JP2979961B2 - Full color LED display - Google Patents

Full color LED display

Info

Publication number
JP2979961B2
JP2979961B2 JP13153194A JP13153194A JP2979961B2 JP 2979961 B2 JP2979961 B2 JP 2979961B2 JP 13153194 A JP13153194 A JP 13153194A JP 13153194 A JP13153194 A JP 13153194A JP 2979961 B2 JP2979961 B2 JP 2979961B2
Authority
JP
Japan
Prior art keywords
led
emitting chip
light emitting
green
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13153194A
Other languages
Japanese (ja)
Other versions
JPH07335942A (en
Inventor
芳文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15060257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2979961(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP13153194A priority Critical patent/JP2979961B2/en
Publication of JPH07335942A publication Critical patent/JPH07335942A/en
Application granted granted Critical
Publication of JP2979961B2 publication Critical patent/JP2979961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発光チップが樹脂、ガ
ラス等でモールドされたLEDランプ(以下、LEDと
いう)を同一回路基板上に複数接続して成るLEDディ
スプレイに関し、特に、一画素を構成する赤色LEDと
緑色LEDと青色LEDとが同一回路基板上に接続され
て成るフルカラーLEDディスプレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LED display in which a plurality of LED lamps (hereinafter, referred to as LEDs) whose light emitting chips are molded with resin, glass or the like are connected on the same circuit board. The present invention relates to a full-color LED display in which constituent red, green and blue LEDs are connected on the same circuit board.

【0002】[0002]

【従来の技術】LEDディスプレイには、リードフレー
ム上に設置された発光チップが樹脂、ガラス等で例えば
レンズ形状に封止されたLEDを、基板上に規則的に並
べられたものが知られている。現在LEDディスプレイ
には、赤色LEDと緑色LEDを用いたマルチカラーの
ものがすでに実用化されているが、フルカラーディスプ
レイは未だ試作段階で実用化には至っていない。
2. Description of the Related Art As an LED display, there is known an LED display in which a light emitting chip mounted on a lead frame is sealed with a resin, glass, or the like, for example, in a lens shape, and is regularly arranged on a substrate. I have. At present, a multi-color LED display using a red LED and a green LED has already been put to practical use, but a full-color display has not yet been put into practical use at the stage of trial production.

【0003】現在試作されているフルカラーLEDディ
スプレイは、発光チップの材料として、赤色LEDにG
aAlAs、GaAsP、緑色LEDにGaP、青色L
EDにSiCが用いられている。しかし、赤色LEDの
光度に比べて、緑色LEDおよび青色LEDの光度が低
く、特に青色LEDは1/100以下しかないため、高
輝度のディスプレイが得られないという欠点があった。
[0003] Currently, a full-color LED display being prototyped uses a red LED as a material for a light emitting chip.
aAlAs, GaAsP, GaP for green LED, blue L
SiC is used for the ED. However, the luminous intensity of the green LED and the blue LED is lower than the luminous intensity of the red LED. In particular, since the blue LED has only 1/100 or less, there is a disadvantage that a display with high luminance cannot be obtained.

【0004】この欠点を補う目的で、前記ディスプレイ
は一画素中の赤色LEDの数に対して、緑色LED、青
色LEDの数を増やしているが、一画素中のLEDの数
が増えると、ディスプレイ全体の解像度が悪くなり、し
かも消費電力が大きいという欠点がある。さらにまた白
色を表示する際、各発光色のLEDの光度比、いわゆる
ホワイトバランスが、3種類の発光チップからなるLE
Dを使用していることにより、各LEDの指向特性が異
なるため、一定しないという欠点があった。
For the purpose of compensating for this drawback, the display increases the number of green LEDs and blue LEDs relative to the number of red LEDs in one pixel. There is a drawback that the overall resolution is poor and the power consumption is large. Furthermore, when displaying white, the luminous intensity ratio of the LED of each emission color, so-called white balance, is determined by an LE composed of three types of light-emitting chips.
The use of D has a drawback that the directional characteristics of each LED are different, and thus are not constant.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記欠点を解
決するために成されたものであって、その目的とすると
ころは光度の高いLEDを使用して、高輝度で消費電力
の少ないディスプレイを実現すると共に、さらに指向特
性を容易に調整できるLEDを組み合わせることにより
安定したホワイトバランスが得られるフルカラーLED
ディスプレイを実現することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to use a high-luminance LED to provide a display with high brightness and low power consumption. Full-color LED that achieves stable white balance by combining LEDs that can easily adjust the directional characteristics while realizing
The realization of a display.

【0006】[0006]

【課題を解決するための手段】フルカラーLEDディス
プレイの輝度を向上させるためには、まず光度の高い緑
色LEDと青色LEDを用いる必要がある。さらに、安
定したホワイトバランスを得るためには指向特性ができ
るだけ一致したLEDを一画素に数少なく並べる必要が
ある。我々はその要求を同時に満足できるフルカラーL
EDディスプレイとして、一画素を構成する赤色LED
ランプと、緑色LEDランプと、青色LEDランプと
が、同一回路基板上に接続されて成るフルカラーLED
ディスプレイにおいて、前記緑色LEDランプがモール
ドレンズにより被覆された厚さが150μm以下であり
サファイア基板上に形成された窒化ガリウム系化合物半
導体からなる緑色発光チップと、前記青色LEDランプ
がモールドレンズにより被覆された厚さが150μm以
下でありサファイア基板上に形成された窒化ガリウム系
化合物半導体からなる青色発光チップと、前記赤色LE
Dランプがモールドレンズにより被覆され前記青色発光
チップ及び緑色発光チップの厚みの最大限である150
μmよりも厚い赤色発光チップと、をそれぞれ有し、且
つ各LEDランプはその半値角がLEDレンズの中心に
対し±20°〜±70°の範囲にあって、ランプの指向
特性の半値角が実質的に同一となるように各発光チップ
の表面とモールド部材の頂点との距離を調節することで
上記問題を解決するに至った。
In order to improve the brightness of a full color LED display, it is necessary to use green LEDs and blue LEDs having high luminous intensity. Furthermore, in order to obtain a stable white balance, it is necessary to arrange a small number of LEDs having the same directivity as one pixel. We can satisfy the demand at the same time full color L
Red LED that constitutes one pixel as ED display
Full-color LED in which a lamp, a green LED lamp, and a blue LED lamp are connected on the same circuit board
In the display, the green LED lamp is covered with a mold lens and has a thickness of 150 μm or less, a green light-emitting chip made of a gallium nitride-based compound semiconductor formed on a sapphire substrate, and the blue LED lamp is covered with a mold lens. A blue light emitting chip made of a gallium nitride-based compound semiconductor and having a thickness of 150 μm or less and formed on a sapphire substrate;
D lamp is covered with a molded lens and the maximum thickness of the blue light emitting chip and the green light emitting chip is 150
each of the LED lamps has a half-value angle in the range of ± 20 ° to ± 70 ° with respect to the center of the LED lens, and the half-value angle of the directional characteristic of the lamp is The above problem has been solved by adjusting the distance between the surface of each light emitting chip and the top of the mold member so as to be substantially the same.

【0007】本発明のLEDディスプレイにおいて使用
する赤色LEDには、GaAlAs、GaAsP等、従
来の発光チップの材料を備えるLEDを使用でき、それ
らLEDは発光光度1cd以上、発光出力は1mW以上
を有している。
As the red LED used in the LED display of the present invention, an LED comprising a conventional light emitting chip material such as GaAlAs or GaAsP can be used, and these LEDs have a luminous intensity of 1 cd or more and a luminous output of 1 mW or more. ing.

【0008】次に本発明の特徴である緑色LEDおよび
青色LEDであるが、これらは前記のように窒化ガリウ
ム系化合物半導体(InXAlYGa1-X-YN、0≦X、0
≦Y、X+Y≦1)よりなる発光チップを備えている。その
発光チップは、InGaNを活性層にし、GaNまたは
GaAlNをクラッド層とするダブルへテロ構造である
ことが好ましい。なぜなら、InGaNを活性層とする
発光チップは、InのGaに対する組成比(In/G
a)を0.4以下とすることにより、波長380nm〜
580nmと青紫の領域から緑色の領域にまで発光色を
変化させることができる。また、窒化ガリウム系化合物
半導体は直接遷移型の半導体であるため、発光チップと
した際に光度の高いLEDを実現できる。具体的には、
本発明のLEDディスプレイに使用する緑色LED、お
よび青色LEDの発光光度は、両者とも1cd以上を有
するものを使用し、光出力は0.5mW以上のものを使
用することが好ましい。
Next, a green LED and a blue LED, which are features of the present invention, are a gallium nitride-based compound semiconductor (InXAlYGa1-X-YN, 0≤X, 0
≦ Y, X + Y ≦ 1). The light emitting chip preferably has a double hetero structure in which InGaN is used as an active layer and GaN or GaAlN is used as a cladding layer. This is because the light emitting chip using InGaN as an active layer has a composition ratio of In to Ga (In / G
By setting a) to 0.4 or less, a wavelength of 380 nm to
The light emission color can be changed from a blue-violet region of 580 nm to a green region. In addition, since the gallium nitride-based compound semiconductor is a direct transition semiconductor, an LED with high luminous intensity can be realized when used as a light-emitting chip. In particular,
The luminous intensity of the green LED and the blue LED used in the LED display of the present invention both has a luminance of 1 cd or more, and preferably has a light output of 0.5 mW or more.

【0009】また赤色、緑色、青色LEDの半値角はL
EDレンズの中心に対し±20゜〜±70゜の範囲に調
整することが好ましい。20゜より小さいとディスプレ
イの指向性が強くなりホワイトバランスが安定しにく
く、70゜よりも大きいと輝度が低くなるからである。
The half-value angle of the red, green and blue LEDs is L
It is preferable to adjust the range of ± 20 ° to ± 70 ° with respect to the center of the ED lens. When the angle is smaller than 20 °, the directivity of the display becomes strong and the white balance is hardly stabilized, and when the angle is larger than 70 °, the luminance decreases.

【0010】各LEDの半値角を調整するには種々の方
法があるが、緑色LED、および青色LEDを窒化ガリ
ウム系化合物半導体よりなる発光チップとした際、赤色
LEDチップの表面の高さを窒化ガリウム系化合物半導
体発光チップの高さと同一にして半値角を調整する。な
ぜなら、窒化ガリウム系化合物半導体発光チップの厚さ
は150μm以下しかなく、それに対し、赤色LEDの
発光チップであるGaAlAs等はその厚さが300μ
m以上ある。ディスプレイで使用されるLEDにはリー
ドフレーム形状、レンズ形状が同一のものが使用される
ことが多く、これらが同一であれば、赤色LEDのチッ
プの表面の高さを、緑色、青色LEDに合わせてやるこ
とにより、3種類のLEDの指向特性を合わせることが
できる。これは発光チップの厚さが150μm以下の窒
化ガリウム系化合物半導体発光チップを緑色LEDおよ
び青色LEDに使用し、150μmより厚い上に窒化ガ
リウム系化合物半導体と異なる材料よりなる発光チップ
を赤色LEDに使用した際の特有の効果である。
There are various methods for adjusting the half-value angle of each LED. When the green LED and the blue LED are light emitting chips made of a gallium nitride-based compound semiconductor, the height of the surface of the red LED chip is reduced. The half-value angle is adjusted to be the same as the height of the gallium-based compound semiconductor light emitting chip. This is because the thickness of the gallium nitride-based compound semiconductor light emitting chip is only 150 μm or less, while the thickness of the red LED light emitting chip such as GaAlAs is 300 μm.
m or more. LEDs used in displays often have the same lead frame shape and lens shape. If they are the same, adjust the surface height of the red LED chip to match that of the green and blue LEDs. By doing so, the directional characteristics of the three types of LEDs can be matched. This uses a gallium nitride-based compound semiconductor light-emitting chip with a thickness of 150 μm or less for green and blue LEDs, and a red light-emitting chip made of a material different from the gallium nitride-based compound semiconductor on a thickness of more than 150 μm. This is a special effect when doing.

【0011】[0011]

【作用】本発明のLEDディスプレイは、緑色LED、
青色LEDを構成する発光チップを同一材料としている
ことにより、発光チップの大きさ、発光チップを載置す
るリードフレームの形状、発光チップおよびリードフレ
ームを封止する樹脂等のレンズ形状を同一とできる。こ
の緑色と青色のLEDが同一であるから、モールドレン
ズの半値角も同一であり、ディスプレイを構成した際に
ホワイトバランスを安定させやすくできる。
The LED display of the present invention has a green LED,
By using the same material for the light emitting chips constituting the blue LED, the size of the light emitting chip, the shape of the lead frame on which the light emitting chip is mounted, and the shape of the lens such as the resin for sealing the light emitting chip and the lead frame can be made the same. . Since the green and blue LEDs are the same, the half-value angle of the mold lens is also the same, and white balance can be easily stabilized when a display is constructed.

【0012】また窒化ガリウム系化合物半導体は直接遷
移型の半導体でもあり、これを用いたLEDは両者とも
光度1cd以上、光出力0.5mW以上ある。従ってこ
れらのLEDを緑色成分、および青色成分として用いる
ことにより、従来の材料で構成したディスプレイより
も、LEDの数を少なくして格段に輝度の高いものを実
現できる。
The gallium nitride-based compound semiconductor is also a direct transition type semiconductor, and both LEDs using the same have a luminous intensity of 1 cd or more and a light output of 0.5 mW or more. Therefore, by using these LEDs as a green component and a blue component, it is possible to achieve a much higher luminance by reducing the number of LEDs as compared with a display made of a conventional material.

【0013】さらに、緑色LEDおよび青色LEDが同
一であるので、モールドレンズの半値角を調整するには
赤色LEDのみを調整してやればよい。そのためには赤
色LEDにある発光チップの表面と、モールドレンズの
頂点との距離を緑色LED、および青色LEDと同一に
することによって半値角を調整できる。これにより、三
色の半値角が全て揃うことになり、安定したホワイトバ
ランスを得ることが可能となる。
Further, since the green LED and the blue LED are the same, the half value angle of the molded lens can be adjusted by adjusting only the red LED. For this purpose, the half-value angle can be adjusted by making the distance between the surface of the light emitting chip of the red LED and the vertex of the mold lens the same as that of the green LED and the blue LED. Thereby, all the half-value angles of the three colors are aligned, and a stable white balance can be obtained.

【0014】[0014]

【実施例】図1は本願のフルカラーLEDディスプレイ
の一実施例を示す平面図である。これはディスプレイ画
面を示しており、赤色LED(R)、緑色LED
(G)、青色LED(B)それぞれ1個づつがΔ状に配
列されて一画素を形成している。また図2は図1のディ
スプレイの一画素の構造を示す模式断面図であり、パタ
ーン配線された基板1の表面に、赤色LED(R)と、
緑色LED(G)と、青色LED(B)のリードフレー
ム2がそれぞれ電気的に接続されている。なお、青色L
EDのリードフレームは特に図示していない。
FIG. 1 is a plan view showing an embodiment of a full-color LED display according to the present invention. This shows the display screen, red LED (R), green LED
(G) and one each of the blue LEDs (B) are arranged in a shape of Δ to form one pixel. FIG. 2 is a schematic cross-sectional view showing the structure of one pixel of the display of FIG. 1, and a red LED (R) and
The green LED (G) and the lead frame 2 of the blue LED (B) are electrically connected to each other. In addition, blue L
The lead frame of the ED is not particularly shown.

【0015】赤色LED(R)は、GaAs基板の上に
GaAlAsを積層した厚さ100μm、350μm角
の赤色発光チップ3Rを有しており、その発光チップ3
Rが載置されたリードフレーム2Rは透明なエポキシ樹
脂でレンズ状にモールドされてモールドレンズ4を形成
している。なお赤色発光チップ3Rの厚さはGaAs基
板を研磨することにより、緑色発光チップ、および青色
発光チップの厚さと同一になるように調整してある。ま
たモールドレンズ4は、その指向特性の半値角がB、
G、R全てレンズ中心から±30゜になるような型を用
いてモールドされている。この赤色LED(R)の光度
は10mA、2Vにおいて2cd、発光波長640nm
を有している。
The red LED (R) has a red light emitting chip 3R of 100 μm in thickness and 350 μm square in which GaAlAs is laminated on a GaAs substrate.
The lead frame 2R on which R is mounted is molded into a lens shape with a transparent epoxy resin to form a molded lens 4. The thickness of the red light emitting chip 3R is adjusted by polishing the GaAs substrate so that the thickness of the red light emitting chip 3R becomes the same as the thickness of the green light emitting chip and the blue light emitting chip. Also, the mold lens 4 has a directional characteristic with a half value angle of B,
G and R are all molded using a mold that is ± 30 ° from the center of the lens. The luminous intensity of this red LED (R) is 2 mA at 10 mA and 2 V, and the emission wavelength is 640 nm.
have.

【0016】次に緑色LED(G)は、サファイア基板
の上に窒化ガリウム系化合物半導体を積層した厚さ10
0μm、350μm角の緑色発光チップ3Gを有してお
り、緑色発光チップはInGaNを活性層とし、GaA
lNをクラッド層とするダブルへテロ構造とされてい
る。この緑色発光チップ3Gもリードフレーム2Rと同
一形状のリードフレーム2G上に載置され、同じく透明
なエポキシ樹脂4で赤色LED(R)と同一のレンズ形
状でモールドされている。この緑色LED(G)の光度
は20mA、3.6Vにおいて4cd、発光波長420
nmを有している。
Next, the green LED (G) has a thickness of 10 g in which a gallium nitride compound semiconductor is laminated on a sapphire substrate.
It has a green light emitting chip 3G of 0 μm and 350 μm square. The green light emitting chip has InGaN as an active layer and GaAs.
It has a double heterostructure with 1N as a cladding layer. This green light emitting chip 3G is also mounted on a lead frame 2G having the same shape as the lead frame 2R, and is molded with the same lens shape as the red LED (R) with the transparent epoxy resin 4 similarly. The light intensity of this green LED (G) is 4 cd at 20 mA and 3.6 V, and the emission wavelength is 420.
nm.

【0017】次に青色LED(B)は、緑色発光チップ
3Gと活性層のInGaNの組成が異なるだけで、厚
さ、サイズ全て同一であり、青色LEDの光度は20m
A、3.6Vにおいて1cd、発光波長360nmを有
している。
Next, the blue LED (B) has the same thickness and the same size except that the composition of InGaN of the active layer is different from that of the green light emitting chip 3G, and the luminous intensity of the blue LED is 20 m.
A: It has 1 cd at 3.6 V and an emission wavelength of 360 nm.

【0018】さらに、指向特性を調整するために、前記
赤色LED(R)の赤色発光チップ3Rの基板を研磨す
ることにより、そのチップの表面から、モールドレンズ
4Rの頂点迄の距離(lr)を、前記緑色LED(G)
の緑色発光チップ3Gの表面から、モールドレンズ4G
の頂点迄の距離(lg)とほぼ等しくしている。なお、
緑色LED(G)と青色LED(B)とは同一であるこ
とはいうまでもない。
Further, in order to adjust the directional characteristics, the substrate of the red light emitting chip 3R of the red LED (R) is polished so that the distance (lr) from the surface of the chip to the top of the mold lens 4R is reduced. , The green LED (G)
From the surface of the green light emitting chip 3G
Is approximately equal to the distance (lg) to the vertex of. In addition,
It goes without saying that the green LED (G) and the blue LED (B) are the same.

【0019】さらに、図3にモールドレンズ4R側から
見た赤色発光チップ3Rの形状を示す平面図と、同じく
モールドレンズ4G側から見た緑色発光チップ3Gの形
状を示す平面図を比較して示す。図3の斜線部は発光チ
ップの発光部を示している。なお緑色発光チップ3Gと
青色発光チップ3Bの形状は同一であることはいうまで
もない。前記のように緑色発光チップ3Gはサファイア
を基板としているため、この図に示すように同一面側か
ら正、負の両電極が形成される。さらに両電極をワイヤ
ーボンドする際のボールの位置を対角線上に配置するこ
とにより、チップ中央部を発光させている。一方赤色発
光チップのボールは通常は矩形チップの中央部に設けら
れるのが、本発明においては隅部にそのボールを配する
ことにより、赤色発光チップ3Rの発光部を中央にして
いる。このように、赤色発光チップ3Rの発光部の位置
を緑色発光チップ3G、青色発光チップ3Bと合わせる
ことにより、さらにLEDディスプレイの指向性を高め
ることが可能となる。
Further, FIG. 3 is a plan view showing the shape of the red light emitting chip 3R viewed from the mold lens 4R side and a plan view showing the shape of the green light emitting chip 3G also viewed from the mold lens 4G side. . The hatched portion in FIG. 3 indicates a light emitting portion of the light emitting chip. Needless to say, the shapes of the green light emitting chip 3G and the blue light emitting chip 3B are the same. As described above, since the green light emitting chip 3G uses sapphire as a substrate, as shown in this figure, both positive and negative electrodes are formed from the same surface side. Further, the positions of the balls at the time of wire-bonding the two electrodes are arranged diagonally so that the central portion of the chip emits light. On the other hand, the ball of the red light-emitting chip is usually provided at the center of the rectangular chip, but in the present invention, the ball is arranged at the corner so that the light-emitting portion of the red light-emitting chip 3R is at the center. As described above, by aligning the position of the light emitting portion of the red light emitting chip 3R with the green light emitting chip 3G and the blue light emitting chip 3B, it is possible to further enhance the directivity of the LED display.

【0020】以上のようにして、R、G、BのLEDが
各一個づつΔ配列された画素を、縦480、横640づ
つ並べることにより本発明のフルカラーLEDディスプ
レイを得たところ、明るさは従来の緑色LED、および
青色LEDを使用したものに比べて数十倍も明るく、十
分屋外で使用可能であった。さらにこのディスプレイは
ホワイトバランスが非常に良く調整され、ディスプレイ
正面から±30゜の角度内において、同じ色調の白色を
有していた。
As described above, the full-color LED display of the present invention is obtained by arranging the pixels in which the R, G, and B LEDs are arranged in a Δ array each one by 480 vertically and 640 horizontally. It was tens of times brighter than conventional ones using a green LED and a blue LED, and could be used outdoors. Further, this display had a very good white balance, and had the same color white within an angle of ± 30 ° from the front of the display.

【0021】[0021]

【発明の効果】以上説明したように本発明によると、赤
色LED、緑色LED、青色LEDそれぞれ一個づつで
フルカラーディスプレイが実現可能となるので、一画素
を従来のディスプレイに比べて小さくでき、解像度が格
段に向上する。また指向特性においても、緑色LEDと
青色LEDとが同一材料であるので、ディスプレイで3
色並べたときに赤色LEDのみを調整すれば良く、非常
にメインテナンスも楽である。
As described above, according to the present invention, a full-color display can be realized by each of the red LED, the green LED, and the blue LED, so that one pixel can be made smaller than the conventional display, and the resolution can be reduced. Dramatically improved. Also, in the directional characteristics, since the green LED and the blue LED are made of the same material, 3
Only the red LED needs to be adjusted when the colors are arranged, and maintenance is very easy.

【0022】さらにまた、副次的な効果として、従来の
赤色LEDの発光チップのチップサイズは、通常200
μm角以下と非常に小さいのに対し、本発明では赤色発
光チップの大きさを、緑色発光チップおよび青色発光チ
ップと同じ大きさの350μm角としていることによ
り、指向特性をさらに合わせやすくできると共に、赤色
LED自体の寿命が良くなり、ディスプレイの信頼性が
向上する。
Further, as a secondary effect, the chip size of the light emitting chip of the conventional red LED is usually 200 mm.
In contrast to the extremely small size of less than μm square, in the present invention, the size of the red light emitting chip is 350 μm square, which is the same size as the green light emitting chip and the blue light emitting chip. The life of the red LED itself is improved, and the reliability of the display is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のフルカラーLEDディスプレイの一
実施例を示す平面図。
FIG. 1 is a plan view showing one embodiment of a full-color LED display of the present invention.

【図2】 図1のディスプレイの一画素の構造を示す模
式断面図。
FIG. 2 is a schematic sectional view showing the structure of one pixel of the display of FIG.

【図3】 モールドレンズ側から見た赤色発光チップ3
Rの形状と、緑色発光チップ3Gの形状を比較して示す
平面図。
FIG. 3 shows a red light emitting chip 3 viewed from the mold lens side.
The top view which shows the shape of R and the shape of the green light emitting chip 3G in comparison.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・リードフレーム 3・・・・発光チップ 4・・・・モールドレンズ DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Lead frame 3 ... Light emitting chip 4 ... Mold lens

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 G09F 9/33 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01L 33/00 G09F 9/33

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一画素を構成する赤色LEDランプと、
緑色LEDランプと、青色LEDランプとが、同一回路
基板上に接続されて成るフルカラーLEDディスプレイ
において、前記緑色LEDランプがモールドレンズによ
り被覆された厚さが150μm以下でありサファイア基
板上に形成された窒化ガリウム系化合物半導体からなる
緑色発光チップと、前記青色LEDランプがモールドレ
ンズにより被覆された厚さが150μm以下でありサフ
ァイア基板上に形成された窒化ガリウム系化合物半導体
からなる青色発光チップと、前記赤色LEDランプがモ
ールドレンズにより被覆され前記青色発光チップ及び緑
色発光チップの厚みの最大限である150μmよりも厚
い赤色発光チップと、をそれぞれ有し、且つ各LEDラ
ンプはその半値角がLEDレンズの中心に対し±20°
〜±70°の範囲にあって、ランプの指向特性の半値角
が実質的に同一となるように各発光チップの表面とモー
ルド部材の頂点との距離を調節してなることを特徴とす
るフルカラーLEDディスプレイ。
A red LED lamp constituting one pixel;
In a full-color LED display in which a green LED lamp and a blue LED lamp are connected on the same circuit board, the green LED lamp is formed on a sapphire substrate with a thickness of 150 μm or less covered by a mold lens. A green light-emitting chip made of a gallium nitride-based compound semiconductor, a blue light-emitting chip made of a gallium nitride-based compound semiconductor formed on a sapphire substrate, wherein the blue LED lamp is covered with a mold lens and has a thickness of 150 μm or less, A red LED lamp is covered with a molded lens, the red LED chip having a thickness greater than 150 μm, which is the maximum thickness of the blue light emitting chip and the green light emitting chip, and each LED lamp has a half-value angle of the LED lens. ± 20 ° to center
Full color, wherein the distance between the surface of each light emitting chip and the vertex of the mold member is adjusted so that the half-value angle of the directivity characteristic of the lamp is substantially the same in the range of ± 70 °. LED display.
JP13153194A 1994-06-14 1994-06-14 Full color LED display Expired - Lifetime JP2979961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13153194A JP2979961B2 (en) 1994-06-14 1994-06-14 Full color LED display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13153194A JP2979961B2 (en) 1994-06-14 1994-06-14 Full color LED display

Publications (2)

Publication Number Publication Date
JPH07335942A JPH07335942A (en) 1995-12-22
JP2979961B2 true JP2979961B2 (en) 1999-11-22

Family

ID=15060257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13153194A Expired - Lifetime JP2979961B2 (en) 1994-06-14 1994-06-14 Full color LED display

Country Status (1)

Country Link
JP (1) JP2979961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461381A2 (en) 2004-09-27 2012-06-06 Enplas Corporation Emission device with light source and light flux control member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385574B1 (en) 1995-12-29 2008-06-10 Cree, Inc. True color flat panel display module
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US7161313B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Light emitting diode based products
JP3342665B2 (en) * 1998-06-17 2002-11-11 株式会社カスト Display device
JP4238666B2 (en) * 2003-07-17 2009-03-18 豊田合成株式会社 Method for manufacturing light emitting device
JP2009081379A (en) 2007-09-27 2009-04-16 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP2009099893A (en) 2007-10-19 2009-05-07 Showa Denko Kk Iii group nitride semiconductor light emitting device
CN103557459B (en) * 2013-11-06 2016-03-02 郑州中原显示技术有限公司 The three-primary color LED lamp that light-emitting area is not identical

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919783A (en) * 1972-02-26 1974-02-21
JPH04163972A (en) * 1990-10-27 1992-06-09 Toyoda Gosei Co Ltd Variable color light emitting diode
JPH0538925U (en) * 1991-10-18 1993-05-25 スタンレー電気株式会社 Multicolor LED lamp
JPH05119707A (en) * 1991-10-25 1993-05-18 Takiron Co Ltd Dot matrix light emission display body and its manufacture
JP2571743Y2 (en) * 1991-12-20 1998-05-18 タキロン株式会社 Surface light collector for dot matrix light-emitting displays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461381A2 (en) 2004-09-27 2012-06-06 Enplas Corporation Emission device with light source and light flux control member
USRE47891E1 (en) 2004-09-27 2020-03-03 Enplas Corporation Emission device, surface light source device, display and light flux control member

Also Published As

Publication number Publication date
JPH07335942A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US10679973B2 (en) Multiple pixel surface mount device package
JP5537655B2 (en) Light emitting diode display with inclined peak emission pattern
JP3065258B2 (en) Light emitting device and display device using the same
US6563139B2 (en) Package structure of full color LED form by overlap cascaded die bonding
US7759683B2 (en) White light emitting diode
US8598608B2 (en) Light emitting device
US8704265B2 (en) Light emitting device package and lighting apparatus using the same
JP4045710B2 (en) Manufacturing method of semiconductor light emitting device
JP2004356116A (en) Light emitting diode
US7164159B2 (en) LED package
JPH1012926A (en) Full color emission diode lamp and display
JP3833019B2 (en) Light emitting diode
JP3219000B2 (en) LED display and manufacturing method thereof
JP2001177156A (en) Side emitting led lamp
JP2002082635A (en) Color led display device
JP2979961B2 (en) Full color LED display
US20200098957A1 (en) Multiple led light source lens design in an integrated package
JP2000349345A (en) Semiconductor light emitting device
JP2822819B2 (en) Multicolor light emitting device
JP4122552B2 (en) Light emitting device
JP2002232020A (en) Led, and display, illuminator, liquid display back light device using the led, and light source device for projector
KR20100076655A (en) White light emitting device
US20210384254A1 (en) Full-Color Display Module with Ultra-Wide Color Gamut
JP2001109400A (en) Full color flat display device
KR100450514B1 (en) White light emitting diode