JPH04340035A - Cold/hot storage air conditioning system - Google Patents

Cold/hot storage air conditioning system

Info

Publication number
JPH04340035A
JPH04340035A JP13710891A JP13710891A JPH04340035A JP H04340035 A JPH04340035 A JP H04340035A JP 13710891 A JP13710891 A JP 13710891A JP 13710891 A JP13710891 A JP 13710891A JP H04340035 A JPH04340035 A JP H04340035A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
air conditioning
water
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13710891A
Other languages
Japanese (ja)
Other versions
JP2989316B2 (en
Inventor
Shozo Miyaji
宮治 正三
Susumu Kojima
晋 小島
Toshihiko Yamanaka
敏彦 山中
Yasuo Isaka
伊坂 安生
Harunobu Mizukami
水上 春信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP3137108A priority Critical patent/JP2989316B2/en
Publication of JPH04340035A publication Critical patent/JPH04340035A/en
Application granted granted Critical
Publication of JP2989316B2 publication Critical patent/JP2989316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve a heating capability and a performance factor by producing a gaseous hydrate by cooling water and a hydration agent in a cold/hot storage tank upon heating operation. CONSTITUTION:A second throttle valve 10 is provided on pipes of first and second heat exchangers 9 and 11 of a heat pump, and upon heating operation a refrigerant discharged from a compressor 3 is condensed by the second heat exchanger 12 and evaporated by the first heat exchanger 9. Hereby, a gaseous hydrate 21 is produced in the cold/hot storage tank 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は気体水和物を利用した蓄
冷熱空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold storage thermal air conditioning system using gaseous hydrate.

【0002】0002

【従来の技術】水などの原子又は分子が結合してできた
三次元構造骨組の内部に形成されている空隙内に炭化水
素(メタン、エタン、プロパン等)やガス状水和剤(R
−11、R−12、R−21等のフレオンなど) を取
り込んで特定の結晶構造を構成する気体水和物は大きな
蓄冷熱容量を有するので、この気体水和物を蓄冷に利用
することが試みられている。気体水和物を利用した従来
の蓄冷熱空調システムの1 例が図2に示されている。 図2において、1は蓄冷熱槽で、この内部には水和剤1
9及び水20が収容され、かつ、これら水和剤19及び
水20の中には第1の熱交換器9と熱源側熱交換器16
が浸漬されている。この第1の熱交換器9は圧縮機3、
四方切換弁4、室外熱交換器5、絞り8、三方弁7、第
2の熱交換器11及びアキュームレ−タ12と共にヒ−
トポンプを構成している。 一方、熱源側熱交換器16は熱媒循環路24を介して空
調ユニット2に接続され、この熱媒循環路24には第2
の熱交換器11、逆止弁17、ポンプ17、三方弁13
、ホンプ14及び三方弁15が介装されている。
[Prior Art] Hydrocarbons (methane, ethane, propane, etc.) and gaseous hydrating agents (R
-11, R-12, R-21, etc.) to form a specific crystal structure has a large heat capacity for cold storage, so attempts have been made to utilize this gaseous hydrate for cold storage. It is being An example of a conventional cold storage thermal air conditioning system using gaseous hydrate is shown in Figure 2. In FIG. 2, 1 is a cold storage heat tank, inside which is a hydrating agent 1.
9 and water 20 are housed, and the first heat exchanger 9 and the heat source side heat exchanger 16 are contained in these hydrating agent 19 and water 20.
is immersed. This first heat exchanger 9 includes a compressor 3,
The heater together with the four-way switching valve 4, the outdoor heat exchanger 5, the throttle 8, the three-way valve 7, the second heat exchanger 11, and the accumulator 12
It constitutes a top pump. On the other hand, the heat source side heat exchanger 16 is connected to the air conditioning unit 2 via a heat medium circulation path 24, and this heat medium circulation path 24 has a second
heat exchanger 11, check valve 17, pump 17, three-way valve 13
, a pump 14 and a three-way valve 15 are interposed.

【0003】蓄冷運転時、圧縮機3から吐出された冷媒
ガスは四方切換弁4を通って室外熱交換器5に入り、こ
こでファン6によって送風される外気に放熱することに
よって凝縮液化する。この液冷媒は絞り8に入って絞ら
れることによって断熱膨張した後、三方弁7を経て第1
の熱交換器9中を流過する過程で管外の水和剤19及び
水20を冷却することによって蒸発気化する。次いで、
この冷媒ガスはアキュームレ−タ12を経て圧縮機3に
戻る。 水和剤19及び水20が冷却されると、気体水和物21
が生成され、この気体水和物21の生成に費やされた潜
熱が冷熱として蓄冷熱槽1内に蓄えられる。
During cold storage operation, the refrigerant gas discharged from the compressor 3 passes through the four-way switching valve 4 and enters the outdoor heat exchanger 5, where it is condensed and liquefied by radiating heat to the outside air blown by the fan 6. This liquid refrigerant enters the throttle 8 and expands adiabatically by being throttled, then passes through the three-way valve 7 to the first
In the process of flowing through the heat exchanger 9, the hydrating agent 19 and water 20 outside the tube are cooled and evaporated. Then,
This refrigerant gas returns to the compressor 3 via the accumulator 12. When the hydrating agent 19 and water 20 are cooled, the gaseous hydrate 21
is generated, and the latent heat spent in generating this gaseous hydrate 21 is stored in the cold heat storage tank 1 as cold heat.

【0004】蓄冷熱槽1内に蓄えられた冷熱を取り出す
場合には放冷運転が行われる。この放冷運転時、熱媒例
えば水が熱源側熱交換器16を流過する過程で管外の気
体水和物21と熱交換して冷却された後、第2の熱交換
器11、逆止弁17、ポンプ18を経て空調ユニット2
に送られ、ここで放冷することによって昇温する。昇温
した水は三方弁13、ポンプ14、三方弁15を経て熱
源側熱交換器16に循環する。この過程で気体水和物2
1はその潜熱を水に与えることによって徐々に水和剤1
9と水20とに分解される。
[0004] When taking out the cold heat stored in the cold storage tank 1, a cooling operation is performed. During this cooling operation, a heat medium such as water passes through the heat source side heat exchanger 16 and is cooled by exchanging heat with the gas hydrate 21 outside the tube. Air conditioning unit 2 via stop valve 17 and pump 18
The temperature is raised by cooling it here. The heated water is circulated to the heat source side heat exchanger 16 via the three-way valve 13, the pump 14, and the three-way valve 15. In this process, gaseous hydrate 2
1 gradually becomes a hydrating agent 1 by imparting its latent heat to water.
It is decomposed into 9 and 20 water.

【0005】冷房運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て室外熱交換器5で凝縮液化し、絞
り8、三方弁7を経て第2の熱交換器11で蒸発気化し
、四方切換弁4、アキュームレ−タ12を経て圧縮機3
に循環する。一方、第2の熱交換器11で冷媒と熱交換
することによって冷却された水は逆止弁17、ポンプ1
8を経て空調ユニット2に送られ、ここで冷房すること
によって昇温した後、三方弁13、ポンプ14、三方弁
15を経て再び第2の熱交換器11に循環する。
During cooling operation, the refrigerant discharged from the compressor 3 passes through the four-way switching valve 4, condenses and liquefies in the outdoor heat exchanger 5, passes through the throttle 8 and the three-way valve 7, and returns to evaporation in the second heat exchanger 11. The compressor 3 passes through the four-way switching valve 4 and the accumulator 12.
circulates. On the other hand, the water cooled by exchanging heat with the refrigerant in the second heat exchanger 11 passes through the check valve 17 and the pump 1.
The heat is sent to the air conditioning unit 2 via the air conditioner 8, where it is cooled to raise its temperature, and then circulated again to the second heat exchanger 11 via the three-way valve 13, the pump 14, and the three-way valve 15.

【0006】蓄熱運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て第2の熱交換器11で凝縮液化し
、三方弁7、絞り8を経て室外熱交換器5で蒸発気化し
、四方切換弁4、アキュームレ−タ12を経て圧縮機3
に循環する。一方、第2の熱交換器11で冷媒と熱交換
することによって加熱された水は三方弁13、ポンプ1
4、三方弁15をこの順に経て熱源側熱交換器16に入
り、ここで管外の水を加熱することにより降温した後、
再び第2の熱交換器11に循環する。かくして、蓄冷熱
槽1内の水が昇温し、これに要した顕熱が蓄冷熱槽1内
に蓄熱される。
During heat storage operation, the refrigerant discharged from the compressor 3 passes through the four-way switching valve 4, is condensed and liquefied in the second heat exchanger 11, passes through the three-way valve 7 and the throttle 8, and is turned into evaporated vapor in the outdoor heat exchanger 5. The compressor 3 passes through the four-way switching valve 4 and the accumulator 12.
circulates. On the other hand, the water heated by exchanging heat with the refrigerant in the second heat exchanger 11 is transferred to the three-way valve 13 and the pump 1.
4. Pass through the three-way valve 15 in this order and enter the heat source side heat exchanger 16, where the water outside the tube is heated and the temperature is lowered.
It is circulated again to the second heat exchanger 11. In this way, the temperature of the water in the cold storage heat tank 1 rises, and the sensible heat required for this rise is stored in the cold storage heat tank 1.

【0007】蓄冷熱槽1内に蓄熱された熱を取り出す場
合には放熱運転が行われる。この放熱運転時、水が熱源
側熱交換器16、第2の熱交換器11、逆止弁17、ポ
ンプ18、空調ユニット2、三方弁13、ポンプ14、
三方弁15をこの順に経て熱源側熱交換器16に循環し
、熱源側熱交換器16内を流過する過程で管外の水から
吸熱することによって昇温し、空調ユニット2で放熱す
ることによって降温する。
[0007] When the heat stored in the cold storage tank 1 is taken out, a heat radiation operation is performed. During this heat dissipation operation, water flows through the heat source side heat exchanger 16, second heat exchanger 11, check valve 17, pump 18, air conditioning unit 2, three-way valve 13, pump 14,
The water circulates through the three-way valve 15 in this order to the heat source side heat exchanger 16, and in the process of flowing through the heat source side heat exchanger 16, it absorbs heat from the water outside the pipe, raising the temperature, and radiates the heat in the air conditioning unit 2. The temperature decreases due to

【0008】暖房運転時、冷媒が圧縮機3、四方切換弁
4を経て第2の熱交換器11で凝縮液化し、三方弁7、
絞り8を経て室外熱交換器5で蒸発気化して四方切換弁
4、アキュームレ−タ12を経て圧縮機3に循環する。 第2の熱交換器11で冷媒と熱交換することによって加
熱された水は逆止弁17、ポンプ18を経て空調ユニッ
ト2に入りここで暖房することによって降温した後、三
方弁13、ポンプ14、三方弁15を経て第2の熱交換
器11に循環する。
During heating operation, the refrigerant passes through the compressor 3 and the four-way switching valve 4 and is condensed and liquefied in the second heat exchanger 11.
It passes through a throttle 8, is evaporated in an outdoor heat exchanger 5, and is circulated to a compressor 3 via a four-way switching valve 4 and an accumulator 12. The water heated by exchanging heat with the refrigerant in the second heat exchanger 11 passes through the check valve 17 and the pump 18 and enters the air conditioning unit 2 where it is heated and cooled down. , and is circulated to the second heat exchanger 11 via the three-way valve 15.

【0009】[0009]

【発明が解決しようとする課題】上記従来のシステムに
おいては、その蓄熱運転時、蓄冷熱槽1内に貯溜された
水の温度上昇による顕熱分しか蓄冷熱槽1内に蓄熱でき
ず、従って、放熱運転時においてもこの顕熱分しか放熱
できないという問題があった。
[Problems to be Solved by the Invention] In the conventional system described above, during the heat storage operation, only the sensible heat due to the temperature rise of the water stored in the cold storage tank 1 can be stored in the cold storage tank 1. There was a problem in that even during heat dissipation operation, only this sensible heat could be dissipated.

【0010】0010

【課題を解決するための手段】本発明は上記に鑑み、暖
房運転時に気体水和物を生成させ、生成時の潜熱を熱源
として熱媒を加熱しようとするものであって、その要旨
とするところは、水和剤と水とが収容された蓄冷熱槽と
、圧縮機、四方切換弁、室外熱交換器、絞り、第1の熱
交換器及び第2の熱交換器からなるヒ−トポンプと、空
調ユニットとを具備し、上記蓄冷熱槽内に上記空調ユニ
ットに熱媒循環路を介して接続された熱源側熱交換器と
上記ヒートポンプの第1の熱交換器をそれぞれ配設し、
かつ、上記熱媒循環路中に上記ヒ−トポンプの第2の熱
交換器を介装してなる蓄冷熱空調システムにおいて、上
記ヒ−トポンプの第1の熱交換器と第2の熱交換器との
間に第2の絞りを設け、上記第1の熱交換器を蒸発器、
第2の熱交換器を凝縮器とし上記圧縮機及び上記第2の
絞りと協働してヒ−トポンプサイクルを形成する冷媒回
路を構成したことを特徴とする蓄冷熱空調システムにあ
る。
[Means for Solving the Problems] In view of the above, the present invention aims to generate gaseous hydrates during heating operation and heat a heat medium using the latent heat generated during the generation as a heat source. However, a heat pump consists of a cold storage heat tank containing a hydrating powder and water, a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle, a first heat exchanger, and a second heat exchanger. and an air conditioning unit, a heat source side heat exchanger connected to the air conditioning unit via a heat medium circulation path and a first heat exchanger of the heat pump are respectively arranged in the cold storage heat tank,
and a cold storage thermal air conditioning system comprising a second heat exchanger of the heat pump interposed in the heat medium circulation path, the first heat exchanger and the second heat exchanger of the heat pump; a second throttle is provided between the first heat exchanger and the evaporator;
A refrigerant circuit comprising a second heat exchanger as a condenser and a refrigerant circuit that cooperates with the compressor and the second throttle to form a heat pump cycle.

【0011】[0011]

【作用】本発明においては、上記構成を具えているため
、暖房運転時、冷媒は圧縮機から四方切換弁を経て第2
の熱交換器で冷媒を加熱することにより凝縮液化し、第
2の絞りで断熱膨張し、第1の熱交換器で管外の水和剤
及び水を冷却して気体水和物を生成することにより自身
は蒸発気化して圧縮機に戻る。一方、第2の熱交換器で
冷媒により加熱された熱媒は空調ユニットに入り、ここ
で暖房することによって降温した後再び第2の熱交換器
に循環する。
[Operation] Since the present invention has the above-mentioned configuration, during heating operation, the refrigerant is passed from the compressor through the four-way switching valve to the second
By heating the refrigerant in the heat exchanger, it condenses and liquefies, expands adiabatically in the second throttle, and cools the hydrating agent and water outside the tube in the first heat exchanger to generate a gaseous hydrate. As a result, it evaporates and returns to the compressor. On the other hand, the heat medium heated by the refrigerant in the second heat exchanger enters the air conditioning unit, cools down by heating there, and then circulates to the second heat exchanger again.

【0012】0012

【実施例】本発明の1実施例が図1に示されている。第
1の熱交換器9と第2の熱交換器11との間に膨張弁等
の第2の絞り10が介装され、この第2の絞り10と並
列に第2の熱交換器11への冷媒の流れを許容するが、
これと逆方向への冷媒の流れを阻止する逆止弁23が配
列されている。また、絞り8と並列に室外熱交換器5へ
の冷媒の流れを許容するが、これと逆方向への冷媒の流
れを阻止する逆止弁22が配設されている。他の構成は
第2図に示す従来のものと同様であり、対応する部材に
は同じ符号が付されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the invention is shown in FIG. A second restrictor 10 such as an expansion valve is interposed between the first heat exchanger 9 and the second heat exchanger 11, and the second restrictor 10 is connected to the second heat exchanger 11 in parallel with the second restrictor 10. Although it allows a flow of refrigerant of
Check valves 23 are arranged to prevent the flow of refrigerant in the opposite direction. Further, a check valve 22 is arranged in parallel with the throttle 8 to allow the flow of refrigerant to the outdoor heat exchanger 5, but to prevent the refrigerant from flowing in the opposite direction. The rest of the structure is the same as the conventional one shown in FIG. 2, and corresponding members are given the same reference numerals.

【0013】蓄冷運転時、圧縮機3から吐出された冷媒
ガスは四方切換弁4を通って室外熱交換器5に入り、こ
こでファン6によって送風される外気に放熱することに
よって凝縮液化する。この液冷媒は絞り8に入って断熱
膨張した後、三方弁7を経て第1の熱交換器9で管外の
水和剤19及び水20を冷却することによって蒸発気化
する。次いで、この冷媒ガスはアキュームレ−タ12を
経て圧縮機3に戻る。水和剤19及び水20は冷却され
ることにより気体水和物21を生成し、この生成に費や
された潜熱が冷熱として蓄冷熱槽1内に蓄えられる。
During cold storage operation, the refrigerant gas discharged from the compressor 3 passes through the four-way switching valve 4 and enters the outdoor heat exchanger 5, where it is condensed and liquefied by radiating heat to the outside air blown by the fan 6. After this liquid refrigerant enters the throttle 8 and expands adiabatically, it passes through the three-way valve 7 and is evaporated by cooling the hydrating agent 19 and water 20 outside the tube in the first heat exchanger 9. This refrigerant gas then returns to the compressor 3 via the accumulator 12. The hydrating agent 19 and the water 20 are cooled to generate a gaseous hydrate 21, and the latent heat spent on this generation is stored in the cold heat storage tank 1 as cold heat.

【0014】放冷運転時、水が熱源側熱交換器16で冷
却された後、第2の熱交換器11、逆止弁17、ポンプ
18を経て空調ユニット2に送られ、ここで放冷するこ
とによって昇温し、三方弁13、ポンプ14、三方弁1
5を経て熱源側熱交換器16に循環する。この過程で気
体水和物21はその潜熱を水に与えることによって徐々
に水和剤19と水20とに分解される。
During the cooling operation, after the water is cooled by the heat source side heat exchanger 16, it is sent to the air conditioning unit 2 via the second heat exchanger 11, the check valve 17, and the pump 18, where it is cooled by the heat source side heat exchanger 16. The temperature is raised by
5 and circulates to the heat source side heat exchanger 16. In this process, the gaseous hydrate 21 is gradually decomposed into the hydrating agent 19 and water 20 by imparting its latent heat to the water.

【0015】冷房運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て室外熱交換器5で凝縮液化し、絞
り8、三方弁7、逆止弁23を経て第2の熱交換器11
で蒸発気化した後、四方切換弁4、アキュームレ−タ1
2を経て圧縮機3に循環する。一方、第2の熱交換器1
1で冷媒と熱交換することによって冷却された水は逆止
弁17、ポンプ18を経て空調ユニット2に入りここで
冷房することによって昇温した後、三方弁13、ポンプ
14、三方弁15を経て再び第2の熱交換器11に循環
する。
During cooling operation, the refrigerant discharged from the compressor 3 passes through the four-way switching valve 4, condenses and liquefies in the outdoor heat exchanger 5, passes through the throttle 8, the three-way valve 7, and the check valve 23, and then enters the second heat exchanger. Vessel 11
After evaporation, four-way switching valve 4, accumulator 1
2 and circulates to the compressor 3. On the other hand, the second heat exchanger 1
The water cooled by heat exchange with the refrigerant in step 1 passes through the check valve 17 and the pump 18 and enters the air conditioning unit 2 where it is cooled to raise its temperature. After that, it is circulated again to the second heat exchanger 11.

【0016】蓄熱運転時、圧縮機3から吐出された冷媒
は四方切換弁4を経て第2の熱交換器11で凝縮液化し
、絞り10で断熱膨張し、三方弁7、逆止弁22を経て
室外熱交換器5で蒸発気化し、四方切換弁4、アキュー
ムレ−タ12を経て圧縮機3に循環する。一方、第2の
熱交換器11で冷媒と熱交換することによって加熱され
た水は三方弁13、ポンプ14、三方弁15を経て熱源
側熱交換器16入りここで管外の水を加熱することによ
り降温した後、再び第2の熱交換器11に循環する。
During heat storage operation, the refrigerant discharged from the compressor 3 passes through the four-way switching valve 4, condenses and liquefies in the second heat exchanger 11, expands adiabatically at the throttle 10, and closes the three-way valve 7 and check valve 22. After that, it is evaporated in an outdoor heat exchanger 5, and is circulated to a compressor 3 via a four-way switching valve 4 and an accumulator 12. On the other hand, the water heated by exchanging heat with the refrigerant in the second heat exchanger 11 passes through the three-way valve 13, pump 14, and three-way valve 15, and enters the heat source side heat exchanger 16, where it heats the water outside the pipe. After the temperature is lowered by this, it is circulated to the second heat exchanger 11 again.

【0017】放熱運転時、水は熱源側熱交換器16、第
2の熱交換器11、逆止弁17、ポンプ18、空調ユニ
ット2、三方弁13、ポンプ14、三方弁15をこの順
に経て熱源側熱交換器16に循環し、熱源側熱交換器1
6内を流過する過程で管外の水から吸熱することによっ
て昇温し、空調ユニット2で放熱することによって降温
する。空気を熱源として暖房運転する場合には、冷媒は
圧縮機3、四方切換弁4、第2の熱交換器11、第2の
絞り10、三方弁7、逆止弁22、室外熱交換器5、四
方切換弁4、アキュームレ−タ12をこの順に経て圧縮
機3に循環し、水は第2の熱交換器11、逆止弁17、
ポンプ18、空調ユニット2、三方弁13、ポンプ14
、三方弁15を経て第2の熱交換器11に循環する。か
くして、水は第2の熱交換器11で冷媒と熱交換するこ
とにより昇温し、空調ユニット2で暖房することによっ
て降温する。
During heat dissipation operation, water passes through the heat source side heat exchanger 16, second heat exchanger 11, check valve 17, pump 18, air conditioning unit 2, three-way valve 13, pump 14, and three-way valve 15 in this order. It circulates to the heat source side heat exchanger 16, and the heat source side heat exchanger 1
In the process of flowing through the tube, the temperature rises by absorbing heat from the water outside the tube, and the temperature decreases by dissipating heat in the air conditioning unit 2. In heating operation using air as a heat source, the refrigerant is compressor 3, four-way switching valve 4, second heat exchanger 11, second throttle 10, three-way valve 7, check valve 22, outdoor heat exchanger 5 , the four-way switching valve 4, and the accumulator 12 in this order, the water is circulated to the compressor 3, and the water is passed through the second heat exchanger 11, the check valve 17,
Pump 18, air conditioning unit 2, three-way valve 13, pump 14
, and is circulated to the second heat exchanger 11 via the three-way valve 15. Thus, the temperature of the water is increased by exchanging heat with the refrigerant in the second heat exchanger 11, and the temperature of the water is decreased by being heated by the air conditioning unit 2.

【0018】気体水和物の潜熱を熱源として暖房運転す
る場合には、圧縮機3から吐出された冷媒は四方切換弁
4を経て第2の熱交換器11で水を加熱することによっ
て凝縮液化し、第2の絞り10で断熱膨張し、三方弁7
を経て第1の熱交換器9で凝縮液化した後アキュームレ
−タ12を経て圧縮機3に循環し、第1の熱交換器9を
流過する過程で管外の水和剤19及び水20を冷却する
ことによって気体水和物21を生成させる。一方、第2
の熱交換器11で加熱された水は逆止弁17、ポンプ1
8を経て空調ユニット2内に送られ、ここで暖房するこ
とによって降温した後三方弁13、ポンプ14、三方弁
15を経て再び第2の熱交換器11内に循環する。この
暖房運転時、ヒ−トポンプサイクルは蓄冷熱槽1内の水
20の顕熱又は気体水和物21を生成する際の潜熱を熱
源として運転されるので、その暖房能力及び成績係数は
空気を熱源として運転する場合に比し大巾に向上する。 なお、昼間にこの暖房運転によって生成した気体水和物
21を利用し夜間に蓄熱運転を行うこともできる。
In heating operation using the latent heat of the gas hydrate as a heat source, the refrigerant discharged from the compressor 3 passes through the four-way switching valve 4 and is condensed and liquefied by heating water in the second heat exchanger 11. The second throttle 10 expands adiabatically, and the three-way valve 7
After being condensed and liquefied in the first heat exchanger 9, it is circulated to the compressor 3 via the accumulator 12, and in the process of flowing through the first heat exchanger 9, the hydrating agent 19 and water 20 outside the pipe are removed. A gaseous hydrate 21 is generated by cooling. On the other hand, the second
The water heated by the heat exchanger 11 is passed through the check valve 17 and the pump 1.
The heat is sent to the air conditioning unit 2 via the air conditioner 8, where it is cooled by heating, and then circulated again into the second heat exchanger 11 via the three-way valve 13, the pump 14, and the three-way valve 15. During this heating operation, the heat pump cycle is operated using the sensible heat of the water 20 in the cold storage tank 1 or the latent heat when generating the gas hydrate 21 as a heat source, so its heating capacity and coefficient of performance are This is a huge improvement compared to when operating as a heat source. Note that it is also possible to perform heat storage operation at night by using the gas hydrate 21 generated by this heating operation during the day.

【0019】[0019]

【発明の効果】本発明においては、ヒ−トポンプの第1
熱交換器と第2熱交換器との間に第2の絞りを設け、暖
房運転時、第1熱交換器を蒸発器、第2の熱交換器を凝
縮器として圧縮機及び第2の絞りと協働してヒ−トポン
プサイクルを形成するため、蓄冷熱槽内の水又は水和剤
を冷却して気体水和物を生成させ、その際の潜熱を利用
して暖房できるので、暖房能力及び成績係数を大巾に向
上できる。
Effects of the Invention In the present invention, the first
A second throttle is provided between the heat exchanger and the second heat exchanger, and during heating operation, the first heat exchanger is used as an evaporator and the second heat exchanger is used as a condenser. In order to form a heat pump cycle in cooperation with the cold storage tank, the water or hydrating agent in the cold storage tank is cooled to generate gaseous hydrate, and the latent heat at that time can be used for heating, increasing the heating capacity. and the coefficient of performance can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の1実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【図2】従来のシステムの1例を示す系統図である。FIG. 2 is a system diagram showing an example of a conventional system.

【符号の説明】[Explanation of symbols]

1  蓄冷熱槽 19  水和剤 20  水 21  気体水和物 3  圧縮機 4  四方切換弁 5  室外熱交換器 8  絞り 9  第1の熱交換器 11  第2の熱交換器 2  空調ユニット 16  熱源側熱交換器 24  熱媒循環路 10  第2の絞り 1 Cold storage heat tank 19 Hydrating agent 20 Water 21 Gaseous hydrate 3 Compressor 4 Four-way switching valve 5 Outdoor heat exchanger 8 Aperture 9 First heat exchanger 11 Second heat exchanger 2 Air conditioning unit 16 Heat source side heat exchanger 24 Heat medium circulation path 10 Second aperture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水和剤と水とが収容された蓄冷熱槽と
、圧縮機、四方切換弁、室外熱交換器、絞り、第1の熱
交換器及び第2の熱交換器からなるヒ−トポンプと、空
調ユニットとを具備し、上記蓄冷熱槽内に上記空調ユニ
ットに熱媒循環路を介して接続された熱源側熱交換器と
上記ヒートポンプの第1の熱交換器をそれぞれ配設し、
かつ、上記熱媒循環路中に上記ヒ−トポンプの第2の熱
交換器を介装してなる蓄冷熱空調システムにおいて、上
記ヒ−トポンプの第1の熱交換器と第2の熱交換器との
間に第2の絞りを設け、上記第1の熱交換器を蒸発器、
第2の熱交換器を凝縮器とし上記圧縮機及び上記第2の
絞りと協働してヒ−トポンプサイクルを形成する冷媒回
路を構成したことを特徴とする蓄冷熱空調システム。
Claim 1: A heat storage system comprising a cold storage heat tank containing a hydrating powder and water, a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle, a first heat exchanger, and a second heat exchanger. - a heat source side heat exchanger connected to the air conditioning unit via a heat medium circulation path and a first heat exchanger of the heat pump are respectively disposed in the cold storage heat tank; death,
and a cold storage thermal air conditioning system comprising a second heat exchanger of the heat pump interposed in the heat medium circulation path, the first heat exchanger and the second heat exchanger of the heat pump; a second throttle is provided between the first heat exchanger and the evaporator;
A cold storage thermal air conditioning system comprising a refrigerant circuit in which a second heat exchanger is used as a condenser and cooperates with the compressor and the second throttle to form a heat pump cycle.
JP3137108A 1991-05-14 1991-05-14 Cold storage air conditioning system Expired - Fee Related JP2989316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137108A JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137108A JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Publications (2)

Publication Number Publication Date
JPH04340035A true JPH04340035A (en) 1992-11-26
JP2989316B2 JP2989316B2 (en) 1999-12-13

Family

ID=15191035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137108A Expired - Fee Related JP2989316B2 (en) 1991-05-14 1991-05-14 Cold storage air conditioning system

Country Status (1)

Country Link
JP (1) JP2989316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181469B2 (en) 2002-02-19 2012-05-22 Mitsui Zosen Plant Engineering Inc. Refrigerating method and refrigerating system utilizing gas hydrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867851B2 (en) * 2007-01-30 2012-02-01 Jfeエンジニアリング株式会社 Refrigerator and operation method thereof, air conditioning equipment and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181469B2 (en) 2002-02-19 2012-05-22 Mitsui Zosen Plant Engineering Inc. Refrigerating method and refrigerating system utilizing gas hydrate

Also Published As

Publication number Publication date
JP2989316B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
JPH04110574A (en) Method and apparatus for heating and cooling with refrigerant gas
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
US4437321A (en) Absorption cooling and heating system
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
JPH07253254A (en) Heat-carrying apparatus
JPH04340035A (en) Cold/hot storage air conditioning system
JP2004163092A (en) Indoor unit for air conditioner and air conditioner using this
JPH0250058A (en) Air cooled absorbing type cooling and heating device
JP2678211B2 (en) Heat storage type cold / heat generator
JPS581345B2 (en) Air conditioning/heating/hot water equipment
JPS5935750A (en) Natural heat absorption device usable as heat dissipation device
JPS6367633B2 (en)
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JP3521011B2 (en) Heat transfer device
JP3316859B2 (en) Chemical heat storage system
JPH0875285A (en) Cooling and heating device
JPS6238200Y2 (en)
JP4282225B2 (en) Absorption refrigerator
JPS58178162A (en) Absorption type heat pump device
JPH0225113B2 (en)
JPS5872853A (en) Absorption air conditioner
JPS6352299B2 (en)
JPH10110976A (en) Natural circulating type heat transfer device
JP2002364940A (en) Absorption refrigeration unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

LAPS Cancellation because of no payment of annual fees