JP3008873B2 - 信号伝送装置 - Google Patents
信号伝送装置Info
- Publication number
- JP3008873B2 JP3008873B2 JP9020227A JP2022797A JP3008873B2 JP 3008873 B2 JP3008873 B2 JP 3008873B2 JP 9020227 A JP9020227 A JP 9020227A JP 2022797 A JP2022797 A JP 2022797A JP 3008873 B2 JP3008873 B2 JP 3008873B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- transmission line
- circuit
- point
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Dc Digital Transmission (AREA)
- Small-Scale Networks (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
素子間(例えばCMOS等により構成されたデジタル回
路間又はその機能ブロック間)での信号伝送のための技
術に関し、特に、複数の素子が同一の伝送線に接続され
るバス伝送を高速に行うための技術に関するものであ
る。
ジタル回路間の信号伝送を高速に行うための技術とし
て、信号振幅を1Vのような小振幅で伝達する低振幅イ
ンタフェースに関する技術があげられる。
て、GTL(Gunning transceiver logic)インタフェー
スやCTT(Center tapped termination)インタフェー
スがある。
は、例えば日経エレクトロニクス9月27日号P269
〜290(日経BP社、平成5年発行)に詳しく記載さ
れている。
実現するには信号振幅を小さくするとともに、インピー
ダンス整合をとったバス設計を行うことが必要である。
よって、信号波形の立ち上がり速度や立ち下がり速度が
早まることにより、インピーダンスの不整合による波形
歪が無視できなくなっている。このため、インピーダン
スの整合設計はますます重要な課題となる。
従来の技術の1例である図1に示す例で説明する。
を示す。終端電源60,61及び終端抵抗50,51に
より終端された伝送線路100には、送出回路ブロック
1と受信回路ブロック2,3,4が接続される。
ーダンスは50Ω、分岐配線11〜14のインピーダン
スは50Ω、終端抵抗50、51はそれぞれ50Ω、終
端電源60、61は0.5V、そして送出回路21のオ
ン抵抗は10Ωとする。
伝送線路11を1V電源と接続し、Low出力時にはグ
ランド、すなわち0Vと接続する回路であり、また図中
の32〜34は受信回路とする。
出力からHigh出力に切り替わるとき、図中の各点に
信号がどのように伝わるかを説明する。
ている時の伝送線路100の電位を求めると、このとき
の伝送線路の電圧は終端電源0.5Vを終端抵抗50、
51と送出回路21のオン抵抗によって分圧された電圧
となるから、 0.5×10/(10+25)=0.14(V) である。
へと切り替え、信号が図1のA点に伝わるときの電位を
求める。
1の電源1Vが送出回路のオン抵抗と伝送線路11のイ
ンピーダンス50Ωとによって分圧されるため、A点で
の電位上昇分は 1×50/(50+10)=0.83(V) となる。さきに求めた初期電圧0.14Vをこの上昇分
に加えた0.97V(V)が求めるA点における電位で
ある。
点B点に到達したときを考える。
と、左右2方に分かれているため、伝送線路11から見
た伝送線路100の見かけ上のインピーダンスは、伝送
線路100のインピーダンス50Ωの半分、すなわち2
5Ωに見える。一方、伝送線路11のインピーダンスは
50Ωであるので、B点においてインピーダンスの不整
合による反射が起こる。
を求めると (50ー25)/(50+25)=0.33 となり、A点に伝わった0.83Vの信号振幅のうち、
1/3に相当する振幅0.28Vの信号が反射し、送信
回路側に戻る。残りの振幅0.55Vの信号が一回目の
透過波となって伝送線路100に伝わる。よって、透過
信号の電位はこの0.55Vに初期電位を加えた電位、
すなわち0.69Vとなる。
送信回路に到達すると全反射をし、再びB点に到達す
る。このうち2/3が伝送線路100に出て、1/3が
再び伝送線路11に戻る。このように信号は伝送線路1
1を幾度も往復し、その都度、B点に到達した波形は、
その2/3を伝送線路100に出力する。こうして、A
点に伝わった0.83Vの振幅を少しづつ伝送線路10
0に伝えていくのである。
号に注目する。この伝送線路100に伝わった0.69
Vの信号がC点に伝わると、前方に50Ωの伝送線路が
2本見え、前方の合成インピーダンス25Ωと、いまま
で伝わってきた伝送線路のインピーダンス50Ωとのイ
ンピーダンスの不整合による反射が起こる。
幅0.55Vに透過率2/3(=1−1/3)を掛け、
初期電位を加えた電位となる。すなわち、0.55×2
/3+0.14=0.50(V)となる。
ぞれの電位は0.38(V)、0.30(V)となる。
のが図2である。図2において、(a)は図1に示す点
Cに着目し、点Cに入ってくる信号であるB点と点Cか
ら出て行く信号である点Dと点Eの信号を示したもので
あり、説明のため点Aの信号も示している。同様に
(b)は点Eに着目した信号波形を示した図、(c)は
点Gに着目した信号波形を示した図である。図2中、2
01は図1におけるA点の信号波形,202はB点,2
03はC点,204はD点,205はE点,206はF点,
207はG点,208はH点の信号波形を示している。
信号の立ち下がり時においても、同様のことがおこり、
そのときの信号波形は図3のようになる。図3において
も、201から208はそれぞれ図1におけるA点から
H点までの信号波形を示す。
と、送出回路21からの最初の波形は受信回路におい
て、みな、信号のHigh、Lowを確定する基準電圧
Vref(上記条件では0.5V)を越えられないこと
がわかる。
内に入った信号は、伝送線路11と同様、分岐配線内で
反射を繰り返し、反射波形が分岐点に戻ってきたとき、
信号の2/3が伝送線路100に出る。これが、伝送線
路100における波形の歪の原因になる。
て反射が起こり、それぞれの反射による電位降下が重な
ることで、送出回路の遠方での信号電位の上昇が遅れ、
その結果、遅延時間がを増え、高速伝送を不可能となる
わけである。
は送出回路のオン抵抗を特殊な値である100Ωにする
ことで、送出回路に供給される電源電圧に3.3Vを与
えても伝送線上で1V振幅を実施しているが、オン抵抗
を特殊な値とすることは、現在広く使われている10Ω
前後のオン抵抗を持つトランジスタを無意味なものとし
てしまう。
い値とすることは、送出回路で消費する電力を大きくす
ることとなり、消費電力が増大するという問題もある。
受信回路部分で反射し、再び伝送路100に入り込むこ
との考慮が成されておらず、信号波形の歪みの問題が残
る。
持った伝送線路において、伝送線路での信号電位の落ち
込みの抑え込みと分岐配線内での反射の繰り返しの防止
及びバス上の低振幅を実現し、高速に信号の伝送を行な
うことが可能な信号伝送回路を提供することにある。
に、送出回路と前記送出回路によって作られた信号を伝
えるための伝送線路とを有する1つ以上のユニットと、
受信回路と前記受信回路に入力する信号を伝えるための
伝送線路とを有する1つ以上のユニットと、前記ユニッ
ト間を伝達するための伝送線路とから構成される信号伝
送回路において、前記ユニット間伝達用伝送線路の特性
インピーダンス値またはその近傍の抵抗値を持つ素子に
よって前記ユニット間伝達用伝送線路の終端をおこな
い、さらに前記ユニット内伝送線路のインピーダンスか
ら前記ユニット間伝達用伝送線路のインピーダンスの半
分の値を引いた値またはその近傍の抵抗値を持つ素子
を、前記ユニット内の伝送線路と前記ユニット間信号伝
達用伝送線路との間に設ける。
の出力信号または入力信号を伝えるための伝送線路とを
有する2つ以上のユニットと、前記ユニット間を伝達す
るための伝送線路とから構成される信号伝送回路におい
て、前記ユニット間伝達用伝送線路の特性インピーダン
ス値またはその近傍の抵抗値を持つ素子によって前記ユ
ニット間伝達用伝送線路の終端をおこない、さらに前記
ユニット内伝送線路のインピーダンスから前記ユニット
間伝達用伝送線路のインピーダンスの半分の値を引いた
値またはその近傍の抵抗値を持つ素子を、前記ユニット
内伝送線路と前記ユニット間信号伝達用伝送線路との間
に設けるユニット間伝達用伝送線路の特性インピーダン
ス値またはその近傍の抵抗値を持つ素子によって前記ユ
ニット間伝達用伝送線路の終端を行ない、ユニット内伝
送線路のインピーダンスからユニット間伝達用伝送線路
のインピーダンスの半分の値を引いた値またはその近傍
の抵抗値を持つ素子を、ユニット内の伝送線路とユニッ
ト間信号伝達用伝送線路との間に設けることにより、伝
送線路と分岐配線との間に挿入した抵抗と、終端抵抗と
により分圧される小振幅の信号を伝送線路に伝えること
になり、また上記抵抗により分岐配線内での信号の反射
の繰り返しを防止することができ、分岐配線を持った伝
送線路において高速伝送が可能となる。
用いて詳細に説明する。
に本発明を適用した一実施例の基本ブロック図を示す。
出回路ブロック、2〜4は受信回路32〜34をもつ受
信回路ブロックである。各々の回路ブロックにはそれぞ
れ抵抗80〜83と伝送線路11〜14を有する。また
伝送線路100は各回路ブロック1〜4を接続し、さら
に伝送線路100の特性インピーダンス値、またはその
近傍の抵抗値をもつ抵抗50、51によって終端されて
いる。
が、抵抗1つで終端した片端終端でもよい。また、受信
回路を持つ受信回路ブロックの数が3の場合を示してい
るが、受信回路を持つブロックの数は1以上であれば、
本発明は適用できる。
す。この送出回路はプルアップ・トランジスタ70とプ
ルダウン・トランジスタ71とで構成されるプッシュプ
ル型送出回路である。なお、図5ではプルアップ・トラ
ンジスタ70にNMOSを用いた場合の図を示したが、
NMOSに限定されるものではなくPMOSでもよい。
送出回路は、従来技術で提げた文献に詳細に示されてい
る。そこで使われている送出回路ではオン抵抗と終端抵
抗との分圧によって小振幅を実現するために100Ω前
後の高いオン抵抗をもったトランジスタを使っている。
これに対し、本発明では現在広く使われている10Ω前
後のオン抵抗を持つトランジスタを使用することが出来
る。従来の送出回路が使用できるのは、本発明によって
追加した抵抗80〜83とこの10Ω前後のオン抵抗と
の和が、先のオン抵抗100Ωと近いために、伝送線路
上の振幅は同等の大きさとなるからである。
抵抗を50Ω、分岐配線のインピーダンスを100Ω、
終端電源を1.5V、送出回路に供給されている電源を
3Vとすると、オン抵抗100Ωのトランジスタを使用
した前記文献の伝送路では信号振幅は0.6Vとなり、
図4で示した伝送線路での振幅0.68Vとほぼ等しい
値になる。
5Ωとした。この抵抗値の決め方は後で明らかにする。
00Ωから10Ωへと下げたことにより、送出回路で消
費する電力を削減することが出来る。例えば、先の条件
では、100Ωのオン抵抗を使用した従来の場合、消費
電力は14.4mWであるが、本発明によれば1.9m
Wと大幅に削減することが出来る。
信回路は、基準電圧に対し入力電圧が高いか、低いかに
よって入力信号のHigh、Lowを判定する差動型受
信回路である。ここで用いる基準電圧は受信回路を構成
する集積回路内で作ることもできるが、集積回路内部で
発生した電源ノイズや外部より入った電源ノイズなどに
より電源が変動すると、これにともない基準電圧も変動
するため、基準電圧は外部より供給するのがより良い。
この受信回路についても先に提示した文献に開示されて
いる。
路は1つしか記載されていないが、本発明は受信回路の
数に制限されるものではない。
て、抵抗80〜83の抵抗値を以下の方法で設定する。
例えば、抵抗80の抵抗値は伝送線路11のインピーダ
ンスからバス100のインピーダンスの半分を引いた値
にする。バス100のインピーダンスの半分とするの
は、送出回路ブロックからの信号はバス100との接点
Bにおいて2方向に分岐するからである。
s、バス100のインピーダンスをZ0、抵抗80の抵
抗値をRmとすれば、 Rm=Zs−Z0/2 (1) とする。
0とバス100との合成インピーダンスは伝送線路11
自身のインピーダンスと等しくなり、分岐配線内での反
射の繰り返しを防止することができる。
定する。これにより、他のブロックにおいても、前記し
たブロック1と同等の効果をもたらすことが出来る。
求めた抵抗値の抵抗によってのみ有効なものではなく、
式(1)で求めた抵抗値の近傍であれば、十分有効なも
のである。
るために、図4の回路図を用いて送出回路21がLow
出力からHigh出力へと切り替わった時に図中の各点
にどのような波形が伝わるのかを以下に説明する。
ンスを50Ω、分岐配線11〜14のインピーダンスを
100Ω、終端抵抗50、51をそれぞれ50Ω、終端
電源60、61を1.5V、そして送出回路21のオン
抵抗を10Ωとする。
伝送線路を3V電源と接続し、Low出力時にはグラン
ド、すなわち0Vと接続する回路である。また図中の3
2〜34を受信回路とする。
(1)より75Ωである。
ときの伝送線路100の電位を求める。
抵抗50、51と抵抗80、そして送出回路21のオン
抵抗によって分圧された電圧となるから 1.5×(75+10)/(10+75+25)=1.
16(V) となる。
号はB点で反射せずに、すべて伝送線路100に伝わ
る。このため、送出回路の出力をLowからHighへ
と切り替えたときのB点に伝わる信号の電位は、終端電
源1.5Vと送出回路21の電源3Vを終端抵抗50、
51、抵抗80、送出回路21のオン抵抗によって分圧
された電圧となるから、B点での信号電位は 1.5+(3ー1.5)×25/(10+75+25)
=1.84V となる。すなわち、B点に伝わる信号の振幅は、 1.84−1.116==0.68V である。
8Vの信号はC点に伝わると、前方に50Ωの伝送線路
と75Ωの抵抗と100Ωの伝送線路が見えるが、この
2本の配線の合成インピーダンス38.9Ωと、いまま
で伝わってきた伝送線路のインピーダンス50Ωとが異
なるため、インピーダンスの不整合による反射が起こ
る。
75 となり、E点を通過する信号の電位は、B点の信号振幅
0.68Vに透過率0.875を掛け、初期電位を加え
た電位となる。すなわち、0.68×0.875+1.
16=1.76(V)となる。
ぞれの電位は1.68(V)、1.61(V)となる。
7において、(a)は図4に示す点Cに着目し、点Cに
入ってくる信号である点Bと、点Cから出て行く信号で
ある点Dと点Eの信号波形を示したものである。同様に
(b)は点Eに着目した信号波形を示した図、(c)は
点Gに着目した信号波形を示した図である。図7中、7
02は図4における点Bの信号波形,703はC点,70
4はD点,705はE点,706はF点,707はG点,7
08はH点の信号波形を示している。信号の立ち下がり
時においても、同様のことがおこり、そのときの信号波
形は図8のようになる。図8においても、702から7
08はそれぞれ図4におけるB点からH点までの信号波
形を示す。
伝送回路を用いると、各分岐点における送出回路21か
らの最初の信号は、すべて基準電圧(上記条件では1.
5V)を越えていることがわかる。
例で用いた信号伝送回路を用いても、基準電圧を越える
ことが出来なくなる。この場合についての対策について
は実施例3で明らかにする。
に入った信号は、それぞれ受信回路のところで全反射
し、分岐点に戻るのだが、今回の回路ではインピーダン
ス整合がとれているため、分岐点で反射することなく1
回で全電位を伝送線路100に伝えることが出来る。
入した抵抗によって、反射による電位降下が大幅に削減
でき、送出回路から遠い受信回路での信号電位落ち込み
もわずかなものになっている。
路における信号の低振幅化と高速伝送を同時に実現して
いる。
ピーダンスと各ブロック内の伝送線路のインピーダンス
を変えることにより、自由に設計することが出来る。例
えば、送出回路のオン抵抗が10Ωの場合、ブロック内
伝送線路のインピーダンスを100Ω、そして伝送線路
100のインピーダンスを25Ωとすると、伝送線路上
の信号振幅は、抵抗80〜83が87.5Ωとなるの
で、 1.5×20/(20+100+10)×2=0.34
(V) となる。このときの波形を図18、図19に示す。図中
の702から708は図4におけるB点からH点の信号
波形を示す。
かも落ち込みの小さな波形が得られていることがわか
る。
容量による伝送線路100のインピーダンス低下を低減
する効果もある。すなわち、伝送線路100と回路ブロ
ック1〜5との間に抵抗を挿入すると、回路ブロック内
の容量は抵抗を通して見えるため、この結果、伝送線路
のインピーダンスの低下は抑えられる。
ると、動作中の伝送線路にボードを新たに追加したり、
実装されているボードを抜き取る場合、すなわち活線挿
抜を行うときも本発明は有効な効果を生む。例えば、L
ow信号が伝わっている伝送線路にHighレベルに充
電されたボードを挿入する場合を考える。このとき、ボ
ード内の容量の電位と伝送線路の電位とが異なるため
に、ボードから伝送線路に電流が流れる。このときに流
れた電流が伝送線路に伝わり波形歪となって伝送線路
上、さらには分岐配線内の受信回路までで伝わる。 こ
の波形歪が基準電圧を越えた電位になると、受信回路は
High信号が伝わってきたものと認識して誤動作をす
る。
送線路において活線挿抜を行った時の波形である。
を用いて活線挿抜を行ったときの波形を示す。これらの
図より明らかのように、活線挿抜による波形歪も本発明
によって削減することができる。
向用伝送線路に本発明を適用した一実施例を説明する。
示す。回路ブロック1〜4には送出回路21〜24と受
信回路31〜34と抵抗80〜83と伝送線路11〜1
4を備える。伝送線路100は各回路ブロック1〜4を
接続し、さらに伝送線路100の特性インピーダンス値
の抵抗値をもつ抵抗50、51によって終端する構成で
ある。
が、抵抗1つで終端した片端終端でもよい。また、図1
1ではブロックの数が4の場合を示しているが、ブロッ
クの数は2以上であれば、本発明は適用できる。
回路21〜24と受信回路31から34の構成は、図
5、図6で説明したものと同じである。また、抵抗80
から83の値も図4で示す実施例1における決め方と同
様である。更に、回路ブロック1から信号を発する場合
を想定した場合に、点Aから点Hにおける信号波形は、
実施例1と同様である。
回路及び受信回路を有する構成において、抵抗値を前述
の式(1)で求めた抵抗値またはその近傍の値の抵抗値
とすることにより、送出回路の切り替えに伴う待ち時間
を短縮することができる。以下では、図11に示す回路
構成において、送出回路の切替動作を行なったときの信
号波形の変化について示す。
う。
力する。
21をハイ・インピーダンスにし、また同時に送出回路
24よりHigh信号を出力する。
出回路21近傍の伝送線路では送出回路24からのHi
gh信号が伝わってくるまでの間、終端電位によって信
号電位は落ち込み、この落ち込み波形が伝送線路を経て
各分岐配線に伝わる。
が無い従来の伝送線路の場合を図12に、本発明で提供
した伝送線路で評価した結果を図13に示す。
ト1の隣にあるユニット2の受信回路32における入力
部での波形である。
線路においては分岐配線内における反射の繰り返しの影
響と送出回路の切り替えに伴う信号の落ち込みの影響が
かさなり、受信回路が入力信号を取り込めるのは、送出
回路が切り替わってから2Tdの時間の後であることが
わかる。ここでTdとは信号が伝送線路の端から端まで
伝わる時間であり、ここでは約6nsである。
送出回路が切り替わってからTd待てば取り込むことが
できる。
替えに伴う待ち時間を2TdからTdへと短縮すること
ができる。
への切り替えについて説明を行ったが、LowからLo
w、LowからHigh、HighからLowのすべて
の切り替えにおいても同様である。またこの効果は切り
替わる送出回路には依存せずすべての組み合わせにおい
て有効である。
1、2において、分岐配線の先にある容量が大きい場合
や分岐配線の本数が多い場合に有効な発明を説明する。
単一方向用伝送線路における本実施例を説明する基本ブ
ロック図を図14に、また双方向用伝送路における本実
施例を説明する基本ブロック図を図15に示す。図14
においては回路ブロック1に送出回路21があり、回路
ブロック2〜4には受信回路32〜34がある。さらに
各ブロックに抵抗80〜83と伝送線路11〜14があ
る。また図15においては、回路ブロック1〜4には送
出回路21〜24と受信回路31〜34とがあり、さら
に抵抗80〜83と伝送線路11〜14がある。また図
14、図15とも伝送線路100は各回路ブロック1〜
4を接続し、さらに伝送線路100の特性インピーダン
ス値の抵抗値をもつ抵抗50、51によって終端されて
いる。
例を示したが、抵抗1つで終端した片端終端でもよい。
また、図14、15ではブロックの数が4の場合を示し
ているが、ブロックの数は2以上であれば、本発明は適
用できる。
抵抗である。
ロック図を用いてスイッチの動作、およびその効果につ
いて説明を行い、それ以外は実施例1、2と同等である
のでここでは省略する。 分岐配線の先にある容量が重
くなったり、分岐配線の本数が多くなると、伝送線路の
分岐点における信号電位の落ち込みはますます大きくな
り、実施例1、2においても、落ち込み量を抑えること
は不可能となる。
なわち図4において伝送線路100のインピーダンスを
50Ω、分岐配線11〜14のインピーダンスを100
Ω、終端抵抗50、51をそれぞれ50Ω、終端電源6
0、61を1.5V、抵抗80〜83の抵抗値を75
Ω、送出回路21のオン抵抗を10Ωとし、また、送出
回路21はHigh出力時には伝送線路を3V電源と接
続し、Low出力時にはグランド、すなわち0Vと接続
する回路とすると、このようなバスでは分岐配線が6本
を越えると、6番目以降の最初に分岐点に到達する信号
は基準電圧(Vref)を越えることができない。
号電位の落ち込み分を埋め合わせるのに十分な電流を、
送出回路動作時に余分に流すことで、信号電位の落ち込
みによる遅延時間をなくす方法について説明する。
る回路ブロックのスイッチを閉じ、伝送線路100とユ
ニット内伝送線路との間の抵抗を下げる。これにより、
バス100における信号振幅を大きくすることができ
る。
ッチング抵抗80〜83の抵抗値を75Ω、送出回路2
1〜25のオン抵抗を10Ω、そしてスイッチの抵抗8
0〜83の抵抗を10Ωとすると、スイッチを閉じるこ
とにより、伝送線路100と分岐配線11との間の抵抗
は75Ωから8.8Ωに低減し、伝送線路100上の振
幅は0.68Vから1.3Vへと振幅が大きくなり、分
岐点における信号電圧の落ち込みによる遅延時間をなく
すことができる。
場合でも高速転送が行えるようにするために、たとえば
送出回路が信号を出してから、0.3サイクル後にスイ
ッチを開く。こうすることで、本来設定した信号振幅に
戻すことができ、高速転送が可能な小振幅に戻る。
17に示す。この図に示した波形は図14、15の回路
を用いて、送出回路21を動かした時の波形である。図
16は波形の立ち上がり時の波形、図17は立ち下がり
時の波形である。
示す点Cに着目し、点Cに入ってくる信号である点B
と、点Cから出て行く信号である点Dと点Eの信号波形
を示したものである。同様に(b)は点Eに着目した信
号波形を示した図、(c)は点Gに着目した信号波形を
示した図である。1402は図14における点Bの信号
波形,1403はC点,1404はD点,1405はE点,
1406はF点,1407はG点,1408はH点の信号
波形を示している。
おける信号振幅を大きくすることができ、分岐点におけ
る信号電位の落ち込みによる遅延時間をなくすことがで
きていることがわかる。 このようにスイッチを制御す
ることで、負荷容量の大きい伝送線路や分岐配線の本数
が多い伝送線路において高速な小振幅転送が可能とな
る。
回路を含む回路ブロック内の制御部が行なう。 また、
抵抗の代わりに容量を用いても同様の効果を作ることが
出来る。容量を用いた場合の一実施例を図20、図21
に示す。図20は図14に示す例を容量に変更した例
を、図21は図15に示す例の抵抗を容量に変更した例
を示す。ここで、120〜123が容量である。容量は
一般的には、数十ピコファラッド程度のものが望まし
い。
電位が変化すると、電荷保存則により容量の伝送線10
0側の電位も上がるため、抵抗80〜83のみを介して
変化させた振幅に比べ、大きな振幅を得ることができ
る。
トにあるスイッチを閉じ、そのほかのスイッチは開くの
がもっとも良い。また、容量によって大きくなった伝送
線路100上の振幅は終端50、51によって数ns程
度で元の振幅に戻るため、送出回路が動いている間はス
イッチを閉じたままでも良い。
て送出回路21を動かした時の各点における立ち上がり
波形、立ち下がり波形を示したものである。
示す点Cに着目し、点Cに入ってくる信号である点B
と、点Cから出て行く信号である点Dと点Eの信号波形
を示したものである。同様に(b)は点Eに着目した信
号波形を示した図、(c)は点Gに着目した信号波形を
示した図である。図中2002は図20における点Bの
信号波形,2003はC点,2004はD点,2005は
E点,2006はF点,2007はG点,2008はH点
の信号波形を示している。
0における信号振幅を大きくすることができ、分岐点に
おける信号電位の落ち込みによる遅延時間をなくすこと
ができる。
スからバスのインピーダンスの半分を引いた値の近傍の
抵抗値を持った抵抗を分岐配線とバスとの間に挿入する
ことにより、分岐配線内での反射の繰り返しを防止する
ことができ、挿入抵抗、終端抵抗の分圧によって伝送線
路上の振幅を低振幅にすることができるので、高速に信
号伝送が可能となる。また、伝送線路上に多数の分岐点
がある場合、分岐配線内の容量が抵抗を通して見えるた
めバスのインピーダンスの低下を抑える効果もある。更
に、活線挿抜における波形歪も抑えることができる。
上がり波形)を説明する図。
下がり波形)を説明する図。
形)を表す図
形)を表す図
波形歪を示す図
挿抜による波形歪を示す図
を行ったときの波形を示す図
切り替えを行ったときの波形を示す図
波形(立ち上がり波形)を示す図
波形(立ち下がり波形)を示す図
ンピーダンスを変えた場合の信号波形(立ち上がり波
形)を示す図
ンピーダンスを変えた場合の信号波形(立ち下がり波
形)を示す図
を示す図
例を示す図
ち上がり波形)を示す図
ち下がり波形)を示す図
ET 80,82,83…マッチング抵抗 90,91,92,93…スイッチ 100…回路ブロック間伝達用伝送線路 110,111,112,113…抵抗 120,121,122,123…容量 Vref 基準電圧
Claims (6)
- 【請求項1】信号を伝達する主伝送線路と、信号を出力
する第1の信号送出回路と、該第1の信号送出回路と前
記主伝送線路の間で信号を伝達する第1の分岐配線と、
信号を受信する第1の信号受信回路と、前記主伝送線路
と前記第1の信号受信回路との間で信号を伝達する第2
の分岐配線とを有する信号伝送装置において、 前記主伝送線路は該主伝送線路とほぼ等しい抵抗値の第
1の素子で終端し、 前記主伝送線路と前記第1の分岐配線との間に、前記第
1の分岐配線と前記主伝送線路との間のインピーダンス
マッチングをとり前記主伝送線路と前記第1の分岐配線
との分岐点での信号反射を抑えるための第2の素子と、
前記送出回路から出力される信号の信号振幅を変える回
路を備え、 前記主伝送線路と前記第2の分岐配線との間に、前記第
2の分岐配線と前記主伝送線路との間のインピーダンス
マッチングをとり、前記主伝送線路と前記第2の分岐配
線との分岐点での信号反射を抑えるための第3の素子を
備えたことを特徴とする信号伝送装置。 - 【請求項2】請求項1記載の信号伝送装置において、前
記信号振幅を変える回路は、前記第2の素子と並列に設
けられ、抵抗素子と信号送出時は閉じており信号送出後
一定時間の後に開くスイッチング素子とからなることを
特徴とする信号伝送装置。 - 【請求項3】請求項1記載の信号伝送装置において、 前記信号振幅を変える回路は、前記第2の素子と並列に
設けられ、容量素子と信号送出時は閉じておリ信号送出
後一定時間の後に開くスイッチング素子とからなること
を特徴とする信号伝送装置。 - 【請求項4】信号を伝達する主伝送線路と、信号を送受
信する第1、第2の信号送受信回路と、該第1、第2の
信号送受信回路と前記主伝送線路の間で信号を伝達する
第1、第2の分岐配線とを有する信号伝送装置におい
て、 前記主伝送線路は該主伝送線路とほぼ等しい抵抗値の第
1の素子で終端し、 前記主伝送線路と前記第1、第2の分岐配線との間に、
前記第1、第2の分岐配線と前記主伝送線路との間のイ
ンピーダンスマッチングをとり前記第1、第2の分岐配
線と前記主伝送線路との分岐点での信号反射を抑えるた
めの第2の素子と、前記第1、第2の信号送受信回路か
ら出力される信号の信号振幅を変える回路を備えたこと
を特徴とする信号伝送装置。 - 【請求項5】請求項4記載の信号伝送装置において、前
記信号振幅を変える回路は、前記第2の素子と並列に設
けられ、抵抗素子と信号送出時は閉じており信号送出後
一定時間の後に開くスイッチング素子とからなることを
特徴とする信号伝送装置。 - 【請求項6】請求項4記載の信号伝送装置において、前
記信号振幅を変える回路は、前記第2の素子と並列に設
けられ、容量素子と信号送出時は閉じておリ信号送出後
一定時間の後に開くスイッチング素子とからなることを
特徴とする信号伝送装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9020227A JP3008873B2 (ja) | 1997-02-03 | 1997-02-03 | 信号伝送装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9020227A JP3008873B2 (ja) | 1997-02-03 | 1997-02-03 | 信号伝送装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5334631A Division JP2882266B2 (ja) | 1993-12-28 | 1993-12-28 | 信号伝送装置及び回路ブロック |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09238164A JPH09238164A (ja) | 1997-09-09 |
JP3008873B2 true JP3008873B2 (ja) | 2000-02-14 |
Family
ID=12021292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9020227A Expired - Lifetime JP3008873B2 (ja) | 1997-02-03 | 1997-02-03 | 信号伝送装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3008873B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7154954B1 (en) | 2000-07-18 | 2006-12-26 | Honda Giken Kogyo Kabushiki Kaisha | Communication system |
JP4631825B2 (ja) | 2006-07-31 | 2011-02-16 | 株式会社デンソー | 通信システム |
JP4603069B2 (ja) | 2008-03-17 | 2010-12-22 | 株式会社日本自動車部品総合研究所 | 受信装置 |
JP6276957B2 (ja) * | 2013-10-02 | 2018-02-07 | アイホン株式会社 | インターホンシステム |
-
1997
- 1997-02-03 JP JP9020227A patent/JP3008873B2/ja not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
日経エレクトロニクス、No.556(6月8日号)、(平4−6−8)、日経BP社、p.133−140 |
日経エレクトロニクス、No.591(9月27日号)、(平5−9−27)、日経BP社、p.269−290 |
Also Published As
Publication number | Publication date |
---|---|
JPH09238164A (ja) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2882266B2 (ja) | 信号伝送装置及び回路ブロック | |
US6249142B1 (en) | Dynamically terminated bus | |
US20020005734A1 (en) | Method and apparatus for programmable active termination of input/output devices | |
WO2000070474A1 (en) | Apparatus for reducing reflections when using dynamic termination logic signaling | |
US6838900B2 (en) | Middle pull-up point-to-point transceiving bus structure | |
JP3008873B2 (ja) | 信号伝送装置 | |
US5485107A (en) | Backplane driver circuit | |
US7157931B2 (en) | Termination circuits having pull-down and pull-up circuits and related methods | |
US5982191A (en) | Broadly distributed termination for buses using switched terminator logic | |
JPH07302144A (ja) | インタフェース回路 | |
JPH08272500A (ja) | Icの入出力カプラ | |
EP0848333B1 (en) | Method and apparatus for dynamic termination logic of data buses | |
JP3284973B2 (ja) | メモリ等の素子間の信号伝送システム | |
JP3551957B2 (ja) | メモリ等の素子間の信号伝送システム | |
JP3551956B2 (ja) | メモリ等の素子間の信号伝送システムに接続する回路ブロック | |
JP3666497B2 (ja) | 信号伝送装置及び回路ブロック | |
JPH07283836A (ja) | 信号伝送装置及び信号受信モジュール | |
US6163165A (en) | Method for operating an information handling system | |
WO2001040955A9 (en) | Input-output bus driver | |
JP3339582B2 (ja) | 信号伝送装置 | |
WO1996001008A1 (en) | Termination circuit for high speed applications | |
JPH07250104A (ja) | 信号伝送回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |