JP2987418B2 - Exhaust gas treatment equipment - Google Patents

Exhaust gas treatment equipment

Info

Publication number
JP2987418B2
JP2987418B2 JP5316510A JP31651093A JP2987418B2 JP 2987418 B2 JP2987418 B2 JP 2987418B2 JP 5316510 A JP5316510 A JP 5316510A JP 31651093 A JP31651093 A JP 31651093A JP 2987418 B2 JP2987418 B2 JP 2987418B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
nox
sox
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5316510A
Other languages
Japanese (ja)
Other versions
JPH07163838A (en
Inventor
公廉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP5316510A priority Critical patent/JP2987418B2/en
Publication of JPH07163838A publication Critical patent/JPH07163838A/en
Application granted granted Critical
Publication of JP2987418B2 publication Critical patent/JP2987418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
NOxや硫黄酸化物SOxを分解して無害化する排ガス
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment apparatus for decomposing nitrogen oxides NOx and sulfur oxides SOx in exhaust gas to make them harmless.

【0002】[0002]

【従来の技術】発電プラント用ボイラ、ディーゼルエン
ジン、ガスタービン及び各種燃焼炉などから排出される
排ガス中にはNOxやSOxが含まれるため、これら成
分を分解処理する技術が従来から用いられている。従来
のこれらの技術についていくつか例示すると、電子ビー
ムやアンモニアを用いて排ガス中のNOxを分解する技
術としては特開平1−236924号公報、特開平2−
241519号公報に開示の技術などがあり、グロー放
電やコロナ放電によりNOxやSOxを分解する技術と
しては特開平1−236924号公報、特開平2−20
3920号公報、特開平2−227117号公報、特開
平5−96129号公報に開示の技術などがある。
2. Description of the Related Art NOx and SOx are contained in exhaust gas discharged from boilers for power plants, diesel engines, gas turbines, various types of combustion furnaces, etc., and a technique for decomposing these components has been used. . Some examples of these conventional technologies are described as technologies for decomposing NOx in exhaust gas using an electron beam or ammonia.
Japanese Patent Application Laid-Open No. 1-236924 and Japanese Patent Application Laid-Open No. 2-20 disclose techniques for decomposing NOx and SOx by glow discharge and corona discharge.
There are techniques disclosed in 3920, JP-A-2-227117 and JP-A-5-96129.

【0003】これらの技術においては、NOxやSOx
の放電分解条件、すなわち、ガス分解器の放電電圧、放
電周波数、投入電力、処理ガス圧などの値は一定として
運転している。
[0003] In these technologies, NOx and SOx are used.
, Ie, the discharge voltage, discharge frequency, input power, and processing gas pressure of the gas decomposer are kept constant.

【0004】[0004]

【発明が解決しようとする課題】しかし、排ガス排出源
となるディーゼルエンジンの回転数の変動したり、ある
いは、ボイラやゴミ焼却炉においてゴミの組成が変動し
て排ガス中の成分比が変動するなど、排ガス排出源など
の条件の変動により排ガス中のNOxやSOxその他の
成分が変動する。よって、放電分解条件を常に一定とし
て排ガス処理を行なうと、放電分解条件が常に最適に保
たれるとはいえず、NOxやSOxの分解効率が運転中
に低下してしまう問題がある。
However, the rotational speed of a diesel engine, which is an exhaust gas discharge source, fluctuates, or the composition of refuse in a boiler or refuse incinerator fluctuates, and the component ratio in the exhaust gas fluctuates. In addition, NOx, SOx, and other components in the exhaust gas fluctuate due to fluctuations in conditions such as the exhaust gas discharge source. Therefore, if the exhaust gas treatment is performed while the discharge decomposition conditions are always kept constant, it cannot be said that the discharge decomposition conditions are always kept optimal, and there is a problem that the NOx and SOx decomposition efficiency decreases during operation.

【0005】この解決のために、温度計、NOx計、S
Ox計などで排ガスの温度、NOx濃度、SOx濃度な
どの排ガスの状態を検出し、この検出値に基づいて排ガ
スの放電分解条件を調節しても、これらの計測機器では
排ガスの電子密度、プラズマ密度などの排ガスの状態を
検出することはできず、これらのファクターがNOxや
SOxの分解効率に関与している場合には、放電分解条
件を常に最適に保つことはできず、NOxやSOxの分
解効率を十分に高く維持することはできない。
To solve this problem, a thermometer, NOx meter, S
Even if the state of the exhaust gas, such as the temperature of the exhaust gas, NOx concentration, SOx concentration, etc., is detected by an Ox meter or the like, and the discharge decomposition conditions of the exhaust gas are adjusted based on the detected values, these measuring devices still have the following: It is not possible to detect the state of the exhaust gas such as the density, and when these factors are involved in the NOx and SOx decomposition efficiency, the discharge decomposition conditions cannot always be kept optimal, and the NOx and SOx The decomposition efficiency cannot be kept high enough.

【0006】また、ガス分解器内のガスをガスサンプリ
ングして、NOx計やSOx計でNOx濃度、SOx濃
度を検出して放電分解条件を調節しようとしても、ガス
分解器内のガスの平均的な組成しか検出できず極め細か
な排ガス状態の検出はできず、また、ガスサンプリング
してから、NOx計などでNOx濃度などを検出しても
タイムロスがあり、リアルタイムでの検出ができないた
め、排ガス状態が常に変動している場合には、正確な放
電分解条件の調節が困難となり、何れもNOxやSOx
の分解効率を十分に高く維持することはできない。
Further, even if the gas in the gas decomposer is gas-sampled, and the NOx concentration and the SOx concentration are detected by the NOx meter and the SOx meter to adjust the discharge decomposition conditions, the average of the gas in the gas decomposer is adjusted. It is not possible to detect the exhaust gas state very finely because it can only detect the composition, and even if the NOx concentration is detected with a NOx meter etc. after gas sampling, there is a time loss, and it is not possible to detect it in real time. If the state constantly fluctuates, it is difficult to accurately adjust the discharge decomposition conditions.
The decomposition efficiency cannot be kept high enough.

【0007】本発明は、排ガス排出源などの条件の変動
により排ガスの電子密度、プラズマ密度などの排ガスの
状態が変動しても、常に最適のNOxやSOxの放電分
解条件を保つことができる排ガス処理装置を提供するこ
とを目的とする。
[0007] The present invention provides an exhaust gas capable of always maintaining optimal NOx and SOx discharge decomposition conditions even if the state of the exhaust gas such as the electron density and plasma density of the exhaust gas fluctuates due to the fluctuation of conditions such as the exhaust gas discharge source. It is an object to provide a processing device.

【0008】[0008]

【課題を解決するための手段】かかる課題を解決するた
めの本発明は、排ガス中のNOx及び、又はSOxを分
解するガス分解器を備えた排ガス処理装置において、前
記ガス分解器内の排ガスの状態を検出する発光分光分析
器と、この発光分光分析器による検出値に基づいて前記
ガス分解器のNOx及び、又はSOx放電分解条件を調
節する制御器とを備えたことを特徴とする排ガス処理装
置である。
According to the present invention, there is provided an exhaust gas treatment apparatus provided with a gas decomposer for decomposing NOx and / or SOx in exhaust gas. An exhaust gas treatment comprising: an emission spectrometer for detecting a state; and a controller for adjusting NOx and / or SOx discharge decomposition conditions of the gas decomposer based on a value detected by the emission spectrometer. Device.

【0009】[0009]

【作用】本発明の前記の排ガス処理装置は発光分光分析
器を備えている。発光分光分析器を用いれば、ガス分解
器内の排ガスの状態を検出する場合はNOx濃度、SO
x濃度などの排ガス状態のみならず、排ガスの電子密
度、プラズマ密度などの排ガス状態も検出することがで
きる。したがって、電子密度、プラズマ密度などがNO
xやSOxの分解反応に大きな影響を与えている場合に
おいても、これらの値を検出し、NOx及び、又はSO
x放電分解条件を調節して常に最適なNOx及び、又は
SOx放電分解条件を保つことができる。
The exhaust gas treatment apparatus of the present invention has an emission spectrometer. If the emission spectrometer is used to detect the state of the exhaust gas in the gas decomposer, the NOx concentration, SOx
Not only the exhaust gas state such as x concentration but also the exhaust gas state such as electron density and plasma density of the exhaust gas can be detected. Therefore, the electron density, plasma density, etc. are NO
Even when it greatly affects the decomposition reaction of x and SOx, these values are detected and NOx and / or SOx are detected.
The optimal NOx and / or SOx discharge decomposition conditions can always be maintained by adjusting the x discharge decomposition conditions.

【0010】また、発光分光分析器を用いれば、部分的
にガス分解器内の排ガスの状態が異なっていても、この
部分的な相違を検出することができる。よって、極めの
細かい排ガスの状態の検出ができ、この点でも最適なN
Ox及び、又はSOx放電分解条件を保つことができる
うえに、ガス分解器内でNOxやSOxの分解効率の高
い部分と低い部分のガス状態、そのときの放電分解条件
を記録すれば、従来より分解効率の高いガス状態を突き
止めて、NOx、SOxガス高分解効率化開発に寄与す
ることも可能となる。さらに、ガスサンプリングなどは
必要なく、排ガスの成分組成などをリアルタイムで検出
することができるから、排ガスの状態が常に変動してい
る場合においても正確な放電分解条件の調節ができる。
Further, if the emission spectrometer is used, even if the state of the exhaust gas in the gas decomposer is partially different, this partial difference can be detected. Therefore, it is possible to detect the state of the exhaust gas with extremely fine,
In addition to maintaining the Ox and / or SOx discharge decomposition conditions, and recording the gas state of the high and low NOx and SOx decomposition efficiency parts and the discharge decomposition conditions at that time in the gas decomposer, It is also possible to determine the gas state with high decomposition efficiency and contribute to the development of high decomposition efficiency of NOx and SOx gases. Furthermore, since gas sampling or the like is not required and the component composition of the exhaust gas can be detected in real time, accurate discharge decomposition conditions can be adjusted even when the state of the exhaust gas is constantly changing.

【0011】より具体的に、何が最適な放電分解条件か
については、排ガス処理装置の使用対象(発電プラント
用ボイラに用いるのか、ディーゼルエンジンに用いるの
かなど)、排ガス処理装置の使用目的(NOxの除去の
みを対象とするのか、NOxとSOxの両方を対象とす
るのか、目標とする除去率は何%かなど)、その他の様
々な条件により異なる。
More specifically, what is the optimal discharge decomposition condition is the object of use of the exhaust gas treatment device (whether it is used for a power plant boiler or a diesel engine, etc.), the purpose of use of the exhaust gas treatment device (NOx The removal rate only, or both NOx and SOx, and what is the target removal rate?), And various other conditions.

【0012】[0012]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。図1は本発明の一実施例である排ガス処理装置の
斜視図である。1はグロー放電やコロナ放電によりNO
xを分解するガス分解器であり、このガス分解器1には
排ガスが導入されて、放電電源2により電圧が印加さ
れ、排ガス中のNOxが分解される。ガス分解器1には
計測用窓3が設けられ、この窓を介して発光光を発光集
光部4、分光器5で検出する。発光集光部4、分光器5
による検出結果に基づいて、データプロセッサ6、コン
ピュータ7により、排ガス成分比、N+、O+を含むプラ
ズマ粒子密度、電子密度、プラズマ温度などの排ガス状
態が判定されて、この状態に変化があれば、ガス分解器
1におけるNOxの適切な放電分解条件、すなわち、ガ
ス分解器の放電電圧、放電周波数、投入電力などの値を
演算し、放電電源2に制御信号を発して放電分解条件を
適切な値に保つ。また、必要に応じて、この制御信号に
よりガス分解器1に導入するガス圧力の調節や、マイク
ロ波照射により排ガス温度の調節も行なう。なお、9は
発光集光部4と分光器5とを接続する光ファイバ、8は
現在の排ガス状態や放電分解条件などを打ち出すプリン
タである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an exhaust gas treatment apparatus according to one embodiment of the present invention. 1 is NO due to glow discharge or corona discharge
This is a gas decomposer that decomposes x. Exhaust gas is introduced into the gas decomposer 1, a voltage is applied by a discharge power source 2, and NOx in the exhaust gas is decomposed. The gas decomposer 1 is provided with a measurement window 3 through which light emitted from the gas decomposer 4 is detected by the light emission condensing unit 4 and the spectroscope 5. Light emission condensing unit 4, spectroscope 5
The data processor 6 and the computer 7 determine the exhaust gas state such as the exhaust gas component ratio, the density of plasma particles including N + and O +, the electron density, the plasma temperature, etc. For example, an appropriate discharge decomposition condition of NOx in the gas decomposer 1, that is, a value such as a discharge voltage, a discharge frequency, and an input power of the gas decomposer is calculated, and a control signal is issued to the discharge power source 2 to appropriately set the discharge decomposition condition. Value. If necessary, the control signal controls the pressure of the gas introduced into the gas decomposer 1 and the temperature of the exhaust gas by microwave irradiation. Reference numeral 9 denotes an optical fiber for connecting the light-emitting and condensing unit 4 to the spectroscope 5, and reference numeral 8 denotes a printer that prints out the current exhaust gas state, discharge decomposition conditions, and the like.

【0013】プラズマ温度は、検出したスペクトルデー
タに基づき、下記のボルツマン式を適用したLTEモデ
ルによる演算を行なうことで求めることができる。
The plasma temperature can be obtained by performing an operation using an LTE model to which the following Boltzmann equation is applied based on the detected spectrum data.

【0014】[0014]

【数1】 (Equation 1)

【0015】(なお、この式において、A:自然放出係
数、g:縮退度、E:ポテンシャルエネルギー、k:ボル
ツマン定数、ν:ガス分解器1からのガスの排出側の発
光光の周波数、I:ガス分解器1へのガスの導入側の光
強度、T:ガス分解器1からのガスの排出側のプラズマ
温度であり、添字のijは準位iからjへの遷移を意味
し、添字のklは準位kからlへの遷移を意味する。) 粒子密度は、プラズマ温度が数千度以上の高温ならば、
次のsahaの式に基づく演算により求められる。高温
のプラズマではne≒n+として近似でき、n+、neが算
出される。
(In this equation, A: spontaneous emission coefficient, g: degeneracy, E: potential energy, k: Boltzmann constant, ν: frequency of light emitted from the gas decomposer 1 on the discharge side of gas, I: : Light intensity on the gas introduction side to the gas decomposer 1; T: plasma temperature on the gas discharge side from the gas decomposer 1; suffix ij means transition from level i to j; The kl of means the transition from the level k to l.) If the plasma temperature is as high as several thousand degrees,
It is obtained by an operation based on the following Saha equation. In a high-temperature plasma, it can be approximated as ne ≒ n +, and n + and ne are calculated.

【0016】[0016]

【数2】 (Equation 2)

【0017】(なお、この式において、Vi:ガス分解
器1へのガスの導入側の電離電圧、e:電気素量、n
+:ガス分解器1からのガスの排出側のイオン密度、n
e:ガス分解器1からのガスの排出側の電子密度、ng:
ガス分解器1からのガスの排出側の中性ガス粒子密度で
ある。) 比較的低温のプラズマにおいては、このsahaの式は
つかえないため、シュタルクシフトを用いてneを算出
し、n+を求める。
(In this equation, Vi: ionization voltage on the gas introduction side to the gas decomposer 1, e: elementary electricity, n
+: Ion density on the discharge side of gas from the gas decomposer 1, n
e: electron density at the gas discharge side of gas decomposer 1, ng:
This is the neutral gas particle density on the gas discharge side of the gas decomposer 1. In a plasma at a relatively low temperature, the equation of saha cannot be used, so ne is calculated using the Stark shift to obtain n +.

【0018】本実施例においては、放電分解条件を適切
な値に保つが、具体的に、何が最適な放電分解条件かに
ついては、排ガス処理装置の使用対象(発電プラント用
ボイラに用いるのか、ディーゼルエンジンに用いるのか
など)、排ガス処理装置の使用目的(本実施例のように
NOxの除去のみを対象とするのか、NOxとSOxの
両方を対象とするのか、目標とする除去率は何%かな
ど)、その他の様々な条件により異なるものである。
In this embodiment, the discharge decomposition condition is maintained at an appropriate value. Specifically, what is the optimum discharge decomposition condition depends on the object of use of the exhaust gas treatment apparatus (whether it is used in a boiler for a power plant, What is the target removal rate, whether it is used for a diesel engine, the purpose of use of the exhaust gas treatment device (whether it is only for the removal of NOx as in the present embodiment or both NOx and SOx). , Etc.) and other various conditions.

【0019】ここでは、一例として、NO分子密度、N
O+密度、NO2+密度による放電分解条件調節について
説明する。NO中性粒子密度に比べ、その領域の全プラ
ズマ密度(窒素プラズマ、酸素プラズマが大半である)
が所定の割合以上となると、放電分解ではNO量は減少
しなくなる。そこで、nNOx+ / nNO(nNOx+:(NO+
+ NO2+の密度)、nNO:NO分子の密度)の値を監
視し、この値が大きくなり過ぎた場合には放電電圧を下
げたり、あるいはガス分解器1内に導入されるガスのガ
ス圧を変化させ、NOx分解効率を高く維持することが
できる。なお、放電分解による、NOx分解効率には、
ガス分解器1内の水分量も関係するから、この水分量も
考慮して調節してもよい。
Here, as an example, the NO molecular density, N
The adjustment of discharge decomposition conditions by O + density and NO 2 + density will be described. Total plasma density in that region compared to NO neutral particle density (mostly nitrogen plasma and oxygen plasma)
Is greater than or equal to a predetermined ratio, the amount of NO does not decrease in the discharge decomposition. Therefore, nNOx + / nNO (nNOx + :( NO +
+ NO 2 + density) and nNO: the density of NO molecules) are monitored, and if this value becomes too large, the discharge voltage is lowered or the gas introduced into the gas decomposer 1 is reduced. By changing the pressure, the NOx decomposition efficiency can be kept high. In addition, NOx decomposition efficiency by discharge decomposition
Since the amount of water in the gas decomposer 1 is related, the adjustment may be made in consideration of the amount of water.

【0020】つづいて本実施例の作用について説明す
る。本実施例の排ガス処理装置は上述のとおりガス分解
器1内の排ガス中の粒子密度も検出することができる。
よって、ガス分解器内1の排ガスの状態を検出する場合
にNOx濃度、SOx濃度などの排ガス状態のみなら
ず、排ガスの電子密度、プラズマ密度などの排ガス状態
も検出することができる。したがって、電子密度、プラ
ズマ密度などがNOxやSOxの分解反応に大きな影響
を与えている場合においても、これらの値を検出し、N
Ox及び、又はSOx放電分解条件を調節して常に最適
なNOx及び、又はSOx放電分解条件を保つことがで
きる。
Next, the operation of the present embodiment will be described. The exhaust gas treatment apparatus of the present embodiment can also detect the particle density in the exhaust gas in the gas decomposer 1 as described above.
Therefore, when detecting the state of the exhaust gas in the gas decomposer 1, not only the exhaust gas state such as the NOx concentration and the SOx concentration but also the exhaust gas state such as the electron density and the plasma density of the exhaust gas can be detected. Therefore, even when the electron density, the plasma density, and the like have a large effect on the decomposition reaction of NOx and SOx, these values are detected and N
The optimal NOx and / or SOx discharge decomposition conditions can always be maintained by adjusting the Ox and / or SOx discharge decomposition conditions.

【0021】また、部分的にガス分解器1内の排ガスの
状態が異なっていても、この部分的な相違を検出するこ
とができる。よって、極めの細かい排ガスの状態の検出
ができ、この点でも最適なNOx及び、又はSOx放電
分解条件を保つことができるうえに、ガス分解器1内で
NOxやSOxの分解効率の高い部分と低い部分のガス
状態、そのときの放電分解条件を記録すれば、従来より
分解効率の高いガス状態を突き止めて、NOx、SOx
ガス高分解効率化技術の開発に寄与することも可能とな
る。さらに、ガスサンプリングなどは必要なく、排ガス
の成分組成などをリアルタイムで検出することができる
から、排ガスの状態が常に変動している場合においても
正確な放電分解条件の調節を自動的に行なうことができ
る。
Further, even if the state of the exhaust gas in the gas decomposer 1 is partially different, this partial difference can be detected. Therefore, it is possible to detect the state of the exhaust gas with extremely fine details, and in this respect, it is also possible to maintain the optimal NOx and / or SOx discharge decomposition conditions, and to obtain a portion having high NOx and SOx decomposition efficiency in the gas decomposer 1. By recording the gas state of the lower part and the discharge decomposition conditions at that time, it is possible to identify the gas state having a higher decomposition efficiency than before, and to determine NOx, SOx
It will also be possible to contribute to the development of gas high decomposition efficiency technology. Furthermore, gas sampling is not required, and the composition of the exhaust gas can be detected in real time. Therefore, even when the state of the exhaust gas is constantly changing, accurate adjustment of the discharge decomposition conditions can be performed automatically. it can.

【0022】[0022]

【発明の効果】以上説明した本発明の排ガス処理装置に
よれば、排ガス排出源などの条件の変動により排ガスの
電子密度、プラズマ密度などの排ガスの状態が変動して
も、常に最適なNOx及び、又はSOxの放電分解条件
を保つことができる。
According to the exhaust gas treatment apparatus of the present invention described above, even if the state of the exhaust gas such as the electron density and the plasma density of the exhaust gas fluctuates due to the fluctuation of the conditions such as the exhaust gas discharge source, the optimum NOx and NOx are always maintained. , Or SOx discharge decomposition conditions can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である排ガス処理装置の斜視
図である。
FIG. 1 is a perspective view of an exhaust gas treatment apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス分解器 2 放電電源 3 計測用窓 4 発光集光部 5 分光器 6 データプロセッサ 7 コンピュータ DESCRIPTION OF SYMBOLS 1 Gas decomposer 2 Discharge power supply 3 Measurement window 4 Light emission condensing part 5 Spectrometer 6 Data processor 7 Computer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中のNOx及び、又はSOxを分
解するガス分解器を備えた排ガス処理装置において、前
記ガス分解器内の排ガスの状態を検出する発光分光分析
器と、この発光分光分析器による検出値に基づいて前記
ガス分解器のNOx及び、又はSOx放電分解条件を調
節する制御器とを備えたことを特徴とする排ガス処理装
置。
1. An exhaust gas treatment apparatus provided with a gas decomposer for decomposing NOx and / or SOx in exhaust gas, an emission spectrometer for detecting a state of exhaust gas in the gas decomposer, and the emission spectrometer. An exhaust gas treatment apparatus, comprising: a controller that adjusts NOx and / or SOx discharge decomposition conditions of the gas decomposer based on a detection value obtained by the above method.
JP5316510A 1993-12-16 1993-12-16 Exhaust gas treatment equipment Expired - Fee Related JP2987418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5316510A JP2987418B2 (en) 1993-12-16 1993-12-16 Exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5316510A JP2987418B2 (en) 1993-12-16 1993-12-16 Exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JPH07163838A JPH07163838A (en) 1995-06-27
JP2987418B2 true JP2987418B2 (en) 1999-12-06

Family

ID=18077915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5316510A Expired - Fee Related JP2987418B2 (en) 1993-12-16 1993-12-16 Exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP2987418B2 (en)

Also Published As

Publication number Publication date
JPH07163838A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
US10466106B2 (en) Gas concentration measurement by 2F signal trough distance
JP6010300B2 (en) Stoichiometric exhaust gas recirculation and associated combustion control devices
Lu et al. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis
CN117669858A (en) Quantitative analysis method for synergistic pollution and carbon reduction of coal-fired power plant
ATE82700T1 (en) COAL COMBUSTOR EQUIPPED WITH A DENITRITER DEVICE.
JP2987418B2 (en) Exhaust gas treatment equipment
JP4690597B2 (en) Combustion type abatement system
JP2003275543A (en) Method for treating exhaust gas of waste incineration furnace
JP3596354B2 (en) Combustion state monitoring method and apparatus
KR102368844B1 (en) How to measure scrubber combustion efficiency
JPH11300159A (en) Dioxins treating device
JP3351323B2 (en) Waste incineration apparatus and method for suppressing generation of dioxins
JP4064269B2 (en) Combustion control method in combustion chamber of waste melting furnace
JP2003210934A (en) Equipment for exhaust-gas treatment
JP3351320B2 (en) Waste incineration apparatus and method with reduced generation of dioxins
JP3275804B2 (en) Waste incineration device, waste incineration control device, and waste incineration method for suppressing generation of dioxins
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
Oda et al. Application of LIF techniques to atmospheric pressure nonthermal plasma
JP2001272018A (en) Method for continuous control of waste gas
JPH09505660A (en) Method of controlling combustion process
KR19980024704A (en) Control method of flue gas mixture discharged from waste incinerator
JP2000104912A (en) Waste incinerator and its control method
JPH08326508A (en) Denitration control device
Wojcik et al. Optoelectronic controller for pulverized coal burner
JPS5977226A (en) Control device of finely-pulverized coal burning furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees