JP2989316B2 - Cold storage air conditioning system - Google Patents

Cold storage air conditioning system

Info

Publication number
JP2989316B2
JP2989316B2 JP3137108A JP13710891A JP2989316B2 JP 2989316 B2 JP2989316 B2 JP 2989316B2 JP 3137108 A JP3137108 A JP 3137108A JP 13710891 A JP13710891 A JP 13710891A JP 2989316 B2 JP2989316 B2 JP 2989316B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
pump
water
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3137108A
Other languages
Japanese (ja)
Other versions
JPH04340035A (en
Inventor
正三 宮治
晋 小島
敏彦 山中
安生 伊坂
春信 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP3137108A priority Critical patent/JP2989316B2/en
Publication of JPH04340035A publication Critical patent/JPH04340035A/en
Application granted granted Critical
Publication of JP2989316B2 publication Critical patent/JP2989316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は気体水和物を利用した蓄
冷熱空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative air conditioner using gas hydrate.

【0002】[0002]

【従来の技術】水などの原子又は分子が結合してできた
三次元構造骨組の内部に形成されている空隙内に炭化水
素(メタン、エタン、プロパン等)やガス状水和剤(R
−11、R−12、R−21等のフレオンなど) を取り込んで
特定の結晶構造を構成する気体水和物は大きな蓄冷熱容
量を有するので、この気体水和物を蓄冷に利用すること
が試みられている。気体水和物を利用した従来の蓄冷熱
空調システムの1 例が図2に示されている。図2におい
て、1は蓄冷熱槽で、この内部には水和剤19及び水20が
収容され、かつ、これら水和剤19及び水20の中には第1
の熱交換器9と熱源側熱交換器16が浸漬されている。こ
の第1の熱交換器9は圧縮機3、四方切換弁4、室外熱
交換器5、絞り8、三方弁7、第2の熱交換器11及びア
キュームレ−タ12と共にヒ−トポンプを構成している。
一方、熱源側熱交換器16は熱媒循環路24を介して空調ユ
ニット2に接続され、この熱媒循環路24には第2の熱交
換器11、逆止弁17、ポンプ17、三方弁13、ホンプ14及び
三方弁15が介装されている。
2. Description of the Related Art Hydrocarbons (methane, ethane, propane, etc.) and gaseous wettable powders (R) are formed in voids formed in a three-dimensional structural framework formed by bonding atoms or molecules such as water.
-11, R-12, R-21, etc.) has a large regenerative heat capacity since the gas hydrate that composes a specific crystal structure by taking in Have been. FIG. 2 shows an example of a conventional cold storage thermal air conditioning system using a gas hydrate. In FIG. 2, reference numeral 1 denotes a regenerative heat storage tank, in which a wettable powder 19 and water 20 are accommodated.
The heat exchanger 9 and the heat source side heat exchanger 16 are immersed. The first heat exchanger 9 constitutes a heat pump together with the compressor 3, the four-way switching valve 4, the outdoor heat exchanger 5, the throttle 8, the three-way valve 7, the second heat exchanger 11, and the accumulator 12. ing.
On the other hand, the heat source side heat exchanger 16 is connected to the air conditioning unit 2 via a heat medium circulation path 24, and the heat medium circulation path 24 includes a second heat exchanger 11, a check valve 17, a pump 17, a three-way valve. 13, a pump 14, and a three-way valve 15 are interposed.

【0003】蓄冷運転時、圧縮機3から吐出された冷媒
ガスは四方切換弁4を通って室外熱交換器5に入り、こ
こでファン6によって送風される外気に放熱することに
よって凝縮液化する。この液冷媒は絞り8に入って絞ら
れることによって断熱膨張した後、三方弁7を経て第1
の熱交換器9中を流過する過程で管外の水和剤19及び水
20を冷却することによって蒸発気化する。次いで、この
冷媒ガスはアキュームレ−タ12を経て圧縮機3に戻る。
水和剤19及び水20が冷却されると、気体水和物21が生成
され、この気体水和物21の生成に費やされた潜熱が冷熱
として蓄冷熱槽1内に蓄えられる。
During the cold storage operation, the refrigerant gas discharged from the compressor 3 passes through the four-way switching valve 4 and enters the outdoor heat exchanger 5, where it is condensed and liquefied by radiating heat to the outside air blown by the fan 6. This liquid refrigerant enters the throttle 8 and is adiabatically expanded by being throttled.
In the process of flowing through the heat exchanger 9 of the
Evaporate by cooling 20. Next, the refrigerant gas returns to the compressor 3 via the accumulator 12.
When the wettable powder 19 and the water 20 are cooled, a gas hydrate 21 is generated, and the latent heat used for generating the gas hydrate 21 is stored in the cold storage heat tank 1 as cold heat.

【0004】蓄冷熱槽1内に蓄えられた冷熱を取り出す
場合には放冷運転が行われる。この放冷運転時、熱媒例
えば水が熱源側熱交換器16を流過する過程で管外の気体
水和物21と熱交換して冷却された後、第2の熱交換器1
1、逆止弁17、ポンプ18を経て空調ユニット2に送ら
れ、ここで放冷することによって昇温する。昇温した水
は三方弁13、ポンプ14、三方弁15を経て熱源側熱交換器
16に循環する。この過程で気体水和物21はその潜熱を水
に与えることによって徐々に水和剤19と水20とに分解さ
れる。
To take out the cold stored in the cold storage tank 1, a cooling operation is performed. During the cooling operation, the heat medium, for example, water exchanges heat with the gas hydrate 21 outside the tube in the process of flowing through the heat source side heat exchanger 16 and is cooled.
1. The air is sent to the air conditioning unit 2 via the check valve 17 and the pump 18, where the temperature is raised by cooling. The heated water passes through the three-way valve 13, the pump 14, and the three-way valve 15 to the heat source side heat exchanger.
Circulates to 16. In this process, the gas hydrate 21 is gradually decomposed into a wettable powder 19 and water 20 by giving the latent heat to the water.

【0005】冷房運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て室外熱交換器5で凝縮液化し、絞
り8、三方弁7を経て第2の熱交換器11で蒸発気化し、
四方切換弁4、アキュームレ−タ12を経て圧縮機3に循
環する。一方、第2の熱交換器11で冷媒と熱交換するこ
とによって冷却された水は逆止弁17、ポンプ18を経て空
調ユニット2に送られ、ここで冷房することによって昇
温した後、三方弁13、ポンプ14、三方弁15を経て再び第
2の熱交換器11に循環する。
During the cooling operation, the refrigerant discharged from the compressor 3 is condensed and liquefied in the outdoor heat exchanger 5 through the four-way switching valve 4 and is evaporated in the second heat exchanger 11 through the throttle 8 and the three-way valve 7. And
Circulating to the compressor 3 via the four-way switching valve 4 and the accumulator 12. On the other hand, the water cooled by exchanging heat with the refrigerant in the second heat exchanger 11 is sent to the air conditioning unit 2 via the check valve 17 and the pump 18, where the temperature is raised by cooling, and It circulates again to the second heat exchanger 11 via the valve 13, the pump 14, and the three-way valve 15.

【0006】蓄熱運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て第2の熱交換器11で凝縮液化し、
三方弁7、絞り8を経て室外熱交換器5で蒸発気化し、
四方切換弁4、アキュームレ−タ12を経て圧縮機3に循
環する。一方、第2の熱交換器11で冷媒と熱交換するこ
とによって加熱された水は三方弁13、ポンプ14、三方弁
15をこの順に経て熱源側熱交換器16に入り、ここで管外
の水を加熱することにより降温した後、再び第2の熱交
換器11に循環する。かくして、蓄冷熱槽1内の水が昇温
し、これに要した顕熱が蓄冷熱槽1内に蓄熱される。
During the heat storage operation, the refrigerant discharged from the compressor 3 is condensed and liquefied in the second heat exchanger 11 through the four-way switching valve 4 and
Evaporation and vaporization in the outdoor heat exchanger 5 through the three-way valve 7 and the throttle 8
Circulating to the compressor 3 via the four-way switching valve 4 and the accumulator 12. On the other hand, the water heated by exchanging heat with the refrigerant in the second heat exchanger 11 is supplied to the three-way valve 13, the pump 14, and the three-way valve.
After passing through the heat exchanger 15 in this order, the heat enters the heat source side heat exchanger 16, in which the water outside the tube is heated to lower the temperature, and then circulates again to the second heat exchanger 11. Thus, the temperature of the water in the cold storage tank 1 rises, and the sensible heat required for this heat is stored in the cold storage tank 1.

【0007】蓄冷熱槽1内に蓄熱された熱を取り出す場
合には放熱運転が行われる。この放熱運転時、水が熱源
側熱交換器16、第2の熱交換器11、逆止弁17、ポンプ1
8、空調ユニット2、三方弁13、ポンプ14、三方弁15を
この順に経て熱源側熱交換器16に循環し、熱源側熱交換
器16内を流過する過程で管外の水から吸熱することによ
って昇温し、空調ユニット2で放熱することによって降
温する。
When the heat stored in the cold storage tank 1 is taken out, a heat dissipation operation is performed. During this heat dissipation operation, water is supplied to the heat source side heat exchanger 16, the second heat exchanger 11, the check valve 17, the pump 1
8. The air-conditioning unit 2, the three-way valve 13, the pump 14, and the three-way valve 15 are circulated to the heat source side heat exchanger 16 in this order, and absorb heat from water outside the pipe in the process of flowing through the heat source side heat exchanger 16. As a result, the temperature rises, and the heat is radiated by the air conditioning unit 2 to lower the temperature.

【0008】暖房運転時、冷媒が圧縮機3、四方切換弁
4を経て第2の熱交換器11で凝縮液化し、三方弁7、絞
り8を経て室外熱交換器5で蒸発気化して四方切換弁
4、アキュームレ−タ12を経て圧縮機3に循環する。第
2の熱交換器11で冷媒と熱交換することによって加熱さ
れた水は逆止弁17、ポンプ18を経て空調ユニット2に入
りここで暖房することによって降温した後、三方弁13、
ポンプ14、三方弁15を経て第2の熱交換器11に循環す
る。
During the heating operation, the refrigerant is condensed and liquefied in the second heat exchanger 11 through the compressor 3 and the four-way switching valve 4, and is evaporated and vaporized in the outdoor heat exchanger 5 through the three-way valve 7 and the throttle 8. Circulating to the compressor 3 via the switching valve 4 and the accumulator 12. The water heated by exchanging heat with the refrigerant in the second heat exchanger 11 enters the air conditioning unit 2 via the check valve 17 and the pump 18, and is cooled there by heating.
Circulating to the second heat exchanger 11 via the pump 14 and the three-way valve 15.

【0009】[0009]

【発明が解決しようとする課題】上記従来のシステムに
おいては、その蓄熱運転時、蓄冷熱槽1内に貯溜された
水の温度上昇による顕熱分しか蓄冷熱槽1内に蓄熱でき
ず、従って、放熱運転時においてもこの顕熱分しか放熱
できないという問題があった。
In the above conventional system, during the heat storage operation, only the sensible heat due to the rise in the temperature of the water stored in the cold storage tank 1 can be stored in the cold storage tank 1; However, there is a problem that only the sensible heat can be dissipated during the heat dissipation operation.

【0010】[0010]

【課題を解決するための手段】本発明は上記に鑑み、暖
房運転時に気体水和物を生成させ、生成時の潜熱を熱源
として熱媒を加熱しようとするものであって、その要旨
とするところは、水和剤と水とが収容された蓄冷熱槽
と、圧縮機、四方切換弁、室外熱交換器、絞り、第1の
熱交換器及び第2の熱交換器からなるヒ−トポンプと、
空調ユニットとを具備し、上記蓄冷熱槽内に上記空調ユ
ニットに熱媒循環路を介して接続された熱源側熱交換器
と上記ヒートポンプの第1の熱交換器をそれぞれ配設
し、かつ、上記熱媒循環路中に上記ヒ−トポンプの第2
の熱交換器を介装してなる蓄冷熱空調システムにおい
て、上記ヒ−トポンプの第1の熱交換器と第2の熱交換
器との間に第2の絞りを設け、上記第1の熱交換器を蒸
発器、第2の熱交換器を凝縮器とし上記圧縮機及び上記
第2の絞りと協働してヒ−トポンプサイクルを形成する
冷媒回路を構成したことを特徴とする蓄冷熱空調システ
ムにある。
SUMMARY OF THE INVENTION In view of the above, the present invention aims to generate a gaseous hydrate during a heating operation and to heat a heat medium using latent heat at the time of generation as a heat source. However, a regenerative heat storage tank containing a wettable powder and water, and a heat pump including a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle, a first heat exchanger, and a second heat exchanger. When,
An air conditioning unit, and a heat source side heat exchanger connected to the air conditioning unit via a heat medium circulation path and a first heat exchanger of the heat pump in the cold storage heat tank, respectively, and A second heat pump is provided in the heat medium circuit.
In the regenerative heat storage air conditioning system including the heat exchanger of the above, a second throttle is provided between the first heat exchanger and the second heat exchanger of the heat pump, and the first heat A regenerative air conditioner comprising a heat exchanger cycle comprising an evaporator as an exchanger, a second heat exchanger as a condenser and a heat pump cycle in cooperation with the compressor and the second throttle. In the system.

【0011】[0011]

【作用】本発明においては、上記構成を具えているた
め、暖房運転時、冷媒は圧縮機から四方切換弁を経て第
2の熱交換器で冷媒を加熱することにより凝縮液化し、
第2の絞りで断熱膨張し、第1の熱交換器で管外の水和
剤及び水を冷却して気体水和物を生成することにより自
身は蒸発気化して圧縮機に戻る。一方、第2の熱交換器
で冷媒により加熱された熱媒は空調ユニットに入り、こ
こで暖房することによって降温した後再び第2の熱交換
器に循環する。
According to the present invention, the refrigerant is condensed and liquefied by heating the refrigerant in the second heat exchanger through the four-way switching valve from the compressor during the heating operation because the above structure is provided.
It expands adiabatically with the second throttle and cools the wettable powder and water outside the tube with the first heat exchanger to form a gaseous hydrate, which in turn evaporates and returns to the compressor. On the other hand, the heat medium heated by the refrigerant in the second heat exchanger enters the air conditioning unit, where the temperature is lowered by heating, and then circulates again to the second heat exchanger.

【0012】[0012]

【実施例】本発明の1実施例が図1に示されている。第
1の熱交換器9と第2の熱交換器11との間に膨張弁等の
第2の絞り10が介装され、この第2の絞り10と並列に第
2の熱交換器11への冷媒の流れを許容するが、これと逆
方向への冷媒の流れを阻止する逆止弁23が配列されてい
る。また、絞り8と並列に室外熱交換器5への冷媒の流
れを許容するが、これと逆方向への冷媒の流れを阻止す
る逆止弁22が配設されている。他の構成は第2図に示す
従来のものと同様であり、対応する部材には同じ符号が
付されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIG. A second throttle 10, such as an expansion valve, is interposed between the first heat exchanger 9 and the second heat exchanger 11, and is connected to the second heat exchanger 11 in parallel with the second throttle 10. A check valve 23 is arranged to allow the flow of the refrigerant but prevent the flow of the refrigerant in the opposite direction. A check valve 22 is provided in parallel with the throttle 8 to allow the flow of the refrigerant to the outdoor heat exchanger 5 but to prevent the flow of the refrigerant in the opposite direction. Other components are the same as those of the conventional device shown in FIG. 2, and corresponding members are denoted by the same reference numerals.

【0013】蓄冷運転時、圧縮機3から吐出された冷媒
ガスは四方切換弁4を通って室外熱交換器5に入り、こ
こでファン6によって送風される外気に放熱することに
よって凝縮液化する。この液冷媒は絞り8に入って断熱
膨張した後、三方弁7を経て第1の熱交換器9で管外の
水和剤19及び水20を冷却することによって蒸発気化す
る。次いで、この冷媒ガスはアキュームレ−タ12を経て
圧縮機3に戻る。水和剤19及び水20は冷却されることに
より気体水和物21を生成し、この生成に費やされた潜熱
が冷熱として蓄冷熱槽1内に蓄えられる。
During the cold storage operation, the refrigerant gas discharged from the compressor 3 enters the outdoor heat exchanger 5 through the four-way switching valve 4, where it is condensed and liquefied by radiating heat to the outside air blown by the fan 6. The liquid refrigerant enters the throttle 8 and adiabatically expands, and then evaporates and vaporizes by cooling the wettable powder 19 and water 20 outside the tube in the first heat exchanger 9 via the three-way valve 7. Next, the refrigerant gas returns to the compressor 3 via the accumulator 12. The wettable powder 19 and the water 20 are cooled to form a gaseous hydrate 21, and the latent heat used for the generation is stored in the cold storage tank 1 as cold heat.

【0014】放冷運転時、水が熱源側熱交換器16で冷却
された後、第2の熱交換器11、逆止弁17、ポンプ18を経
て空調ユニット2に送られ、ここで放冷することによっ
て昇温し、三方弁13、ポンプ14、三方弁15を経て熱源側
熱交換器16に循環する。この過程で気体水和物21はその
潜熱を水に与えることによって徐々に水和剤19と水20と
に分解される。
During the cooling operation, the water is cooled by the heat source side heat exchanger 16 and then sent to the air conditioning unit 2 via the second heat exchanger 11, the check valve 17, and the pump 18, where the water is cooled. Then, the temperature rises, and circulates to the heat source side heat exchanger 16 through the three-way valve 13, the pump 14, and the three-way valve 15. In this process, the gas hydrate 21 is gradually decomposed into a wettable powder 19 and water 20 by giving the latent heat to the water.

【0015】冷房運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て室外熱交換器5で凝縮液化し、絞
り8、三方弁7、逆止弁23を経て第2の熱交換器11で蒸
発気化した後、四方切換弁4、アキュームレ−タ12を経
て圧縮機3に循環する。一方、第2の熱交換器11で冷媒
と熱交換することによって冷却された水は逆止弁17、ポ
ンプ18を経て空調ユニット2に入りここで冷房すること
によって昇温した後、三方弁13、ポンプ14、三方弁15を
経て再び第2の熱交換器11に循環する。
At the time of cooling operation, the refrigerant discharged from the compressor 3 is condensed and liquefied in the outdoor heat exchanger 5 through the four-way switching valve 4, and passed through the throttle 8, the three-way valve 7 and the check valve 23 for the second heat exchange. After being evaporated and vaporized in the compressor 11, the refrigerant is circulated to the compressor 3 via the four-way switching valve 4 and the accumulator 12. On the other hand, the water cooled by exchanging heat with the refrigerant in the second heat exchanger 11 enters the air conditioning unit 2 via the check valve 17 and the pump 18, and is cooled there, and the temperature is raised. , The pump 14 and the three-way valve 15 circulate again to the second heat exchanger 11.

【0016】蓄熱運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て第2の熱交換器11で凝縮液化し、
絞り10で断熱膨張し、三方弁7、逆止弁22を経て室外熱
交換器5で蒸発気化し、四方切換弁4、アキュームレ−
タ12を経て圧縮機3に循環する。一方、第2の熱交換器
11で冷媒と熱交換することによって加熱された水は三方
弁13、ポンプ14、三方弁15を経て熱源側熱交換器16入り
ここで管外の水を加熱することにより降温した後、再び
第2の熱交換器11に循環する。
During the heat storage operation, the refrigerant discharged from the compressor 3 is condensed and liquefied in the second heat exchanger 11 via the four-way switching valve 4 and
Adiabatically expanded by the throttle 10, vaporized and vaporized by the outdoor heat exchanger 5 via the three-way valve 7 and the check valve 22, and the four-way switching valve 4, the accumulator
Circulating through the compressor 12 to the compressor 3. Meanwhile, the second heat exchanger
The water heated by exchanging heat with the refrigerant in 11 enters the heat source side heat exchanger 16 through the three-way valve 13, the pump 14, and the three-way valve 15, where the temperature is reduced by heating the water outside the tube, and then again. The heat is circulated to the second heat exchanger 11.

【0017】放熱運転時、水は熱源側熱交換器16、第2
の熱交換器11、逆止弁17、ポンプ18、空調ユニット2、
三方弁13、ポンプ14、三方弁15をこの順に経て熱源側熱
交換器16に循環し、熱源側熱交換器16内を流過する過程
で管外の水から吸熱することによって昇温し、空調ユニ
ット2で放熱することによって降温する。空気を熱源と
して暖房運転する場合には、冷媒は圧縮機3、四方切換
弁4、第2の熱交換器11、第2の絞り10、三方弁7、逆
止弁22、室外熱交換器5、四方切換弁4、アキュームレ
−タ12をこの順に経て圧縮機3に循環し、水は第2の熱
交換器11、逆止弁17、ポンプ18、空調ユニット2、三方
弁13、ポンプ14、三方弁15を経て第2の熱交換器11に循
環する。かくして、水は第2の熱交換器11で冷媒と熱交
換することにより昇温し、空調ユニット2で暖房するこ
とによって降温する。
During the heat dissipation operation, the water is supplied to the heat source side heat exchanger 16,
Heat exchanger 11, check valve 17, pump 18, air conditioning unit 2,
The three-way valve 13, the pump 14, and the three-way valve 15 circulate through the heat source side heat exchanger 16 in this order, and in the process of flowing through the heat source side heat exchanger 16, heat is taken up by absorbing heat from water outside the tube, The temperature is lowered by radiating heat in the air conditioning unit 2. In the heating operation using air as a heat source, the refrigerant is supplied from the compressor 3, the four-way switching valve 4, the second heat exchanger 11, the second throttle 10, the three-way valve 7, the check valve 22, the outdoor heat exchanger 5, and the like. , The four-way switching valve 4 and the accumulator 12 are circulated to the compressor 3 in this order, and water is supplied to the second heat exchanger 11, the check valve 17, the pump 18, the air conditioning unit 2, the three-way valve 13, the pump 14, It circulates through the three-way valve 15 to the second heat exchanger 11. Thus, the temperature of the water rises by exchanging heat with the refrigerant in the second heat exchanger 11 and falls by heating in the air conditioning unit 2.

【0018】気体水和物の潜熱を熱源として暖房運転す
る場合には、圧縮機3から吐出された冷媒は四方切換弁
4を経て第2の熱交換器11で水を加熱することによって
凝縮液化し、第2の絞り10で断熱膨張し、三方弁7を経
て第1の熱交換器9で凝縮液化した後アキュームレ−タ
12を経て圧縮機3に循環し、第1の熱交換器9を流過す
る過程で管外の水和剤19及び水20を冷却することによっ
て気体水和物21を生成させる。一方、第2の熱交換器11
で加熱された水は逆止弁17、ポンプ18を経て空調ユニッ
ト2内に送られ、ここで暖房することによって降温した
後三方弁13、ポンプ14、三方弁15を経て再び第2の熱交
換器11内に循環する。この暖房運転時、ヒ−トポンプサ
イクルは蓄冷熱槽1内の水20の顕熱又は気体水和物21を
生成する際の潜熱を熱源として運転されるので、その暖
房能力及び成績係数は空気を熱源として運転する場合に
比し大巾に向上する。なお、昼間にこの暖房運転によっ
て生成した気体水和物21を利用し夜間に蓄熱運転を行う
こともできる。
In the heating operation using the latent heat of the gas hydrate as a heat source, the refrigerant discharged from the compressor 3 is condensed and liquefied by heating the water in the second heat exchanger 11 through the four-way switching valve 4. Then, it is adiabatically expanded by the second restrictor 10, condensed and liquefied by the first heat exchanger 9 through the three-way valve 7, and then accumulated.
The gas hydrate 21 is generated by cooling the wettable powder 19 and the water 20 outside the tube in the process of circulating through the compressor 3 and flowing through the first heat exchanger 9 through 12. On the other hand, the second heat exchanger 11
Is heated into the air conditioning unit 2 through the check valve 17 and the pump 18, where the water is cooled by heating, and then the second heat exchange is performed again through the three-way valve 13, the pump 14 and the three-way valve 15. Circulates in the vessel 11. During this heating operation, the heat pump cycle is operated using the sensible heat of the water 20 in the regenerative heat storage tank 1 or the latent heat at the time of generating the gas hydrate 21 as a heat source. It is greatly improved compared to the case of operating as a heat source. In addition, the heat storage operation can be performed at night using the gas hydrate 21 generated by the heating operation during the day.

【0019】[0019]

【発明の効果】本発明においては、ヒ−トポンプの第1
熱交換器と第2熱交換器との間に第2の絞りを設け、暖
房運転時、第1熱交換器を蒸発器、第2の熱交換器を凝
縮器として圧縮機及び第2の絞りと協働してヒ−トポン
プサイクルを形成するため、蓄冷熱槽内の水又は水和剤
を冷却して気体水和物を生成させ、その際の潜熱を利用
して暖房できるので、暖房能力及び成績係数を大巾に向
上できる。
According to the present invention, the first heat pump is used.
A second throttle is provided between the heat exchanger and the second heat exchanger. During a heating operation, the first heat exchanger is used as an evaporator, and the second heat exchanger is used as a condenser. In order to form a heat pump cycle in cooperation with water, the water or wettable powder in the regenerative heat storage tank is cooled to form a gaseous hydrate, and the latent heat at that time can be used for heating. And the coefficient of performance can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【図2】従来のシステムの1例を示す系統図である。FIG. 2 is a system diagram showing an example of a conventional system.

【符号の説明】[Explanation of symbols]

1 蓄冷熱槽 19 水和剤 20 水 21 気体水和物 3 圧縮機 4 四方切換弁 5 室外熱交換器 8 絞り 9 第1の熱交換器 11 第2の熱交換器 2 空調ユニット 16 熱源側熱交換器 24 熱媒循環路 10 第2の絞り REFERENCE SIGNS LIST 1 cold storage tank 19 wettable powder 20 water 21 gas hydrate 3 compressor 4 four-way switching valve 5 outdoor heat exchanger 8 throttle 9 first heat exchanger 11 second heat exchanger 2 air conditioning unit 16 heat source side heat Exchanger 24 Heat medium circulation path 10 Second throttle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 敏彦 名古屋市中村区岩塚町字高道1番地 三 菱重工業株式会社 名古屋研究所内 (72)発明者 伊坂 安生 名古屋市中村区岩塚町字高道1番地 三 菱重工業株式会社 名古屋研究所内 (72)発明者 水上 春信 名古屋市中村区岩塚町字高道1番地 三 菱重工業株式会社 名古屋研究所内 (56)参考文献 特開 平4−340037(JP,A) 特開 昭62−213689(JP,A) 特開 平3−51644(JP,A) 特開 平4−126961(JP,A) 特開 平4−340036(JP,A) 特開 平3−17475(JP,A) 特開 平4−340038(JP,A) 特開 昭63−311032(JP,A) 実開 昭51−27360(JP,U) (58)調査した分野(Int.Cl.6,DB名) F24F 5/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Yamanaka 1 Nagoya Research Center, Nagoya-shi, Iwazuka-cho, Nagoya Laboratory (72) Inventor Yasui Isaka, Iwazuka-cho, Nakamura-ku, Nagoya-shi Address: Nagoya Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor: Harunobu Mizukami, Nagoya Laboratory, Nagoya, Nakamura-ku, Nagoya-shi, Nagoya Laboratory (56) Reference: JP-A-4-340037 JP-A-62-213689 (JP, A) JP-A-3-51644 (JP, A) JP-A-4-126691 (JP, A) JP-A-4-340036 (JP, A) 17475 (JP, A) JP-A-4-340038 (JP, A) JP-A-63-311032 (JP, A) JP-A-51-27360 (JP, U) (58) Fields investigated (Int. 6 , DB name) F24F 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水和剤と水とが収容された蓄冷熱槽と、
圧縮機、四方切換弁、室外熱交換器、絞り、第1の熱交
換器及び第2の熱交換器からなるヒ−トポンプと、空調
ユニットとを具備し、上記蓄冷熱槽内に上記空調ユニッ
トに熱媒循環路を介して接続された熱源側熱交換器と上
記ヒートポンプの第1の熱交換器をそれぞれ配設し、か
つ、上記熱媒循環路中に上記ヒ−トポンプの第2の熱交
換器を介装してなる蓄冷熱空調システムにおいて、上記
ヒ−トポンプの第1の熱交換器と第2の熱交換器との間
に第2の絞りを設け、上記第1の熱交換器を蒸発器、第
2の熱交換器を凝縮器とし上記圧縮機及び上記第2の絞
りと協働してヒ−トポンプサイクルを形成する冷媒回路
を構成したことを特徴とする蓄冷熱空調システム。
1. A regenerative heat storage tank containing a wettable powder and water,
A heat pump comprising a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle, a first heat exchanger and a second heat exchanger, and an air conditioning unit; A heat source side heat exchanger connected to the heat pump through a heat medium circulation path and a first heat exchanger of the heat pump, and a second heat pump of the heat pump in the heat medium circulation path. In a regenerative heat storage air conditioning system including an exchanger, a second throttle is provided between a first heat exchanger and a second heat exchanger of the heat pump, and the first heat exchanger is provided with a second throttle. A refrigerating circuit for forming a heat pump cycle in cooperation with the compressor and the second throttle using an evaporator and a second heat exchanger as a condenser.
JP3137108A 1991-05-14 1991-05-14 Cold storage air conditioning system Expired - Fee Related JP2989316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137108A JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137108A JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Publications (2)

Publication Number Publication Date
JPH04340035A JPH04340035A (en) 1992-11-26
JP2989316B2 true JP2989316B2 (en) 1999-12-13

Family

ID=15191035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137108A Expired - Fee Related JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Country Status (1)

Country Link
JP (1) JP2989316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267775A (en) * 2007-01-30 2008-11-06 Jfe Engineering Kk Refrigerating machine, its operating method, air-conditioning facility and its operating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2402732B (en) 2002-02-19 2005-11-30 Mitsui Zosen Plant Engineering Refrigerating method and refrigerating system utilizing gas hydrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267775A (en) * 2007-01-30 2008-11-06 Jfe Engineering Kk Refrigerating machine, its operating method, air-conditioning facility and its operating method

Also Published As

Publication number Publication date
JPH04340035A (en) 1992-11-26

Similar Documents

Publication Publication Date Title
JP6724888B2 (en) Equipment temperature controller
JP4201011B2 (en) Heat storage device
WO2000050822A1 (en) Heat pump system of combination of ammonia cycle and carbon dioxide cycle
JP7176405B2 (en) temperature controller
KR20060128129A (en) Air-condition
WO2018047533A1 (en) Device temperature adjusting apparatus
JP2989316B2 (en) Cold storage air conditioning system
JP2012111251A (en) Air conditioner for vehicle
JPH0250058A (en) Air cooled absorbing type cooling and heating device
JP2004163092A (en) Indoor unit for air conditioner and air conditioner using this
JP2004237816A (en) Vehicular adsorption type air-conditioner
JP4086011B2 (en) Refrigeration equipment
JP2678211B2 (en) Heat storage type cold / heat generator
JP2020200972A (en) Heat exchanger, refrigeration cycle device
JP2000240980A (en) Refrigerator/air conditioner
JP4069691B2 (en) Air conditioner for vehicles
JPH10306952A (en) Secondary refrigerant system refrigerating apparatus
JP2809853B2 (en) Heat pump system with cold / hot latent heat storage
JP2646877B2 (en) Thermal storage refrigeration cycle device
JPS581345B2 (en) Air conditioning/heating/hot water equipment
JP7102977B2 (en) Thermosiphon type heating system
JP2627990B2 (en) Heat transport system
JPH11325623A (en) Air conditioner for vehicle
JP3762542B2 (en) Air conditioner
WO2004111557A1 (en) Multiutility vapor compression system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

LAPS Cancellation because of no payment of annual fees