JP2986816B2 - Hydrogen storage electrode and its manufacturing method - Google Patents

Hydrogen storage electrode and its manufacturing method

Info

Publication number
JP2986816B2
JP2986816B2 JP1268502A JP26850289A JP2986816B2 JP 2986816 B2 JP2986816 B2 JP 2986816B2 JP 1268502 A JP1268502 A JP 1268502A JP 26850289 A JP26850289 A JP 26850289A JP 2986816 B2 JP2986816 B2 JP 2986816B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
powder
storage alloy
electrode
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1268502A
Other languages
Japanese (ja)
Other versions
JPH03133061A (en
Inventor
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP1268502A priority Critical patent/JP2986816B2/en
Publication of JPH03133061A publication Critical patent/JPH03133061A/en
Application granted granted Critical
Publication of JP2986816B2 publication Critical patent/JP2986816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルカリ蓄電池の負極として使用される水
素吸蔵電極に関する。
Description: TECHNICAL FIELD The present invention relates to a hydrogen storage electrode used as a negative electrode of an alkaline storage battery.

〔従来の技術〕[Conventional technology]

従来、水素吸蔵合金又はその水素化物は、電気化学的
に水素の吸蔵と放出ができることから、その粉体を主体
とし、これに導電材と結着剤とを混合し、これを加圧成
形して成る水素吸蔵電極に構成され、アルカリ蓄電池の
負極として用いられている。
Conventionally, hydrogen storage alloys or their hydrides can electrochemically store and release hydrogen, so they are mainly made of powder, mixed with a conductive material and a binder, and formed by pressure molding. And is used as a negative electrode of an alkaline storage battery.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の水素吸蔵電極は、充放電の繰り返しに伴い、水
素吸蔵合金粉体は、即ちその各粒子は、膨脹、収縮を繰
り返すため、その粒子に亀裂を生じ、細分化するので、
脱落し易く、遂には、電極に亀裂を生ずる等の現象をも
たらし、従って、内部抵抗の増大、容量の低下を招き、
サイクル寿命が短縮するなどの不都合をもたらす。
The above-mentioned hydrogen storage electrode, along with the repetition of charge and discharge, the hydrogen storage alloy powder, that is, each particle thereof expands and contracts repeatedly, so that the particles are cracked and subdivided,
It is easy to fall off, eventually causing phenomena such as cracking of the electrodes, and therefore, increasing the internal resistance and reducing the capacity,
This leads to inconveniences such as a shortened cycle life.

かゝる不都合を解決するため、従来、水素吸蔵合金粉
を導電材、結着剤と混合する前に、無電解メッキ処理に
より水素吸蔵合金粉粒子をニッケルメッキ被覆したもの
を作製しこれを主体とした水素吸蔵電極を製造したもの
が提案されているが、その水素吸蔵合金の組成成分によ
っては、該メッキと水素吸蔵合金粒子との結合が不十分
であるものが得られ、その電極を使用したアルカリ蓄電
池のサイクル寿命は僅か50〜60サイクルの短寿命である
不都合をもたらす。
Conventionally, in order to solve such inconveniences, before mixing the hydrogen storage alloy powder with a conductive material and a binder, an electroless plating process was used to prepare a nickel storage coating of the hydrogen storage alloy powder particles, and this was mainly used. Although it has been proposed to produce a hydrogen storage electrode having the following characteristics, depending on the composition of the hydrogen storage alloy, an electrode having insufficient bonding between the plating and the hydrogen storage alloy particles can be obtained. The cycle life of an alkaline storage battery that results from the disadvantage of being as short as 50 to 60 cycles.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記従来のニッケルメッキ被覆された水素
吸蔵合金粉を主体として作製した水素吸蔵電極の上記の
欠点を解消し、水素吸蔵合金の種類に無関係に著しく長
寿命である水素吸蔵電極及びその製造法を提供するもの
で、その水素吸蔵電極は、水素吸蔵合金粉とその粒子を
被覆した微細で且つ三次元方向に無数に分岐した鎖状構
造をもつカーボニルニッケル粉とから成る複合体粉を主
体として成る。
The present invention solves the above-mentioned drawbacks of the hydrogen storage electrode mainly made of the above-mentioned conventional nickel-plated hydrogen storage alloy powder, and has a remarkably long life regardless of the type of the hydrogen storage alloy. The hydrogen storage electrode is composed of a composite powder composed of a hydrogen storage alloy powder and a carbonyl nickel powder having a chain structure which is innumerably branched in a three-dimensional direction and coated with the particles. Become the subject.

その製造法は、水素吸蔵合金粉と三次元方向に無数に
分岐した鎖状構造をもつカーボニルニッケル粉との混合
物を真空加熱炉で焼成し、その複合焼結体を粉砕して得
られた複合体粉を結着剤と混合し、その混合物を集電体
上に加圧成形することを特徴とする。
The production method is a method of firing a mixture of hydrogen storage alloy powder and carbonyl nickel powder having a chain structure innumerably branched in three dimensions in a vacuum heating furnace and pulverizing the composite sintered body to obtain a composite. The method is characterized in that body powder is mixed with a binder, and the mixture is pressure-formed on a current collector.

〔作 用〕(Operation)

本発明の複合体粉の作用は十分明らかでないが、水素
吸蔵合金粉粒子を、微細で且つ三次元的な鎖状構造をも
つカーボニルニッケル粉で強固に被覆した構成であり、
且つこれら複合体粉の該カーボニルニッケル粉のもつ三
次元的な鎖状構造で互いに三次元組織に連続しているの
で、電極としての導電性を高めると共に、充放電の繰り
返しに伴う水素吸蔵合金粉粒子の膨脹収縮が電極全体に
及ぼす応力をその介在する該カーボニルニッケル粉で緩
和し、該水素吸蔵合金粉粒子の亀裂、細分化を可及的に
防止し、その結果、電極のサイクル寿命は向上する。而
して、その複合体粉は、水素吸蔵合金粉と該カーボニル
ニッケル粉とを焼成して、その複合焼結体を粉砕して製
造されるので、その合金粉を該カーボニルニッケル粉で
強固に結着被覆したものが得られ、合金粉の膨脹収縮に
伴う亀裂、細分化による脱落、電極の亀裂を防止する。
Although the effect of the composite powder of the present invention is not sufficiently clear, the structure is such that the hydrogen storage alloy powder particles are firmly covered with carbonyl nickel powder having a fine and three-dimensional chain structure,
In addition, since these composite powders have a three-dimensional chain structure of the carbonyl nickel powder and are continuous with each other in a three-dimensional structure, the conductivity as an electrode is increased, and the hydrogen storage alloy powder accompanying the repetition of charging and discharging is added. The carbonyl nickel powder intervenes to reduce the stress exerted by the expansion and contraction of the particles on the entire electrode, thereby preventing cracking and fragmentation of the hydrogen storage alloy powder particles as much as possible. As a result, the cycle life of the electrode is improved. I do. Thus, since the composite powder is manufactured by firing the hydrogen storage alloy powder and the carbonyl nickel powder and pulverizing the composite sintered body, the alloy powder is firmly mixed with the carbonyl nickel powder. A binder-coated product is obtained, which prevents cracking due to expansion and contraction of the alloy powder, falling off due to fragmentation, and cracking of the electrode.

この場合、水素吸蔵合金粉に対しカーボニルニッケル
粉を少なくとも5重量%添加することにより、その被覆
結着状態で充分良好に得られる。
In this case, by adding at least 5% by weight of the carbonyl nickel powder to the hydrogen storage alloy powder, a sufficiently good coating and binding state can be obtained.

〔実施例〕〔Example〕

次に、本発明の実施例につき詳述する。 Next, embodiments of the present invention will be described in detail.

市販のLa、Niを、一定の組成比になるように秤量して
混合し、アーク溶解法により加熱溶解し水素吸蔵合金と
する。1例として、合金組成がLaNi5になるように秤量
混合し、加熱溶解してそのLaNi5組成の水素吸蔵合金を
製造し、これを粉砕し、250メッシュ以下の水素吸蔵合
金粉を製造した。この水素吸蔵合金粉に、微細で且つ三
次元方向に無数に分岐した鎖状構造をもつカーボニルニ
ッケル粉を添加混合する。この添加量は、該水素吸蔵合
金粉粒子を充分に被覆するに足るよう少なくとも5重量
%添加する。
Commercially available La and Ni are weighed and mixed so as to have a fixed composition ratio, and heated and melted by an arc melting method to obtain a hydrogen storage alloy. As an example, the alloy composition was weighed and mixed so that the alloy composition was LaNi 5 , and heated and melted to produce a hydrogen storage alloy having the LaNi 5 composition, and this was pulverized to produce a hydrogen storage alloy powder of 250 mesh or less. Carbonyl nickel powder having a chain structure that is fine and countlessly branched in a three-dimensional direction is added to and mixed with the hydrogen storage alloy powder. This amount is at least 5% by weight so as to sufficiently cover the hydrogen storage alloy powder particles.

例えば、水素吸蔵合金粉10gに対し、太さ約2.5μmの
微細な粒子から成るカーボニルニッケル粉として、市販
のINCO#255を10重量%、即ち1g添加混合し、その混合
物を真空加熱炉中で1000℃で1時間焼結した。次で、こ
の複合焼結体を粉砕して250メッシュ以下の複合体粉を
作製した。
For example, with respect to 10 g of the hydrogen storage alloy powder, 10% by weight, that is, 1 g, of commercially available INCO # 255 is added and mixed as carbonyl nickel powder composed of fine particles of about 2.5 μm in thickness, and the mixture is placed in a vacuum heating furnace Sintered at 1000 ° C. for 1 hour. Next, this composite sintered body was pulverized to produce a composite powder having a mesh size of 250 mesh or less.

この複合体粉に、結着剤としてフッ素樹脂粉を該複合
体粉に対し5重量%添加し、更に公知の導電材として、
例えば、平均粒径2μmの銅粉を5重量%添加し、該結
着剤が充分繊維化するまで良く撹拌しその混合物を得
る。次で、前記の混合物を、ニッケル金網に均一な厚さ
に載せ、加圧して肉薄の円形板状の成形体から成る水素
吸蔵電極を製造した。尚、該集電体としては、ニッケル
金網の他、発泡ニッケル板などが使用できる。
To this composite powder, a fluororesin powder was added as a binder in an amount of 5% by weight based on the composite powder.
For example, 5% by weight of copper powder having an average particle size of 2 μm is added, and the mixture is stirred well until the binder is sufficiently fiberized to obtain a mixture thereof. Next, the mixture was placed on a nickel wire net to a uniform thickness and pressed to produce a hydrogen storage electrode made of a thin circular plate-like molded body. As the current collector, a nickel foam, a foamed nickel plate or the like can be used.

このようにして製造した本発明の水素吸蔵電極を負極
とし、常法に従い、公知の焼結式ニッケル極と組み合
せ、電解液として苛性カリ水溶液を用いて、アルカリ蓄
電池を構成した、この場合、負極のサイクル寿命が分か
るようにするため、該負極容量を正極容量より小さく
し、負極律則とした。該セルにつき、サイクル寿命試験
を行うため、0.5Cで2.5時間(125%充電)充電したの
ち、0.5Cで終止電圧1.0V迄放電する充放電を繰り返し
た。
The hydrogen storage electrode of the present invention thus produced was used as a negative electrode, and in accordance with a conventional method, combined with a known sintered nickel electrode, using an aqueous caustic potassium solution as an electrolytic solution, to constitute an alkaline storage battery. In order to make the cycle life understandable, the negative electrode capacity was made smaller than the positive electrode capacity, and the negative electrode rule was set. The cell was charged at 0.5 C for 2.5 hours (125% charge), and then repeatedly charged and discharged at 0.5 C to a final voltage of 1.0 V in order to conduct a cycle life test.

比較のため、上記と同じ組成の水素吸蔵合金粉に、導
電材として平均粒径2μmの銅粉を前記の本発明で使用
した該複合体粉中のカーボニルニッケル粉と添加した銅
粉との総和量に等しい15重量%を添加し、前記のフッ素
樹脂粉を前記と同じ量を添加したものを良く混合して調
製した混合物を、前記と同様にニッケル金網に前記と等
量均一な厚さに載せ、加圧して水素吸蔵電極を成形し
た。これを負極とし前記と同様にしてセルを製造した。
(これを以下比較用セルNo.1と称する。)このセルNo.1
につき前記と同様にサイクル寿命試験を行った。更に比
較のため、前記と同じ組成の水素吸蔵合金粉に予め無電
解メッキ処理によりニッケルメッキ被覆の水素吸蔵合金
粉を作製し、これに導電材として本発明の電極を作製す
る場合と同じ量の平均粒径2μmの銅粉と、前記と同じ
量のフッ素樹脂粉とを添加し、前記と同様の手段で水素
吸蔵電極を作製し、これを負極として前記と同様の手段
でセルを製造した。(以下比較用セルNo.2と称する。)
このセルNo.2につき前記と同様にサイクル寿命試験を行
った。
For comparison, a hydrogen storage alloy powder having the same composition as described above, a copper powder having an average particle diameter of 2 μm as a conductive material was added to the carbonyl nickel powder in the composite powder used in the present invention and the added copper powder. A mixture prepared by adding the same amount of the above-mentioned fluororesin powder to the above-mentioned fluororesin powder and adding the same amount of 15% by weight to the nickel wire netting in the same manner as above to a uniform thickness as above. It was mounted and pressurized to form a hydrogen storage electrode. Using this as a negative electrode, a cell was manufactured in the same manner as described above.
(Hereinafter, this is referred to as comparison cell No. 1.) This cell No. 1
Was subjected to a cycle life test in the same manner as described above. Further, for comparison, a hydrogen storage alloy powder having the same composition as described above was prepared in advance by electroless plating to prepare a nickel storage coating hydrogen storage alloy powder, and the same amount as when preparing the electrode of the present invention as a conductive material. Copper powder having an average particle size of 2 μm and the same amount of fluororesin powder as described above were added, a hydrogen storage electrode was produced by the same means as described above, and a cell was produced by using this as a negative electrode by the same means as described above. (Hereinafter referred to as cell No. 2 for comparison)
This cell No. 2 was subjected to a cycle life test in the same manner as described above.

これらの試験結果を第1図に示す。この図から明らか
なように、ニッケルメッキ被覆の水素吸蔵合金粉を負極
として用いた比較用セルNo.2は、銅粉を混合された裸の
水素吸蔵合金粉を負極として用いた比較用セルNo.1に比
し、やゝサイクル寿命は延びるが、僅か60サイクル程度
にとゞまった。これに対し、本発明の電極を用いた場合
は、そのサイクル寿命が150サイクル以上を容易に越え
る長寿命のセルをもたらした。
FIG. 1 shows the test results. As is clear from this figure, the comparative cell No. 2 using the nickel-plated coated hydrogen storage alloy powder as the negative electrode was the comparative cell No. 2 using the bare hydrogen storage alloy powder mixed with the copper powder as the negative electrode. The cycle life was slightly longer than that of .1, but only about 60 cycles. On the other hand, when the electrode of the present invention was used, a long-life cell whose cycle life easily exceeded 150 cycles or more was provided.

尚、原料として、水素吸蔵合金粉に代えてその水素化
物粉を使用しても、その作用効果において本質的に同一
であるので、その明細書において前記の実施例の場合を
除き、「水素吸蔵合金」の語は、「その水素化物」をも
含む意味で使用した。従って、その水素化物の実施例は
省略した。
Incidentally, even if the hydride powder is used as a raw material instead of the hydrogen storage alloy powder, the operation and effect are essentially the same. The term "alloy" is used in a sense that also includes "its hydride". Therefore, the hydride examples were omitted.

導電材は、上記実施例のように、電極製造において、
該複合体粉と導電材と結着剤との三者を添加し、混合す
ることが一般であるが、該複合体粉中の導電材でもある
カーボニルニッケル粉の使用量によっては、結着剤のみ
との混合で足り、別個に、導電材を添加する必要がな
い。一般に、導電材は、水素吸蔵合金粉に対し10〜30重
量%の範囲添加することが好ましい。
Conductive material, as in the above example, in the production of the electrode,
It is common to add and mix the three components of the composite powder, the conductive material and the binder, but depending on the amount of the carbonyl nickel powder that is also the conductive material in the composite powder, the binder may be used. And a mixture of the above-mentioned components and a conductive material need not be separately added. Generally, the conductive material is preferably added in a range of 10 to 30% by weight based on the hydrogen storage alloy powder.

〔発明の効果〕〔The invention's effect〕

このように本発明によるときは、水素吸蔵合金粉とそ
の粒子を被覆した微細で且つ三次元方向に無数に分岐し
た鎖状構造をもつカーボニルニッケル粉とから成る複合
体粉を主体として成る水素吸蔵電極を構成したので、該
カーボニルニッケル粉粒子相互の三次元方向の鎖状よ
り、導電性の良好な電極をもたらすと共に、従来の銅粉
を混合した裸の水素吸蔵合金粉を使用した電極或いはニ
ッケルメッキ被覆した水素吸蔵合金粉を使用した電極に
比し、サイクル寿命が著しく向上した電極及びこれを負
極として用いたセルをもたらす効果を有する。
As described above, according to the present invention, hydrogen storage mainly comprising a composite powder composed of a hydrogen storage alloy powder and a carbonyl nickel powder having a chain structure that is innumerably branched in a three-dimensional direction and coated with the particles is mainly used. Since the electrodes are formed, the carbonyl nickel powder particles form a three-dimensional chain between each other, thereby providing an electrode having good conductivity and an electrode using a conventional hydrogen-absorbing alloy powder mixed with copper powder or nickel. Compared to an electrode using a hydrogen-absorbing alloy powder coated with a plating, the present invention has an effect of providing an electrode having a significantly improved cycle life and a cell using the electrode as a negative electrode.

又、本発明によれば、該複合体粉を、水素吸蔵合金粉
と該カーボニルニッケル粉とを焼結により一体に製造す
る場合は、水素吸蔵合金粉粒子の膨脹、収縮に伴う亀
裂、細分化脱落、電極の亀裂などは、これに被覆する該
カーボニルニッケル粉により防止され、而もセルの長寿
命をもたらす効果を有する。
Further, according to the present invention, when the composite powder is produced integrally by sintering the hydrogen storage alloy powder and the carbonyl nickel powder, cracks and fragmentation accompanying expansion and contraction of the hydrogen storage alloy powder particles are provided. Dropout, cracking of the electrode, and the like are prevented by the carbonyl nickel powder coated thereon, which also has the effect of prolonging the life of the cell.

この場合、該複合体粉の調製において、該水素吸蔵合
金粉に対し該カーボニルニッケル粉を少なくとも5重量
%添加するときは、該合金粉の粒子を被覆するに足りる
と共に導電性が良好で、サイクル寿命の向上した電極を
確実にもたらす効果を有する。
In this case, in the preparation of the composite powder, when at least 5% by weight of the carbonyl nickel powder is added to the hydrogen storage alloy powder, it is sufficient to coat the particles of the alloy powder and the conductivity is good. This has the effect of reliably providing an electrode with an improved life.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の電極を用いたセルと比較電極を用い
たセルのサイクル寿命の比較グラフを示す。
FIG. 1 shows a comparison graph of cycle life of a cell using the electrode of the present invention and a cell using a comparative electrode.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金粉と、これを被覆した微細で
且つ三次元方向に無数に分岐した鎖状構造をもつカーボ
ニルニッケル粉とから成る複合体粉を主体として成る水
素吸蔵電極。
1. A hydrogen storage electrode mainly comprising a composite powder composed of a hydrogen storage alloy powder and a carbonyl nickel powder having a chain structure which is innumerably branched in a three-dimensional direction and is coated with the powder.
【請求項2】水素吸蔵合金粉と、導電材として、三次元
方向に無数に分岐した鎖状構造をもつカーボニルニッケ
ル粉との混合物を真空加熱炉で焼成し、その複合焼結体
を粉砕して得られた複合体粉を少なくとも結着剤と混合
し、その混合物を集電体上に加圧成形することを特徴と
する水素吸蔵電極の製造法。
2. A mixture of a hydrogen storage alloy powder and a carbonyl nickel powder having a chain structure innumerably branched in a three-dimensional direction as a conductive material is fired in a vacuum heating furnace, and the composite sintered body is pulverized. A method for producing a hydrogen storage electrode, comprising: mixing the composite powder obtained as described above with at least a binder, and pressing the mixture onto a current collector.
【請求項3】水素吸蔵合金粉に対し該カーボニルニッケ
ル粉を少なくとも5重量%添加混合することを特徴とす
る請求項2記載の水素吸蔵電極の製造法。
3. The method for producing a hydrogen storage electrode according to claim 2, wherein at least 5% by weight of said carbonyl nickel powder is added to and mixed with said hydrogen storage alloy powder.
【請求項4】該複合体粉を結着剤と導電材と混合し、そ
の混合物を集電体上に加圧成形することを特徴とする請
求項2又は3記載の水素吸蔵電極の製造法。
4. The method for producing a hydrogen storage electrode according to claim 2, wherein the composite powder is mixed with a binder and a conductive material, and the mixture is pressure-formed on a current collector. .
JP1268502A 1989-10-16 1989-10-16 Hydrogen storage electrode and its manufacturing method Expired - Lifetime JP2986816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1268502A JP2986816B2 (en) 1989-10-16 1989-10-16 Hydrogen storage electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1268502A JP2986816B2 (en) 1989-10-16 1989-10-16 Hydrogen storage electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH03133061A JPH03133061A (en) 1991-06-06
JP2986816B2 true JP2986816B2 (en) 1999-12-06

Family

ID=17459392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1268502A Expired - Lifetime JP2986816B2 (en) 1989-10-16 1989-10-16 Hydrogen storage electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2986816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561200B2 (en) * 1992-04-23 1996-12-04 古河電池株式会社 Hydrogen storage electrode

Also Published As

Publication number Publication date
JPH03133061A (en) 1991-06-06

Similar Documents

Publication Publication Date Title
US3060254A (en) Bonded electrodes
US5387478A (en) Hydrogen storage electrode and process for producing the same
JP2986816B2 (en) Hydrogen storage electrode and its manufacturing method
JPH0750607B2 (en) Hydrogen storage electrode for alkaline storage battery
JPS63266767A (en) Manufacture of hydrogen storage electrode
JPS5942949B2 (en) nickel electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JPH0554883A (en) Manufacture of hydrogen storage electrode for alkaline storage battery
JP3113892B2 (en) Method for producing hydrogen storage electrode
JPH0992271A (en) Hydrogen storage alloy electrode
JP3786143B2 (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH03133060A (en) Hydrogen storage electrode for alkaline storage battery and manufacture thereof
JP3676137B2 (en) Hydrogen storage alloy electrode for nickel metal hydride storage battery and method for producing the same
JPH04262367A (en) Hydrogen storage electrode
JPH0586622B2 (en)
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH061695B2 (en) Hydrogen storage electrode
KR940005743B1 (en) Making method of compound metal electrode
JP4932997B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using the same
JPH0562671A (en) Manufacture of hydrogen storage electrode
JPH04301363A (en) Hydrogen storage electrode and manufacture thereof
JPS5848020B2 (en) Manufacturing method of sintered nickel substrate for alkaline battery electrode