル層下層の電子供給層のみをド
ーピング濃度5×1017cm-3以上、1×1018cm-3
未満のn−GaAsとすることを特徴とする電界効果型
化合物半導体装置。
1. An n-type transistor using a double heterojunction in a channel.
In an AlGaAs / InGaAs-based field-effect compound semiconductor device, only the electron supply layer below the channel layer has a doping concentration of 5 × 10 17 cm −3 or more and 1 × 10 18 cm −3.
A field-effect compound semiconductor device characterized by having n-GaAs of less than.
【請求項2】チャネルにダブルヘテロ接合を用いたn−
AlGaAs/GaAs系の電界効果型化合物半導体装
置において、チャネル層下層のドーピング層をドーピン
グ濃度5×1017cm-3以上、1×1018cm-3未満の
n−GaAsとすることを特徴とする電界効果型化合物
半導体装置。
2. An n-type transistor using a double heterojunction for a channel.
In the AlGaAs / GaAs field effect compound semiconductor device, the doping layer below the channel layer is made of n-GaAs having a doping concentration of 5 × 10 17 cm −3 or more and less than 1 × 10 18 cm −3. Field-effect compound semiconductor device.
JP4218059A 1992-08-18 1992-08-18 Field effect type compound semiconductor device Expired - Lifetime JP3010919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218059A JP3010919B2 (en) 1992-08-18 1992-08-18 Field effect type compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218059A JP3010919B2 (en) 1992-08-18 1992-08-18 Field effect type compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH0669246A JPH0669246A (en) 1994-03-11
JP3010919B2 true JP3010919B2 (en) 2000-02-21

Family

ID=16714004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218059A Expired - Lifetime JP3010919B2 (en) 1992-08-18 1992-08-18 Field effect type compound semiconductor device

Country Status (1)

Country Link
JP (1) JP3010919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821387A2 (en) 2006-02-20 2007-08-22 Fujitsu Ten Limited Charging control apparatus, charging control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100243A (en) * 1986-10-16 1988-05-02 Fuji Heavy Ind Ltd Fuel injection device
JP5737121B2 (en) 2011-10-07 2015-06-17 富士通株式会社 Case and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821387A2 (en) 2006-02-20 2007-08-22 Fujitsu Ten Limited Charging control apparatus, charging control method

Also Published As

Publication number Publication date
JPH0669246A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
JP2581355B2 (en) Complementary heterojunction field-effect transistor with anisotropic N + gate for P-channel devices
US4641161A (en) Heterojunction device
JPH05275463A (en) Semiconductor device
JP2003218123A (en) Heterojunction bipolar transistor and semiconductor integrated circuit
EP0555886A2 (en) Hetero-junction field effect transistor
US7144765B2 (en) Semiconductor device with Schottky electrode including lanthanum and boron, and manufacturing method thereof
JP3107031B2 (en) Field effect transistor
US8299499B2 (en) Field effect transistor
EP0482726B1 (en) Heterojunction field-effect transistor
JPH0815213B2 (en) Field effect transistor
JP3439578B2 (en) Semiconductor device and manufacturing method thereof
JP3010919B2 (en) Field effect type compound semiconductor device
JP2000349096A (en) Compound field effect transistor and its manufacture
JPH06188271A (en) Field effect transistor
US5408111A (en) Field-effect transistor having a double pulse-doped structure
JP2669327B2 (en) Field effect transistor
US6184546B1 (en) High barrier gate and tri-step doped channel field-effect transistor
JPH06244218A (en) Compound semiconductor device
JPH05343435A (en) Semiconductor device
JP3383057B2 (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
JP2003347307A (en) Semiconductor device
JPH10116837A (en) Field effect type semiconductor device
JPH06302625A (en) Field effect transistor and manufacture thereof
JPH05175246A (en) Hetero-junction field-effect transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13