JP2004356116A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2004356116A
JP2004356116A JP2003148315A JP2003148315A JP2004356116A JP 2004356116 A JP2004356116 A JP 2004356116A JP 2003148315 A JP2003148315 A JP 2003148315A JP 2003148315 A JP2003148315 A JP 2003148315A JP 2004356116 A JP2004356116 A JP 2004356116A
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
light
red
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003148315A
Other languages
Japanese (ja)
Inventor
Hirohiko Ishii
廣彦 石井
Kazu Oishi
和 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2003148315A priority Critical patent/JP2004356116A/en
Publication of JP2004356116A publication Critical patent/JP2004356116A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To allow color rendering properties and reproducibility to be compatible in a light emitting diode for the purpose of a white light using at least a blue light emitting diode element. <P>SOLUTION: The light emitting diode 20 includes, in addition to the blue light emitting diode element 5, a red light emitting diode element 6 mounted on a substrate 1, and particles 8 of a fluorescent substance for wavelength converting a blue light into a yellow light, mixed in a molding resin 10 coating the blue light emitting diode element 5 and the red light emitting diode element 6. Sufficient light emitting intensity is obtained in all visible light ranges by mixing the blue, the yellow and the red luminescences. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は読み取り装置やカメラ用等各種の用途に用いる照明光源、液晶パネル等表示装置のバックライトの光源、LEDデイスプレイ等に用いられる発光ダイオードに関し、特に白色発光又は又は中間色の発光を目的とした発光ダイオードに関する。
【0002】
【従来の技術】
発光ダイオード(以下LEDともいう。)の素子は小型で発光効率が良く、鮮やかな色の発光をする。又、半導体素子であるために、長寿命であり、優れた駆動特性を有する。このため、上記した各種の用途において、特に小型、薄型に適したものとして利用されている。近年、高輝度、高効率な発光ダイオードとしてRGB(赤、緑、青色)などの発光ダイオードがそれぞれ開発された。これに伴いRGBの三原色を利用したLEDデイスプレイが白色および中間色の照明用として、その特徴を生かして広く用いられるようになった。
【0003】
発光ダイオードは使用される発光層の半導体材料、形成条件などによって、紫外から赤外までの種々の発光波長を放出させることが可能である。又、優れた単色性ピーク波長を有する。よって、発光波長の異なる発光ダイオードを組み合わせることにより、所望の色の発光を得ることは原理的には可能である。
【0004】
このような、発光波長の異なる発光ダイオード素子を組み合わせた発光ダイオードの一例として、R(赤色)LEDチップ(発光ダイオード素子)と、G(緑色)LEDチップと、B(青色)LEDチップとからなる多色発光素子(多色発光ダイオード)が従来より知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特開平7−15044号公報(図1)
【0006】
しかし、このような発光ダイオード素子(以下LED素子ともいう。)の組み合わせよりなる発光ダイオード(多色発光素子)に関していえば、各発光ダイオード素子すなわち、R(赤色)LEDチップと、G(緑色)LEDチップと、B(青色)LEDチップは優れた単色性ピーク波長を有するが故に、白色系発光光源などとさせるためには、演色性に欠けるという問題がある。ここに演色性とは、同一の物体でも照明光源が異なれば色の見えは異なるところ、ある照明光源のこの物体色の見えに及ぼす影響を、基準となる照明光源(昼の自然光等)を基準にして現したものを演色といい、この演色の特性を演色性という。演色性は色の見えの一致度が高いほどよいが、物体色によっても変わるので、CIEの演色性評価の方法においては、物体色として、複数種類(15種類)のものをきめておき、これらのうちの特定の数種類に対する演色性の平均値Raをもって、演色性の評価を行う。例えば上記の特許文献1の記載に類するようなRGBのLEDチップの組み合わせよりなる発光ダイオードの場合発光スペクトルは図10(a)のS1に示すようになり、RとG、GとBの間にスペクトル強度の弱い谷間が広く存在する。特にRとGの間の谷間の領域(550〜610nm)は幅も広くスペクトル強度の落ち込みも大きい。即ち自然光のスペクトル特性とは違いが大きくなる。そのために、演色性は低くなり、Ra=12程度となる(自然光の場合はRa=100)。なお、演色性が低くなると、物体の反射光を検出するスキャナー装置等読み取り装置、その他の照明の光源として用いるには不適当となると考えられる。
【0007】
さらに、かかるRGBのLEDチップ(又はLED素子)の組み合わせよりなる発光ダイオードの場合、一般にLED素子の色の種類により、素子の厚みが変わるので、色により発光面がずれ、均一な混合色を得ることが困難となるという問題もある。
【0008】
そこで、上記の2つの問題点を改善するべく、LED素子の発光色を蛍光体で色変換させた白色発光ダイオードが開発された(例えば、特許文献2参照)。
【0009】
【特許文献2】
特許第2927279号公報(図1、図3)
【0010】
前記特許文献2に記載された白色発光ダイオードによれば、InGaN系の青色LED
素子をリードフレーム内のカップ部分の底部に取り付けて配線し、そのカップ部分にYAG蛍光体等の蛍光体を分散させた樹脂を充填して、前記青色LED素子を被覆する構造とした(特許文献2の図1参照)。これにより、例えば460nm付近にピーク波長を有する
青色LED素子の発光の一部は上記の蛍光体に吸収され、ピーク波長が560nm前後の黄緑色の発光に変換される。この結果、この白色発光ダイオードの発光スペクトルは図10(b)のS2に示すように、ピーク波長460nmの青色LED素子からの発光と、ピーク波長が560nmの蛍光体からの発光が見られる。これからもわかるように、この白色発光ダイオードは可視光領域のほとんどの領域で発光するため、演色性がよく、平均演色評価数Raが80を超えている。
よって、前記のRGBのLEDチップの組み合わせよりなる発光ダイオードにおけるような演色性の低下の問題は改善される。
【0011】
【発明が解決しようとする課題】
しかしながら、青色LED素子と蛍光体を備えた白色発光ダイオードについても以下に述べるような問題がある。すなわち、図10(b)のS2に示す発光スペクトルからもわかるように、赤色の領域のうち特に波長が630nmを超える領域においては、発光スペクトルの強度が他の波長領域(可視光)における発光スペクトルの強度と比較してかなり低下している。よって、かかる赤色領域における再現性に欠けることとなる。例えば、赤色領域における物体色を有する照明対象を照明した場合、その反射光の赤色成分は、自然光で照明した場合に比して大幅に低下し、反射光の再現性が欠けることとなる。本発明は▲1▼このような青色LED(GaN系青色LED)素子と蛍光体(YAG系蛍光体)を組合わせた従来の白色LEDにおける再現性の欠如の問題、▲2▼R、G、Bの3色のLED素子を組み合わせてなる白色LED素子におけるような、上記した演色性欠如の問題と素子の厚みの違いに起因して生ずる混合色の不均一性の問題がなくなるように改善することを解決すべき課題とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するためにその第1の手段として本発明は、発光ダイオードにおいて
、青色発光ダイオード素子と蛍光体の他に、赤色波長の発光ダイオード素子を備えたことを特徴とする。
【0013】
上記の課題を解決するためにその第2の手段として本発明は、前記第1の手段において、赤色波長の発光ダイオード素子のピーク波長は615nm乃至680nmであることを特徴とする。
【0014】
上記の課題を解決するためにその第3の手段として本発明は、発光ダイオードにおいて、R、G、Bの3色の発光ダイオード素子の他に、これらの発光ダイオード素子とはピーク波長の異なるY(YG)及び又はR領域又は赤外領域の発光ダイオード素子を備えたことを特徴とする。
【0015】
上記の課題を解決するためにその第4の手段として本発明は、互いに発光色の異なる複数の発光ダイオード素子を有する発光ダイオードにおいて、実効的な発光面の高さを揃えることにより、均一な混色を可能することを特徴とする。
【0016】
上記の課題を解決するためにその第5の手段として本発明は、前記第4の手段の発光ダイオードにおいて、発光ダイオード素子を搭載する基板に凹部を設け、該凹部に複数の発光ダイオード素子のうちの少なくとも1つを固定することにより、実効的な発光面の高さを揃えることを特徴とする。
【0017】
上記の課題を解決するためにその第6の手段として本発明は、前記第4の手段の発光ダイオードにおいて、発光ダイオード素子を搭載する基板にスペーサー(メタル座布団)を設け、該スペーサーの上に複数の発光ダイオード素子のうちの少なくとも1つを固定することにより、実効的な発光面の高さを揃えることを特徴とする。
【0018】
上記の課題を解決するためにその第7の手段として本発明は、前記第4の手段の発光ダ
前記発光ダイオードにおいて、少なくとも1つの発光ダイオード素子の素子ベースの一部を除去することにより、実効的な発光面の高さを揃えることを特徴とする。
【0019】
上記の課題を解決するためにその第8の手段として本発明は、前記第1の手段乃至第3の手段のいずれかの発光ダイオードにおいて、互いに発光色の異なる複数の発光ダイオード素子の、実効的な発光面の高さを揃えることにより、均一な混色を可能することを特徴とする。
【0020】
【発明の実施の形態】
以下に本発明の第1実施形態につき図面を用いて説明する。図1は本第1実施形態に係る白色用発光ダイオード20の構成を示す図であり、図1(a)は上面図、図1(b)は図1(a)のA−A断面図である。図1において、1はガラス繊維入りのエポキシ樹脂よりなる矩形状の基板であり、2、3、4はそれぞれ前記基板1にパターン形成された外部接続用の電極であり、2は負電圧を加える共通電極パターン、3は青色用電極パターン、4は赤色用電極パターンである。5は青色光を発光する青色LED素子(青色発光ダイオード素子)、6は赤色光を発光する赤色LED素子(赤色発光ダイオード素子)である。青色LED素子5はGaN系のpn半導体層を絶縁サファイア基板上に形成してなるものであるが、サファイア絶縁基板5cを前記前記共通電極パターン2に接着固定し、青色LED素子5のn層電極5bを結線手段(ボールボンダー等)により共通電極パターン2接続し、青色LED素子5のp層電極5aを結線手段により青色用電極パターン3に接続する。p−n接合タイプの赤色LED素子6のn層6bをAgペースト7を介して前記共通接続電極2に接続し、赤色LED素子6のp層電極6aを結線手段により赤色用電極パターン4に接続する。
【0021】
このようにして、基板1上に取り付けられ、接続がなされた青色LED素子5および赤色LED素子6の上を、粒子状のYAG蛍光体8をエポキシ樹脂あるいはシリコン樹脂よりなる樹脂基材9内に混入、分散させてなる被覆樹脂部材10でモールドして覆う。被覆樹脂部材10は、前記共通電極パターン2、青色用電極パターン3、赤色用電極パターン4の引き出し部を残して基板1の上面に略直方体形に形成される。
【0022】
前記の前記共通電極パターン2、青色用電極パターン3、赤色用電極パターン4の引き出し部を図示しない回路基板の配線に接続し、共通電極パターン2に負電圧を加え、青色用電極パターン3および赤色用電極パターン4にそれぞれ所要の正電圧を加えると、一例として、青色LED素子5はピーク波長が略480nmの青色光を発光し、赤色LED素子6はピーク波長が略650nmの赤色光を発光する。ここで、前記青色光の一部は、前記樹脂基材9中に分散させられたYAG蛍光体8に吸収されてこれを励起し、ピーク波長が略580nmの黄色光の発光をする。なお、前記青色光のうちYAG蛍光体8に吸収されない部分は青色光として残っている。このようにして、本第1実施形態に係る白色用発光ダイオード20においては、前記の青色光、黄色光、赤色光が混色された形で外部に出射する。
【0023】
ここで、図5および図6は本第1実施形態に関連する発光のスペクトルを示す図であり、図5(a)は図1の発光ダイオード20において青色LED素子5のみを発光させた場合のスペクトルSbを示す図、図5(b)は発光ダイオード20において赤色LED素子6のみを発光させた場合のスペクトルSrを示す図である。図6は発光ダイオード20において青色LED素子5および赤色LED素子6を共に発光させた場合のスペクトルS10を示す図である。図1に示す青色電極パターン3のみに正電圧を加えることにより青色LED素子5のみを発光させた場合、YAG蛍光体8の存在により、すでに述べた原理により、黄色光も励起され、図5(a)のスペクトルSbは略480nmのピーク波長を有する急峻なスペクトルと略580nmのピーク波長を有するなだらかなスペクトルが合成されて、つながった形となっている。この場合は、従来例として特許文献2に示された青色発光ダイオード素子と蛍光体を有する従来の発光ダイオードのスペクトル特性(図10(b)のS2参照)に対応、近似するものである。図1に示す赤色電極パターン4のみに正電圧を加えることにより赤色LED素子6のみを発光させた場合の発光のスペクトルは図5(b)のスペクトルSrに示すようにピーク波長が略650nmの急峻なスペクトルとなる。
【0024】
図1に示す発光ダイオード20において、青色LED素子5および赤色LED素子6を共に発光させた場合の発光のスペクトルは図6のS10に示すように、図5(a)に示すスペクトルSbと、図5(b)に示すスペクトルSrが合成された形となり、ピーク波長が略480nmの青色のスペクトルとピーク波長が略670nmの赤色のスペクトルの間が略580nmのピーク波長を有するなだらかなスペクトルにより埋められている形となる。よって、可視光領域においては、スペクトルの落ち込みは少なく、演色性は高くなるとともに、赤色領域においてもスペクトルの強度が、赤色LED素子6の存在により従来よりも格段に補強されているため、再現性に優れたものとなる。
【0025】
なお、発光ダイオード10の発光色は混色の結果、白色となるように、前記の青色光、黄色光、赤色光の強度の比率が設定されている。ここで、青色光の強度を基準として、黄色光の強度はYAG蛍光体8の含有量により調整することができ、赤色光の強度は赤色電極パターン4に加える正電圧により調整することができる。
【0026】
以下に、青色LED素子とYAG蛍光体のみよりなる従来の白色発光ダイオードとして、スペクトル特性が図5(a)のSbのもの(以下whiteとする。)と、本第1実施形態として、さらに赤色LED素子を有するものとして、スペクトル特性が図6のS10のもの(以下white+Redとする。)につき、CIEの演色評価数Raおよび特殊演色評価数R9〜R15を対比した値を表1に示す。
【表 1】

Figure 2004356116
表1に示すように本第1実施形態の発光ダイオード(white+red)は従来の白色発光ダイオード(white)に比較して、特殊演色評価数R9〜R15において向上が見られ、特にR9においては ー19.4 から 87.0へと顕著な向上が見られ、このことからも赤色領域おける再現性が大幅に向上していることがわかる。なお、white+redはwhiteに比して図6のS10に示すように可視光の波長領域でスペクトルの欠落部がほとんどなくなっているので、CIEの試験色NO.1〜NO.8に対する演色評価数の平均である演色評価数Raについても、74.9 から 89.4 へと向上し、良好な値となっている。
【0027】
このように、本第1実施の形態の発光ダイオードはGaN系青色LED素子とYAG蛍光体に赤色波長を有するLED素子を組み合わせることにより、あらゆる領域における再現性を高めることができる。又、表1には示していないが、色温度Tcについては、whiteの場合は Tc=7738.0 、 white+redの場合は
Tc=6521.1 となっており、いずれも5000以上であるので、CIEの方式に従がい、基準の光としてCIE昼光を用いて上記の演色の評価を行った。なお、上記に示した具体例においては、赤色LED素子のピーク波長は650nmとなっているが、本第1実施形態はこれに限らずピーク波長が615〜680nmの赤色LED素子を用いることにより、同様の効果を得ることができる。
【0028】
次に参考までに、前記のwhite+redの発光ダイオードの光学特性をwhiteの発光ダイオードと比較したデータを表2に示す。
【表2】
Figure 2004356116
ここで、λd は主波長といわれるものである。purityは色純度といわれるもので、CIE色度図において、単色光である前記主波長λdへの近似度を示す数値であり、これが小さいほど混色の程度が大となる。IVは光度を示す記号であり、ミリカンデラ(mcd)を単位として現したものである。x、yはCIE色度図の座標である。
表2からわかるように、本第1実施形態の発光ダイオード(white+red)の発光は十分に色純度が低く、光度も十分に高く、色度が略白色のものが得られている。このように、本第1実施形態によれば、広範囲で再現性が高まり、より自然色に近い色を表現することが可能である。
【0029】
なお、本第1実施形態の発光ダイオードの色度は上記のような略白色のものに限定されるものではない。すなわち、赤色LED素子6を組み込むことにより演色性が高められているので、例えば、青色LED素子5に加える電圧を調整することにより、演色性、再現性を保持したまま、色調についてかかなり自由に調整することができる。
【0030】
更には、図示は省略するが、本第1実施形態の変形例として、赤色LED素子6に追加して、又はこれに置き換えて赤外領域のLED素子を組み合わせることもできる。この場合は赤外領域の再現性が向上し、例えば、いわゆるナイトショットに対応する照明光源として利用できるようになる。
【0031】
以下に、本発明の第2実施形態につき図面を用いて説明する。図2は本第2実施形態に係る発光ダイオード30の構成を示す図であり、図2(a)は上面図、図2(b)は図2(a)のB−B断面図である。図2において、11は基板1に設けられた凹部であり、この部分にも共通電極パターン2の一部が設けられ、凹部11部以外の基板1の部分に設けた共通電極パターン2とつながっている。赤色LED素子6のn層6bをAgペースト7を介して凹部11内の共通電極パターン2の上に接続し、赤色LED素子6のp層電極6aを結線手段により赤色用電極パターン4に接続する。他の構成は図1に示す発光ダイオード10と同様である。ここで、例えば赤色LED素子6の高さは0.3mm、青色LED素子5の高さは0.1mm、凹部11の深さは0.2mmである。よって、図1に示すような構成の場合には、赤色LED素子6と青色LED素子5の高さが揃わず、赤色LED素子6が0.2mmばかり飛び出していた。これに対し、本第2の実施形態にいては、図3に示すように凹部11を設けることにより、その深さ(0.2mm)の分だけ赤色LED素子6が引っ込み、赤色LED素子6と青色LED素子5の基板1からの高さは同一(0.1mm)の高さに揃えることができる。この結果、混色が均一に行われ、場所に拘わらず均一な発光色が得られる。すなわち、本第2実施形態によれば、図1に示した第1実施形態と同様に広範囲で再現性を高め、より自然色に近い色を表現することを可能とするとともに、更に発光色の均一性が向上し、照明光がひろがっても、場所にかかわらず均一な色合の照明光を得ることができる。
【0032】
以下に本発明の第3実施形態につき図面を用いて説明する。図3は本第3実施形態に係る発光ダイオード40の構成を示す図である。図3において、12は基板1の上の共通電極パターン2上に固着されたスペーサーとしてのメタル座布団である。そのメタル座布団12の上に青色LED素子5の絶縁サファイア基板5cを接着固定する。青色LED素子5のn層電極5bを結線手段により共通電極パターン2に接続し、p層電極5aを結線手段により、青色用電極パターン3に接続する。他の構成は図1に示す発光ダイオード200と同様である。ここで、メタル座布団の厚みが例えば0.2mmであり、赤色LED素子6の高さは0.3mm、青色LED素子5の高さは0.1mmである場合には、赤色LED素子6と青色LED素子5の基板1からの高さは同一(0.3mm)の高さに揃えることができる。この結果、混色が均一に行われ、場所に拘わらず均一な発光色が得られ、図2に示した第2実施形態と同様の効果を得ることができる。
【0033】
以下に本発明の第4実施形態につき図面を用いて説明する。図4は本第4実施形態に係る発光ダイオードに使用する赤色LED素子の高さを揃える方法を示す図である。図4(a)は赤色LED素子6の通常品を示す図である。この場合n層の素子ベース6bとp層6cの間にpn接合の活性層6dが存在する(p層6cにはp層電極6aが取り付けられている。)。この赤色LED素子6の通常品は、すでに述べたように青色LED素子よりも高さが高いので、図4(b)に示すように、赤色LED素子6のn層の素子ベース6bの一部(点線の部分)を機械的方法又は化学的方法により除去することにより、その除去後の赤色LED素子6Bの高さを青色LED素子の高さと揃えることができる。このような赤色LED素子6Bを図1に示す赤色LED素子6の代わりに用いて、図1に示す発光ダイオード20と同様の接続により発光ダイオードを構成すれば、青色発光LED素子と赤色LED素子の基板1からの高さは同一となり、すでに説明した原理により、混色が均一に行われ、場所にか拘わらず均一な発光色が得られ、図3に示した第3実施形態と同様の効果を得ることができる。なお、図4に示した赤色LED素子6はp層(6c)に電極がとりつけられ、n層6bは電極が取り付けられていない基板となっているが、逆にn層に電極が取り付けられ、p層が電極が取り付けられていない基板となっている構造の赤色LED素子においては、p層の基板を除去することにより、上記したのと同様の効果を得ることができる(但し、n層の電極には負電圧を、p層の基板には正電圧を加える必要がある。)。
【0034】
以下に本発明の第5実施形態に係る発光ダイオードつき図面を用いて説明する。図7および図8は本第5実施形態に係る発光ダイオード50の構成を示す図である。発光ダイオード50は、5本の足ピン22b、25b、26r、27g、28yを備えたステム32の上にそれぞれ青色、緑色、赤色及び黄色の発光をするLED素子を配置してなるいわゆるフルカラーの発光ダイオードである。ここで、35bは青色LED素子、36rは赤色LED素子、37gは緑色LED素子、38yは黄色LED素子である。ここで、青色LED素子35bはステム32の中央部にメタル座布団12を介して接着固定されている。p−n接合タイプの赤色LED素子36r、緑色LED素子37g、黄色LED素子38yはステム32上で中央部を囲むようにして配置され、これらのLED素子のn層をAgペースト等導電性接着剤を介してステム32側に電気的に接続する。足ピン22bはステム32に電気的に接続されており負電極が一体的に形成されている。この足ピン22bに青色LED素子35bのn層電極が結線される。一方、青色LED素子35b、赤色LED素子36r、緑色LED素子37g、黄色LED素子38yの各LED素子のp層電極(Au電極)は、ステム32と絶縁された電極端子としての足ピン25b、26r、27g、28yとそれぞれボールボンダー等の結線手段により結線され、正電極がそれぞれ形成される。次に図8に示すように、このような結線の上に透光性樹脂によるモールド45が形成される。
【0035】
このような構成において、共通な負電極である足ピン22bと正電極である足ピン25b、26r、27g、28yとの間にそれぞれ電圧を印加することにより、発光ダイオード50は青色、緑色、赤色の他に黄色の発光が互いの混色してなるフルカラーの発光を出射する。ここで、例えば、青色LED素子35b、緑色LED素子37g、黄色LED素子38y、赤色LED素子36rの各ピーク波長がそれぞれ、470nm、540nm、590nm、660nmのものを用いた場合、これらが混色されてなる発光ダイオード50の発光のスペクトルは図9のS50に示される。これによれば、図10(a)のS1に示す従来のRGBのフルカラーの発光のスペクトルに比較して、赤色と緑色の間のスペクトルの落ち込みが大幅に減少している。このために、自然光への近似度が高まり、従来よりも演色性が向上する。又、本第5実施形態の発光ダイオードの発光のスペクトルは、図9のS50に示すように、赤色の領域において十分に高いスペクトル強度を有しているので、青色LED素子と蛍光体を備えた従来の発光ダイオードの発光スペクトル(図10(b)のS2)と比較した場合に赤色領域におけるスペクトル強度が顕著に増加しており、このため、従来よりも赤色領域における再現性が向上している。なお、上記の事例においては、黄色LED素子としてピーク波長がYの領域のものを用いたが、本第5実施形態はこれに限るものではなく、場合に応じてYからYGにかけての波長のものを使用を使用することができる。
【0036】
なお、本第5実施形態においては、他のLED素子と比較して、高さの低い青色LED素子35bをメタル座布団12を介してステム32に固定することにより、すべてのLED素子のステム32の面からの高さが略等しくなるように固定されている。これにより、R、G、B、Y(黄色)の混色が均一に行われ、場所にかかわらず均一は発光色を得ることができる。
【0037】
本第5実施形態の場合も、黄色LED素子38を組み込むことにより演色性が高められているので、例えば、他のLED素子に加える電圧を調整することにより、演色性、再現性を保持したまま、色調については白色を含め、ほぼ任意の色に調整することができる。
【0038】
本第5実施形態の変形例として、図示は省略するが、上記の赤色LED素子(36r)の他にこれとは波長の異なる赤色領域又は赤外領域の波長のLED素子を組み合わせることにより、更に広い波長範囲で再現性および演色性を高めることが可能である。
【0039】
以上に述べてきた本発明の実施の形態においては、再現性、又は演色性を改善するため、赤色のLED素子又は黄色のLED素子を組み合わせた例につき説明した。しかし、本発明はこれらに限るものではなく、多色発光を含む各種の発光ダイオードにおいて、再現性に欠ける波長領域について、その波長を有するLED素子を組み合わせることにより、演色性、再現性を高めることが本発明に属するものであり、上記組み合わせられるLED素子の波長は、必要に応じ、可視光の領域から赤外の領域までを広く選択することができる。
【0040】
【発明の効果】
以上に説明したように、本発明によれば、白色発光等を目的とした発光ダイオードにおいて、その発光について、▲1▼広い波長波範囲で再現性が高まり、より自然色に近い発光を得ることができるようになる。▲2▼更には、必要に応じて赤外領域での再現性を高めることにより、ナイトショットに適した発光ダイオードとすることも可能である。▲3▼又、所定領域の波長のLED素子が加えられているので、演色性を保持した状態で、かなり大幅に色調を調整することも可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る発光ダイオードの構成を示す図である。
【図2】本発明の第2実施形態に係る発光ダイオードの構成を示す図である。
【図3】本発明の第3実施形態に係る発光ダイオードの構成を示す図である。
【図4】本発明の第4実施形態に係るLED素子の高さを揃える方法を示す図である。
【図5】図1に示す発光ダイオードに関する部分的な発光のスペクトルを示す図である。
【図6】図1に示す発光ダイオードの全体的な発光のスペクトルを示す図である。
【図7】本発明の第5実施形態に係る発光ダイオードの構成を示す上面図である。
【図8】本発明の第5実施形態に係る発光ダイオードの構成を示す側面図である。
【図9】図7に示す発光ダイオードの発光のスペクトルを示す図である。
【図10】従来の白色発光ダイオードの発光のスペクトルを示す図である。
【符号の説明】
1 基板
2 共通電極パターン
3 青色用電極パターン
4 赤色用電極パターン
5、35b 青色LED素子
6、36r 赤色LED素子
7 Agペースト
8 YAG蛍光体
9 樹脂基材
10 被覆樹脂部材
11 凹部
12 メタル座布団
20、30、40、50 発光ダイオード
22b、25b、26r、27g、28y 足ピン
32 ステム
37g 緑色LED素子
38y 黄色LED素子
45 モールド[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an illumination light source used for various applications such as a reading device and a camera, a light source for a backlight of a display device such as a liquid crystal panel, and a light emitting diode used for an LED display and the like, in particular, for emitting white light or light of a neutral color. It relates to a light emitting diode.
[0002]
[Prior art]
An element of a light emitting diode (hereinafter, also referred to as an LED) is small, has high luminous efficiency, and emits bright colors. Also, since it is a semiconductor element, it has a long life and has excellent driving characteristics. For this reason, it is used in various applications as described above, which is particularly suitable for being small and thin. In recent years, light emitting diodes such as RGB (red, green, and blue) have been developed as light emitting diodes with high luminance and high efficiency. Along with this, LED displays utilizing the three primary colors RGB have been widely used for illumination of white and intermediate colors, taking advantage of their features.
[0003]
The light emitting diode can emit various emission wavelengths from ultraviolet to infrared depending on the semiconductor material of the light emitting layer used, the forming conditions, and the like. Also, it has an excellent monochromatic peak wavelength. Therefore, it is possible in principle to obtain light emission of a desired color by combining light emitting diodes having different emission wavelengths.
[0004]
An example of such a light emitting diode in which light emitting diode elements having different emission wavelengths are combined includes an R (red) LED chip (light emitting diode element), a G (green) LED chip, and a B (blue) LED chip. 2. Description of the Related Art A multicolor light-emitting element (multicolor light-emitting diode) is conventionally known (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-7-15044 (FIG. 1)
[0006]
However, regarding a light-emitting diode (multicolor light-emitting element) composed of a combination of such light-emitting diode elements (hereinafter also referred to as LED elements), each light-emitting diode element, namely, an R (red) LED chip and a G (green) LED chip. Since the LED chip and the B (blue) LED chip have excellent monochromatic peak wavelengths, there is a problem in that the LED chip lacks color rendering in order to be used as a white light source. Here, the color rendering property means that even if the same object has a different illumination light source, the color appearance is different, and the influence of a certain illumination light source on the appearance of this object color is based on a reference illumination light source (natural daylight or the like). This is called color rendering, and the characteristics of this color rendering are called color rendering. The higher the degree of matching of color appearance is, the better the color rendering property is, but it also depends on the object color. Therefore, in the CIE color rendering property evaluation method, a plurality of (15) object colors are determined as object colors. The color rendering properties are evaluated by using the average value Ra of the color rendering properties for a plurality of specific types. For example, in the case of a light emitting diode composed of a combination of RGB LED chips similar to the description of Patent Document 1, the emission spectrum is as shown by S1 in FIG. 10A, and between R and G, and between G and B. There are wide valleys with weak spectral intensities. In particular, the region between the valleys between R and G (550-610 nm) is wide and has a large drop in spectral intensity. In other words, the difference from the spectral characteristics of natural light increases. For this reason, the color rendering properties are reduced, and Ra is about 12 (Ra = 100 in the case of natural light). If the color rendering property is low, it is considered that the color rendering property is unsuitable for use as a reading device such as a scanner device for detecting the reflected light of an object or other light source for illumination.
[0007]
Furthermore, in the case of a light emitting diode comprising a combination of such RGB LED chips (or LED elements), the thickness of the element generally varies depending on the color of the LED element, so that the light emitting surface shifts depending on the color and a uniform mixed color is obtained. There is also a problem that it becomes difficult.
[0008]
Then, in order to improve the above two problems, a white light emitting diode in which the emission color of the LED element is converted by a phosphor has been developed (for example, see Patent Document 2).
[0009]
[Patent Document 2]
Japanese Patent No. 2927279 (FIGS. 1 and 3)
[0010]
According to the white light emitting diode described in Patent Document 2, an InGaN-based blue LED
The device is attached to the bottom of the cup portion in the lead frame and wired, and the cup portion is filled with a resin in which a phosphor such as a YAG phosphor is dispersed to cover the blue LED device (Patent Document 1) 2 FIG. 1). Thereby, for example, it has a peak wavelength near 460 nm.
Part of the light emitted from the blue LED element is absorbed by the above-mentioned phosphor, and is converted into yellow-green light having a peak wavelength of about 560 nm. As a result, as shown in S2 of FIG. 10B, the emission spectrum of the white light emitting diode includes light emission from the blue LED element having the peak wavelength of 460 nm and light emission from the phosphor having the peak wavelength of 560 nm. As can be seen from this, since the white light emitting diode emits light in most of the visible light region, it has good color rendering properties, and the average color rendering index Ra exceeds 80.
Therefore, the problem of a decrease in the color rendering property as in the light emitting diode including the combination of the RGB LED chips is improved.
[0011]
[Problems to be solved by the invention]
However, a white light emitting diode having a blue LED element and a phosphor also has the following problems. That is, as can be seen from the emission spectrum indicated by S2 in FIG. 10B, in the red region, especially in the region where the wavelength exceeds 630 nm, the intensity of the emission spectrum has an emission spectrum in another wavelength region (visible light). The strength is considerably lower than that of Therefore, reproducibility in such a red region is lacking. For example, when an illumination target having an object color in the red region is illuminated, the red component of the reflected light is significantly reduced as compared with the case of illumination with natural light, and the reproducibility of the reflected light is lacking. The present invention relates to (1) the problem of lack of reproducibility in a conventional white LED combining such a blue LED (GaN-based blue LED) element and a phosphor (YAG-based phosphor); In order to eliminate the problem of lack of color rendering property and the problem of non-uniformity of mixed colors caused by the difference in the thickness of the element as in the white LED element obtained by combining the three color LED elements of B. These are issues to be solved.
[0012]
[Means for Solving the Problems]
As a first means for solving the above problems, the present invention relates to a light emitting diode.
And a red light emitting diode element in addition to the blue light emitting diode element and the phosphor.
[0013]
According to a second aspect of the present invention, in order to solve the above-mentioned problem, in the first aspect, the peak wavelength of the red wavelength light emitting diode element is 615 nm to 680 nm.
[0014]
As a third means for solving the above-mentioned problem, the present invention relates to a light-emitting diode, in addition to light-emitting diode elements of three colors of R, G, and B, and a light-emitting diode element having a different peak wavelength from these light-emitting diode elements. (YG) and / or an R region or infrared region light emitting diode element.
[0015]
As a fourth means for solving the above problem, the present invention provides a light emitting diode having a plurality of light emitting diode elements emitting light of different colors from each other, so that the height of the effective light emitting surface is made uniform to achieve uniform color mixing. It is characterized by being able to.
[0016]
According to a fifth aspect of the present invention, there is provided a light emitting diode according to the fourth aspect, wherein a recess is provided on a substrate on which the light emitting diode element is mounted, and the recess includes a plurality of light emitting diode elements. By fixing at least one of the above, the height of the effective light emitting surface is made uniform.
[0017]
According to a sixth aspect of the present invention, there is provided a light emitting diode according to the fourth aspect, wherein a spacer (metal cushion) is provided on a substrate on which the light emitting diode element is mounted, and a plurality of light emitting diodes are provided on the spacer. By fixing at least one of the light emitting diode elements described above, the height of the effective light emitting surface is made uniform.
[0018]
As a seventh means for solving the above-mentioned problems, the present invention provides a light emitting device according to the fourth means.
In the light emitting diode, a part of an element base of at least one light emitting diode element is removed to make an effective height of a light emitting surface uniform.
[0019]
According to an eighth aspect of the present invention, there is provided a light-emitting diode according to any one of the first to third means, comprising: By uniform height of the light emitting surfaces, uniform color mixture is possible.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing a configuration of a white light emitting diode 20 according to the first embodiment. FIG. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. is there. In FIG. 1, reference numeral 1 denotes a rectangular substrate made of an epoxy resin containing glass fiber, reference numerals 2, 3, and 4 denote electrodes for external connection patterned on the substrate 1, and reference numeral 2 denotes a negative voltage. The common electrode pattern, 3 is a blue electrode pattern, and 4 is a red electrode pattern. Reference numeral 5 denotes a blue LED element (blue light emitting diode element) that emits blue light, and reference numeral 6 denotes a red LED element (red light emitting diode element) that emits red light. The blue LED element 5 is formed by forming a GaN-based pn semiconductor layer on an insulating sapphire substrate. A sapphire insulating substrate 5c is fixedly adhered to the common electrode pattern 2 to form an n-layer electrode of the blue LED element 5. 5b is connected to the common electrode pattern 2 by a connection means (such as a ball bonder), and the p-layer electrode 5a of the blue LED element 5 is connected to the blue electrode pattern 3 by the connection means. The n-layer 6b of the pn junction type red LED element 6 is connected to the common connection electrode 2 via an Ag paste 7, and the p-layer electrode 6a of the red LED element 6 is connected to the red electrode pattern 4 by a connection means. I do.
[0021]
In this way, the YAG phosphor 8 in the form of particles is placed in the resin base 9 made of epoxy resin or silicon resin on the blue LED element 5 and the red LED element 6 attached and connected on the substrate 1. It is molded and covered with the coating resin member 10 mixed and dispersed. The coating resin member 10 is formed in a substantially rectangular parallelepiped shape on the upper surface of the substrate 1 except for the lead portions of the common electrode pattern 2, the blue electrode pattern 3, and the red electrode pattern 4.
[0022]
The lead portions of the common electrode pattern 2, the blue electrode pattern 3, and the red electrode pattern 4 are connected to the wiring of a circuit board (not shown), and a negative voltage is applied to the common electrode pattern 2, whereby the blue electrode pattern 3 and the red For example, when a required positive voltage is applied to each of the electrode patterns 4, the blue LED element 5 emits blue light having a peak wavelength of about 480 nm, and the red LED element 6 emits red light having a peak wavelength of about 650 nm, for example. . Here, a part of the blue light is absorbed by the YAG phosphor 8 dispersed in the resin base material 9 to excite it, and emits yellow light having a peak wavelength of about 580 nm. The portion of the blue light that is not absorbed by the YAG phosphor 8 remains as blue light. As described above, in the white light emitting diode 20 according to the first embodiment, the blue light, the yellow light, and the red light are emitted to the outside in a mixed color.
[0023]
Here, FIGS. 5 and 6 are diagrams showing the spectrum of light emission related to the first embodiment. FIG. 5A shows a case where only the blue LED element 5 in the light emitting diode 20 of FIG. 1 emits light. FIG. 5B is a diagram showing the spectrum Sb when the red LED element 6 alone emits light in the light emitting diode 20. FIG. FIG. 6 is a diagram showing a spectrum S10 when both the blue LED element 5 and the red LED element 6 emit light in the light emitting diode 20. When only the blue LED element 5 emits light by applying a positive voltage only to the blue electrode pattern 3 shown in FIG. 1, yellow light is also excited by the presence of the YAG phosphor 8 according to the principle already described, and FIG. The spectrum Sb of a) has a shape in which a steep spectrum having a peak wavelength of about 480 nm and a gentle spectrum having a peak wavelength of about 580 nm are combined and connected. This case corresponds to and approximates the spectral characteristics (see S2 of FIG. 10B) of a conventional light emitting diode having a blue light emitting diode element and a phosphor disclosed in Patent Document 2 as a conventional example. The emission spectrum when only the red LED element 6 emits light by applying a positive voltage only to the red electrode pattern 4 shown in FIG. 1 has a steep peak wavelength of about 650 nm as shown in the spectrum Sr of FIG. Spectrum.
[0024]
In the light emitting diode 20 shown in FIG. 1, when both the blue LED element 5 and the red LED element 6 emit light, the emission spectrum is, as shown in S10 of FIG. 6, a spectrum Sb shown in FIG. The spectrum Sr shown in FIG. 5 (b) is a synthesized form, and the gap between the blue spectrum having a peak wavelength of about 480 nm and the red spectrum having a peak wavelength of about 670 nm is filled with a gentle spectrum having a peak wavelength of about 580 nm. It will be in the form. Therefore, in the visible light region, the drop of the spectrum is small and the color rendering property is high, and also in the red region, the intensity of the spectrum is remarkably reinforced by the presence of the red LED element 6, so that the reproducibility is high. It will be excellent.
[0025]
The ratio of the intensities of the blue light, the yellow light, and the red light is set such that the color of the light emitted by the light emitting diode 10 becomes white as a result of the color mixture. Here, based on the intensity of the blue light, the intensity of the yellow light can be adjusted by the content of the YAG phosphor 8, and the intensity of the red light can be adjusted by the positive voltage applied to the red electrode pattern 4.
[0026]
Hereinafter, a conventional white light emitting diode including only a blue LED element and a YAG phosphor has a spectral characteristic of Sb in FIG. 5A (hereinafter, referred to as “white”). Table 1 shows the values obtained by comparing the CIE color rendering index Ra and the special color rendering indexes R9 to R15 for those having an LED element and having a spectral characteristic of S10 in FIG. 6 (hereinafter referred to as “white + Red”).
[Table 1]
Figure 2004356116
As shown in Table 1, the light-emitting diode (white + red) of the first embodiment has an improvement in the special color rendering index R9 to R15 as compared with the conventional white light-emitting diode (white), and especially −19 in R9. 0.4 to 87.0, which indicates that the reproducibility in the red region is greatly improved. Note that white + red has almost no missing part of the spectrum in the visible light wavelength region as shown in S10 of FIG. 6 as compared with white, so the CIE test color NO. 1 to NO. The color rendering index Ra, which is the average of the color rendering indexes for 8, is also improved from 74.9 to 89.4, and is a good value.
[0027]
As described above, in the light emitting diode of the first embodiment, reproducibility in any region can be improved by combining the GaN blue LED element and the YAG phosphor with the LED element having a red wavelength. Although not shown in Table 1, the color temperature Tc is Tc = 7738.0 in the case of white, and Tc = 7738.0 in the case of white + red.
Since Tc = 6521.1 and all of them are 5,000 or more, the above-described color rendering was evaluated according to the CIE method using CIE daylight as reference light. In the specific example described above, the peak wavelength of the red LED element is 650 nm. However, the first embodiment is not limited to this, and by using a red LED element having a peak wavelength of 615 to 680 nm, Similar effects can be obtained.
[0028]
Next, for reference, Table 2 shows data obtained by comparing the optical characteristics of the above white + red light emitting diodes with those of the white light emitting diodes.
[Table 2]
Figure 2004356116
Here, λd is called a dominant wavelength. Purity, which is called color purity, is a numerical value indicating the degree of approximation to the main wavelength λd, which is monochromatic light, in the CIE chromaticity diagram. The smaller the value, the greater the degree of color mixing. IV is a symbol indicating luminous intensity, expressed in units of millicandela (mcd). x and y are coordinates on the CIE chromaticity diagram.
As can be seen from Table 2, the light emission of the light emitting diode (white + red) of the first embodiment has a sufficiently low color purity, a sufficiently high luminous intensity, and a substantially white chromaticity. As described above, according to the first embodiment, reproducibility is improved over a wide range, and a color closer to a natural color can be expressed.
[0029]
Note that the chromaticity of the light emitting diode of the first embodiment is not limited to the substantially white color as described above. That is, since the color rendering property is enhanced by incorporating the red LED element 6, for example, by adjusting the voltage applied to the blue LED element 5, it is possible to freely control the color tone while maintaining the color rendering property and reproducibility. Can be adjusted.
[0030]
Furthermore, although not shown, as a modification of the first embodiment, an LED element in the infrared region can be combined with the red LED element 6 or replaced with the red LED element 6. In this case, the reproducibility of the infrared region is improved, and for example, it can be used as an illumination light source corresponding to a so-called night shot.
[0031]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. 2A and 2B are diagrams showing a configuration of the light emitting diode 30 according to the second embodiment. FIG. 2A is a top view, and FIG. 2B is a sectional view taken along line BB of FIG. 2A. In FIG. 2, reference numeral 11 denotes a concave portion provided in the substrate 1, and a part of the common electrode pattern 2 is provided also in this portion, and is connected to the common electrode pattern 2 provided in a portion of the substrate 1 other than the concave portion 11. I have. The n-layer 6b of the red LED element 6 is connected to the common electrode pattern 2 in the recess 11 via the Ag paste 7, and the p-layer electrode 6a of the red LED element 6 is connected to the red electrode pattern 4 by a connection means. . Other configurations are the same as those of the light emitting diode 10 shown in FIG. Here, for example, the height of the red LED element 6 is 0.3 mm, the height of the blue LED element 5 is 0.1 mm, and the depth of the concave portion 11 is 0.2 mm. Therefore, in the case of the configuration as shown in FIG. 1, the heights of the red LED element 6 and the blue LED element 5 were not uniform, and the red LED element 6 protruded by 0.2 mm. On the other hand, in the second embodiment, by providing the recess 11 as shown in FIG. 3, the red LED element 6 is retracted by the depth (0.2 mm), and the red LED element 6 The height of the blue LED element 5 from the substrate 1 can be made the same (0.1 mm). As a result, color mixing is performed uniformly, and a uniform luminescent color is obtained regardless of the location. That is, according to the second embodiment, similar to the first embodiment shown in FIG. 1, the reproducibility is enhanced over a wide range, and a color closer to a natural color can be expressed. The uniformity is improved, and even if the illumination light spreads, it is possible to obtain illumination light having a uniform color regardless of the location.
[0032]
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing a configuration of a light emitting diode 40 according to the third embodiment. In FIG. 3, reference numeral 12 denotes a metal cushion as a spacer fixed on the common electrode pattern 2 on the substrate 1. On the metal cushion 12, an insulating sapphire substrate 5c of the blue LED element 5 is bonded and fixed. The n-layer electrode 5b of the blue LED element 5 is connected to the common electrode pattern 2 by connection means, and the p-layer electrode 5a is connected to the blue electrode pattern 3 by connection means. Other configurations are the same as those of the light emitting diode 200 shown in FIG. Here, when the thickness of the metal cushion is, for example, 0.2 mm, the height of the red LED element 6 is 0.3 mm, and the height of the blue LED element 5 is 0.1 mm, the red LED element 6 is The height of the LED element 5 from the substrate 1 can be made the same (0.3 mm). As a result, the color mixture is performed uniformly, a uniform luminescent color is obtained regardless of the location, and the same effect as that of the second embodiment shown in FIG. 2 can be obtained.
[0033]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing a method for making the heights of red LED elements used for a light emitting diode according to the fourth embodiment uniform. FIG. 4A is a diagram illustrating a normal product of the red LED element 6. In this case, a pn junction active layer 6d exists between the n-layer element base 6b and the p-layer 6c (the p-layer electrode 6a is attached to the p-layer 6c). As described above, the normal product of the red LED element 6 is higher than the blue LED element. Therefore, as shown in FIG. 4B, a part of the n-layer element base 6b of the red LED element 6 is used. By removing the (dotted line portion) by a mechanical method or a chemical method, the height of the red LED element 6B after the removal can be made equal to the height of the blue LED element. By using such a red LED element 6B instead of the red LED element 6 shown in FIG. 1 and forming a light emitting diode by the same connection as the light emitting diode 20 shown in FIG. The height from the substrate 1 is the same, and according to the principle described above, the color mixture is performed uniformly, and a uniform luminescent color is obtained regardless of the location. The same effect as in the third embodiment shown in FIG. Obtainable. In the red LED element 6 shown in FIG. 4, the electrodes are attached to the p-layer (6c), and the n-layer 6b is a substrate on which no electrodes are attached. On the contrary, the electrodes are attached to the n-layer. In a red LED element having a structure in which the p-layer is a substrate to which no electrode is attached, the same effect as described above can be obtained by removing the p-layer substrate (however, the n-layer It is necessary to apply a negative voltage to the electrode and a positive voltage to the p-layer substrate.)
[0034]
Hereinafter, description will be made with reference to the drawings with the light emitting diode according to the fifth embodiment of the present invention. 7 and 8 are views showing the configuration of a light emitting diode 50 according to the fifth embodiment. The light emitting diode 50 is a so-called full-color light emitting device in which blue, green, red and yellow light emitting LED elements are arranged on a stem 32 having five foot pins 22b, 25b, 26r, 27g and 28y, respectively. It is a diode. Here, 35b is a blue LED element, 36r is a red LED element, 37g is a green LED element, and 38y is a yellow LED element. Here, the blue LED element 35b is bonded and fixed to the center of the stem 32 via the metal cushion 12. The pn junction type red LED element 36r, the green LED element 37g, and the yellow LED element 38y are arranged on the stem 32 so as to surround the central part, and the n layers of these LED elements are connected with a conductive adhesive such as Ag paste. To the stem 32 side. The foot pin 22b is electrically connected to the stem 32, and a negative electrode is integrally formed. The n-layer electrode of the blue LED element 35b is connected to the foot pin 22b. On the other hand, the p-layer electrodes (Au electrodes) of the blue LED element 35b, the red LED element 36r, the green LED element 37g, and the yellow LED element 38y are foot pins 25b, 26r as electrode terminals insulated from the stem 32. , 27g, and 28y are connected to each other by connection means such as a ball bonder to form positive electrodes. Next, as shown in FIG. 8, a mold 45 made of a translucent resin is formed on such a connection.
[0035]
In such a configuration, by applying a voltage between the foot pin 22b, which is a common negative electrode, and the foot pins 25b, 26r, 27g, 28y, which are positive electrodes, the light-emitting diode 50 emits blue, green, and red light. In addition, a full-color emission in which yellow light is mixed with each other is emitted. Here, for example, when the peak wavelengths of the blue LED element 35b, the green LED element 37g, the yellow LED element 38y, and the red LED element 36r are respectively 470 nm, 540 nm, 590 nm, and 660 nm, these are mixed. The emission spectrum of the light emitting diode 50 is shown in S50 of FIG. According to this, compared to the conventional RGB full-color emission spectrum shown in S1 of FIG. 10A, the drop in the spectrum between red and green is greatly reduced. For this reason, the degree of approximation to natural light is increased, and the color rendering is improved as compared with the conventional art. Further, the light emission spectrum of the light emitting diode of the fifth embodiment has a sufficiently high spectral intensity in the red region as shown in S50 of FIG. Compared with the emission spectrum of the conventional light emitting diode (S2 in FIG. 10B), the spectrum intensity in the red region is significantly increased, and therefore, the reproducibility in the red region is improved as compared with the conventional case. . In the above example, a yellow LED element having a peak wavelength in the region of Y was used. However, the fifth embodiment is not limited to this, and a yellow LED element having a wavelength from Y to YG may be used. The use can be used.
[0036]
In the fifth embodiment, by fixing the blue LED element 35b having a lower height than the other LED elements to the stem 32 via the metal cushion 12, the stems 32 of all the LED elements are fixed. It is fixed so that the height from the surface is substantially equal. As a result, the color mixture of R, G, B, and Y (yellow) is uniformly performed, and a uniform emission color can be obtained regardless of the location.
[0037]
Also in the case of the fifth embodiment, since the color rendering properties are enhanced by incorporating the yellow LED element 38, for example, by adjusting the voltage applied to the other LED elements, the color rendering properties and the reproducibility are maintained. The color tone can be adjusted to almost any color including white.
[0038]
As a modified example of the fifth embodiment, although not shown, by combining an LED element having a wavelength in a red region or an infrared region having a different wavelength from the above-mentioned red LED element (36r), It is possible to enhance reproducibility and color rendering over a wide wavelength range.
[0039]
In the embodiment of the present invention described above, an example in which a red LED element or a yellow LED element is combined to improve reproducibility or color rendering is described. However, the present invention is not limited to these, and in various light emitting diodes including multi-color light emission, in a wavelength region lacking reproducibility, color rendering properties and reproducibility are improved by combining LED elements having the wavelengths. The present invention belongs to the present invention, and the wavelength of the LED elements to be combined can be selected from a wide range from a visible light region to an infrared region as needed.
[0040]
【The invention's effect】
As described above, according to the present invention, in a light emitting diode for white light emission or the like, the light emission is improved in (1) reproducibility over a wide wavelength wave range, and light emission closer to a natural color is obtained. Will be able to {Circle around (2)} Furthermore, by increasing the reproducibility in the infrared region as necessary, a light emitting diode suitable for a night shot can be obtained. {Circle around (3)} Since an LED element having a wavelength in a predetermined region is added, it is possible to adjust the color tone considerably significantly while maintaining the color rendering properties.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a light emitting diode according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a light emitting diode according to a second embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration of a light emitting diode according to a third embodiment of the present invention.
FIG. 4 is a view showing a method for aligning the heights of LED elements according to a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a spectrum of partial light emission of the light emitting diode shown in FIG. 1;
FIG. 6 is a diagram showing an overall light emission spectrum of the light emitting diode shown in FIG. 1;
FIG. 7 is a top view illustrating a configuration of a light emitting diode according to a fifth embodiment of the present invention.
FIG. 8 is a side view showing a configuration of a light emitting diode according to a fifth embodiment of the present invention.
9 is a diagram showing a spectrum of light emission of the light emitting diode shown in FIG.
FIG. 10 is a diagram showing a light emission spectrum of a conventional white light emitting diode.
[Explanation of symbols]
1 substrate
2 Common electrode pattern
3 Blue electrode pattern
4 Red electrode pattern
5, 35b Blue LED element
6, 36r red LED element
7 Ag paste
8 YAG phosphor
9 Resin base material
10 Coating resin member
11 recess
12 metal cushion
20, 30, 40, 50 light emitting diodes
22b, 25b, 26r, 27g, 28y Foot pin
32 stem
37g green LED element
38y yellow LED element
45 Mold

Claims (8)

青色発光ダイオード素子と蛍光体の他に、赤色波長の発光ダイオード素子を備えたことを特徴とする発光ダイオード。A light emitting diode comprising a red light emitting diode element in addition to a blue light emitting diode element and a phosphor. 前記赤色波長の発光ダイオード素子のピーク波長は615nm乃至 680nmであることを特徴とする請求項1に記載の発光ダイオード。The light emitting diode according to claim 1, wherein the peak wavelength of the red wavelength light emitting diode element is 615nm to 680nm. R、G、Bの3色の発光ダイオード素子の他に、これらの発光ダイオード素子とはピーク波長の異なるY(YG)及び又はR領域又は赤外領域の発光ダイオード素子を備えたことを特徴とする発光ダイオード。In addition to light emitting diode elements of three colors of R, G, and B, light emitting diode elements of Y (YG) having different peak wavelengths from these light emitting diode elements and / or R region or infrared region are provided. Light emitting diode. 互いに発光色の異なる複数の発光ダイオード素子を有する発光ダイオードにおいて、実効的な発光面の高さを揃えることにより、均一な混色を可能することを特徴とする発光ダイオード。1. A light-emitting diode having a plurality of light-emitting diode elements having different light-emitting colors, wherein uniform light-emitting colors are achieved by making the height of an effective light-emitting surface uniform. 前記発光ダイオードにおいて、発光ダイオード素子を搭載する基板に凹部を設け、該凹部に複数の発光ダイオード素子のうちの少なくとも1つを固定することにより、実効的な発光面の高さを揃えることを特徴とする請求項4に記載の発光ダイオード。In the light-emitting diode, a recess is provided in a substrate on which the light-emitting diode element is mounted, and at least one of the plurality of light-emitting diode elements is fixed in the recess to make the effective light-emitting surface height uniform. The light emitting diode according to claim 4, wherein 前記発光ダイオードにおいて、発光ダイオード素子を搭載する基板にスペーサー(メタル座布団)を設け、該スペーサーの上に複数の発光ダイオード素子のうちの少なくとも1つを固定することにより、実効的な発光面の高さを揃えることを特徴とする請求項4に記載の発光ダイオード。In the light emitting diode, a spacer (metal cushion) is provided on a substrate on which the light emitting diode element is mounted, and at least one of the plurality of light emitting diode elements is fixed on the spacer, so that the effective height of the light emitting surface is increased. The light emitting diode according to claim 4, wherein the light emitting diodes are aligned. 前記発光ダイオードにおいて、少なくとも1つの発光ダイオード素子の素子ベースの一部を除去することにより、実効的な発光面の高さを揃えることを特徴とする請求項4に記載の発光ダイオード。5. The light emitting diode according to claim 4, wherein in the light emitting diode, an effective light emitting surface height is made uniform by removing a part of an element base of at least one light emitting diode element. 互いに発光色の異なる複数の発光ダイオード素子の、実効的な発光面の高さを揃えることにより、均一な混色を可能することを特徴とする請求項1乃至請求項3のいずれかに記載の発光ダイオード。The light emission according to any one of claims 1 to 3, wherein uniform color mixing is possible by adjusting the height of the effective light emitting surface of the plurality of light emitting diode elements having different emission colors from each other. diode.
JP2003148315A 2003-05-26 2003-05-26 Light emitting diode Pending JP2004356116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148315A JP2004356116A (en) 2003-05-26 2003-05-26 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148315A JP2004356116A (en) 2003-05-26 2003-05-26 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2004356116A true JP2004356116A (en) 2004-12-16

Family

ID=34044771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148315A Pending JP2004356116A (en) 2003-05-26 2003-05-26 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2004356116A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183986A (en) * 2003-12-19 2005-07-07 Agilent Technol Inc Method and apparatus for producing clean white light by using off-white light emitting diode
JP2006245443A (en) * 2005-03-07 2006-09-14 Citizen Electronics Co Ltd Light emitting device and illumination device
JP2007005372A (en) * 2005-06-21 2007-01-11 Rohm Co Ltd Display panel apparatus employing light-emitting diode
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
JP2007311114A (en) * 2006-05-17 2007-11-29 Olympus Corp Lighting optical system using solid light emitting element emitting white light, and optical device equipped with it
JP2007335462A (en) * 2006-06-12 2007-12-27 Stanley Electric Co Ltd Semiconductor compound element, and its fabrication process
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7759682B2 (en) 2004-07-02 2010-07-20 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
US20100252842A1 (en) * 2007-06-13 2010-10-07 Advanced Optoelectronic Technology Inc. Package structure of light emitting diode for backlight
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
JP2010258479A (en) * 2010-08-16 2010-11-11 Citizen Electronics Co Ltd Light emitting device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US7901111B2 (en) 2006-11-30 2011-03-08 Cree, Inc. Lighting device and lighting method
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
JP2011077559A (en) * 2011-01-18 2011-04-14 Rohm Co Ltd Display panel apparatus employing light-emitting diode
US7969097B2 (en) 2006-05-31 2011-06-28 Cree, Inc. Lighting device with color control, and method of lighting
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
JP2011151045A (en) * 2005-11-18 2011-08-04 Cree Inc System and method of calibrating solid-state lighting panel
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
CN101630678B (en) * 2008-07-16 2011-10-05 恩纳特隆公司 Luminous device and method for manufacturing same
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
WO2011133312A2 (en) * 2010-04-19 2011-10-27 Bridgelux, Inc. Phosphor converted light source having an additional led to provide long wavelength light
JP2011249747A (en) * 2010-05-24 2011-12-08 Taida Electronic Ind Co Ltd Single-package led light source improving color rendering index
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
CN102354719A (en) * 2011-09-28 2012-02-15 郑榕彬 Device and method for producing white light with high color rendering index
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
KR101126579B1 (en) * 2005-05-31 2012-03-23 엘지디스플레이 주식회사 LED package for display apparatus
CN102437153A (en) * 2011-11-09 2012-05-02 友达光电股份有限公司 Light emitting source and display panel thereof
US8283675B2 (en) 2009-04-10 2012-10-09 Sharp Kabushiki Kaisha Light emitting device
US8310143B2 (en) 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
KR101205526B1 (en) * 2006-12-29 2012-11-27 서울옵토디바이스주식회사 Light emitting diode package
CN102810533A (en) * 2011-05-31 2012-12-05 亿广科技(上海)有限公司 White light emitting device
WO2012165007A1 (en) 2011-05-27 2012-12-06 シャープ株式会社 Light emitting device, lighting device, and method for manufacturing light emitting device
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
JP2013012529A (en) * 2011-06-28 2013-01-17 Citizen Electronics Co Ltd Led package
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
JP2013219071A (en) * 2012-04-04 2013-10-24 Kyocera Corp Light-emitting element mounting component and light-emitting device
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
TWI422060B (en) * 2008-07-07 2014-01-01 Advanced Optoelectronic Tech Warm hue light source
CN103515519A (en) * 2012-06-25 2014-01-15 展晶科技(深圳)有限公司 Light emitting diode and method of manufacturing the same
US8648546B2 (en) 2009-08-14 2014-02-11 Cree, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US8735914B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device having plural light-emitting sections with resin walls within resin frame
CN103836536A (en) * 2012-12-19 2014-06-04 东莞雷笛克光学有限公司 Telescopic lens
JP2014135437A (en) * 2013-01-11 2014-07-24 Panasonic Corp Light-emitting module, lighting device, and lighting fixture
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
JP2015002346A (en) * 2013-06-17 2015-01-05 深▲セン▼市源磊科技有限公司Shenzhen Runlite Technology Co., Ltd. Led lamp and filament thereof
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
CN104681694A (en) * 2010-08-18 2015-06-03 晶元光电股份有限公司 Light emitting device
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
WO2016104023A1 (en) * 2014-12-25 2016-06-30 株式会社Nano Wave Light-emission device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
JP2017034148A (en) * 2015-08-04 2017-02-09 日亜化学工業株式会社 Light-emitting device and backlight including light-emitting device
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
CN107388185A (en) * 2016-05-16 2017-11-24 日立空调·家用电器株式会社 Lighting device
JP2018022808A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Light-emitting device and illumination apparatus
US9921428B2 (en) 2006-04-18 2018-03-20 Cree, Inc. Light devices, display devices, backlighting devices, edge-lighting devices, combination backlighting and edge-lighting devices
US9991237B2 (en) 2014-09-19 2018-06-05 Nichia Corporation Light emitting device
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
JP2019054098A (en) * 2017-09-14 2019-04-04 株式会社グリーンウェル White led element reduced in blue light, and white led unit with white led elements arranged and mounted on wiring board
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
JP2005183986A (en) * 2003-12-19 2005-07-07 Agilent Technol Inc Method and apparatus for producing clean white light by using off-white light emitting diode
US8034647B2 (en) 2004-07-02 2011-10-11 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7759682B2 (en) 2004-07-02 2010-07-20 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8617909B2 (en) 2004-07-02 2013-12-31 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
US8410680B2 (en) 2005-01-10 2013-04-02 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
JP4679183B2 (en) * 2005-03-07 2011-04-27 シチズン電子株式会社 Light emitting device and lighting device
JP2006245443A (en) * 2005-03-07 2006-09-14 Citizen Electronics Co Ltd Light emitting device and illumination device
KR101126579B1 (en) * 2005-05-31 2012-03-23 엘지디스플레이 주식회사 LED package for display apparatus
JP2007005372A (en) * 2005-06-21 2007-01-11 Rohm Co Ltd Display panel apparatus employing light-emitting diode
JP4727314B2 (en) * 2005-06-21 2011-07-20 ローム株式会社 Display panel device using light emitting diode
JP2011151045A (en) * 2005-11-18 2011-08-04 Cree Inc System and method of calibrating solid-state lighting panel
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8878429B2 (en) 2005-12-21 2014-11-04 Cree, Inc. Lighting device and lighting method
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US9921428B2 (en) 2006-04-18 2018-03-20 Cree, Inc. Light devices, display devices, backlighting devices, edge-lighting devices, combination backlighting and edge-lighting devices
US9417478B2 (en) 2006-04-18 2016-08-16 Cree, Inc. Lighting device and lighting method
US8212466B2 (en) 2006-04-18 2012-07-03 Cree, Inc. Solid state lighting devices including light mixtures
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
US8123376B2 (en) 2006-04-18 2012-02-28 Cree, Inc. Lighting device and lighting method
US8733968B2 (en) 2006-04-18 2014-05-27 Cree, Inc. Lighting device and lighting method
US10018346B2 (en) 2006-04-18 2018-07-10 Cree, Inc. Lighting device and lighting method
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US9297503B2 (en) 2006-04-18 2016-03-29 Cree, Inc. Lighting device and lighting method
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
JP2007311114A (en) * 2006-05-17 2007-11-29 Olympus Corp Lighting optical system using solid light emitting element emitting white light, and optical device equipped with it
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8628214B2 (en) 2006-05-31 2014-01-14 Cree, Inc. Lighting device and lighting method
US7969097B2 (en) 2006-05-31 2011-06-28 Cree, Inc. Lighting device with color control, and method of lighting
JP2007335462A (en) * 2006-06-12 2007-12-27 Stanley Electric Co Ltd Semiconductor compound element, and its fabrication process
US8310143B2 (en) 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US8382318B2 (en) 2006-11-07 2013-02-26 Cree, Inc. Lighting device and lighting method
US7901111B2 (en) 2006-11-30 2011-03-08 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
KR101205526B1 (en) * 2006-12-29 2012-11-27 서울옵토디바이스주식회사 Light emitting diode package
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7855390B2 (en) 2007-06-13 2010-12-21 Advanced Optoelectronic Technology, Inc. Package structure of light emitting diode for backlight
US8242519B2 (en) * 2007-06-13 2012-08-14 Advanced Optoelectronic Technology, Inc. Package structure of light emitting diode for backlight
US20100252842A1 (en) * 2007-06-13 2010-10-07 Advanced Optoelectronic Technology Inc. Package structure of light emitting diode for backlight
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US9054282B2 (en) 2007-08-07 2015-06-09 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials and methods for forming the same
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US10199360B2 (en) 2007-11-14 2019-02-05 Cree, Inc. Wire bond free wafer level LED
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US9491828B2 (en) 2007-11-28 2016-11-08 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US8513871B2 (en) 2008-03-28 2013-08-20 Cree, Inc. Apparatus and methods for combining light emitters
TWI422060B (en) * 2008-07-07 2014-01-01 Advanced Optoelectronic Tech Warm hue light source
CN101630678B (en) * 2008-07-16 2011-10-05 恩纳特隆公司 Luminous device and method for manufacturing same
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8283675B2 (en) 2009-04-10 2012-10-09 Sharp Kabushiki Kaisha Light emitting device
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8648546B2 (en) 2009-08-14 2014-02-11 Cree, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
WO2011133312A3 (en) * 2010-04-19 2012-01-19 Bridgelux, Inc. Phosphor converted light source having an additional led to provide long wavelength light
WO2011133312A2 (en) * 2010-04-19 2011-10-27 Bridgelux, Inc. Phosphor converted light source having an additional led to provide long wavelength light
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
US8735914B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device having plural light-emitting sections with resin walls within resin frame
JP2011249747A (en) * 2010-05-24 2011-12-08 Taida Electronic Ind Co Ltd Single-package led light source improving color rendering index
US9599291B2 (en) 2010-06-04 2017-03-21 Cree, Inc. Solid state light source emitting warm light with high CRI
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
JP2010258479A (en) * 2010-08-16 2010-11-11 Citizen Electronics Co Ltd Light emitting device
CN104681694A (en) * 2010-08-18 2015-06-03 晶元光电股份有限公司 Light emitting device
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
JP2011077559A (en) * 2011-01-18 2011-04-14 Rohm Co Ltd Display panel apparatus employing light-emitting diode
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
WO2012165007A1 (en) 2011-05-27 2012-12-06 シャープ株式会社 Light emitting device, lighting device, and method for manufacturing light emitting device
US10088123B2 (en) 2011-05-27 2018-10-02 Sharp Kabushiki Kaisha Light emitting device, LED light bulb, spot lighting device, lighting device, and lighting equipment
EP3220428A1 (en) 2011-05-27 2017-09-20 Sharp Kabushiki Kaisha Light emitting device
US9611985B2 (en) 2011-05-27 2017-04-04 Sharp Kabushiki Kaisha Light emitting device, lighting device
CN102810533A (en) * 2011-05-31 2012-12-05 亿广科技(上海)有限公司 White light emitting device
JP2013012529A (en) * 2011-06-28 2013-01-17 Citizen Electronics Co Ltd Led package
CN102354719A (en) * 2011-09-28 2012-02-15 郑榕彬 Device and method for producing white light with high color rendering index
CN102437153A (en) * 2011-11-09 2012-05-02 友达光电股份有限公司 Light emitting source and display panel thereof
CN102437153B (en) * 2011-11-09 2013-08-14 友达光电股份有限公司 Light emitting source and display panel thereof
JP2013219071A (en) * 2012-04-04 2013-10-24 Kyocera Corp Light-emitting element mounting component and light-emitting device
CN103515519A (en) * 2012-06-25 2014-01-15 展晶科技(深圳)有限公司 Light emitting diode and method of manufacturing the same
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
CN103836536A (en) * 2012-12-19 2014-06-04 东莞雷笛克光学有限公司 Telescopic lens
JP2014135437A (en) * 2013-01-11 2014-07-24 Panasonic Corp Light-emitting module, lighting device, and lighting fixture
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
JP2015002346A (en) * 2013-06-17 2015-01-05 深▲セン▼市源磊科技有限公司Shenzhen Runlite Technology Co., Ltd. Led lamp and filament thereof
US9991237B2 (en) 2014-09-19 2018-06-05 Nichia Corporation Light emitting device
WO2016104023A1 (en) * 2014-12-25 2016-06-30 株式会社Nano Wave Light-emission device
US11398460B2 (en) 2015-08-04 2022-07-26 Nichia Corporation Light-emitting device and backlight including light-emitting device
US10529695B2 (en) 2015-08-04 2020-01-07 Nichia Corporation Light-emitting device and backlight including light-emitting device
JP2017034148A (en) * 2015-08-04 2017-02-09 日亜化学工業株式会社 Light-emitting device and backlight including light-emitting device
US10971481B2 (en) 2015-08-04 2021-04-06 Nichia Corporation Light-emitting device and backlight including light-emitting device
CN107388185A (en) * 2016-05-16 2017-11-24 日立空调·家用电器株式会社 Lighting device
JP2018022808A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Light-emitting device and illumination apparatus
JP2019054098A (en) * 2017-09-14 2019-04-04 株式会社グリーンウェル White led element reduced in blue light, and white led unit with white led elements arranged and mounted on wiring board

Similar Documents

Publication Publication Date Title
JP2004356116A (en) Light emitting diode
KR100930171B1 (en) White light emitting device and white light source module using same
KR101241528B1 (en) Light Emitting device
US9607970B2 (en) Light-emitting device having a plurality of concentric light transmitting areas
KR100946015B1 (en) White led device and light source module for lcd backlight using the same
US8598608B2 (en) Light emitting device
US8278670B2 (en) Light emitting apparatus and display apparatus having the same
US7759683B2 (en) White light emitting diode
JP2007066969A (en) White light emitting diode and its fabrication process
US9076667B2 (en) White light emitting diode module
WO2005106978A1 (en) Light-emitting device and method for manufacturing same
JP2001127346A (en) Light emitting diode
US20100045168A1 (en) White light light-emitting diodes
KR20110048397A (en) LED Package and Backlight Assembly using the same
US20150155460A1 (en) Light-emitting apparatus
JP2008288412A (en) Led light-emitting device
JPH06326364A (en) Light emitting diode lamp
KR20100076655A (en) White light emitting device
KR101683888B1 (en) Light emitting apparatus and display apparatus having the same
KR101195430B1 (en) White light emitting device and white light source module using the same
TWI291251B (en) LED assembly structure
KR100990647B1 (en) White light emitting device and white light source module using the same
KR100646633B1 (en) Light emitting device
TWI396301B (en) Production Method of White Light -emitting
TWI506759B (en) A light emitting element capable of emitting white light and a method of mixing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091217