JP2979737B2 - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JP2979737B2
JP2979737B2 JP3157231A JP15723191A JP2979737B2 JP 2979737 B2 JP2979737 B2 JP 2979737B2 JP 3157231 A JP3157231 A JP 3157231A JP 15723191 A JP15723191 A JP 15723191A JP 2979737 B2 JP2979737 B2 JP 2979737B2
Authority
JP
Japan
Prior art keywords
glass substrate
dry etching
gas
etching method
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3157231A
Other languages
Japanese (ja)
Other versions
JPH056874A (en
Inventor
友彰 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3157231A priority Critical patent/JP2979737B2/en
Publication of JPH056874A publication Critical patent/JPH056874A/en
Application granted granted Critical
Publication of JP2979737B2 publication Critical patent/JP2979737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばマイクロ機構部
品製作のためにガラス基板の一主面から主面に垂直な側
壁をもつ凹部ないし貫通孔を形成するドライエッチング
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method for forming a recess or a through hole having a side wall perpendicular to a main surface from one main surface of a glass substrate, for example, for manufacturing a micromechanical component.

【0002】[0002]

【従来の技術】ガラス基板の一主面から凹部ないし貫通
孔を形成する従来の加工方法には、一般的な機械加工お
よび弗酸系溶液等を用いるウェットエッチングの2種類
の方法がある。機械加工による方法は、図3(a) および
図4(a) に示すようなガラス基板1の一主面11側から直
接加工して、図3(b) に示すような凹部2、図4(b) に
示すような貫通孔3を形成する方法である。一方ウェッ
トエッチング方法は、図5(a) および図6(a) に示すよ
うにガラス基板1の一主面11にフォトレジスト等からな
るマスク41を被着し、弗酸溶液で面11の露出部からエッ
チングして図5(b) に示すような凹部21ないし図6(b)
に示すような貫通孔31を形成するものである。
2. Description of the Related Art Conventional processing methods for forming a concave portion or a through hole from one main surface of a glass substrate include two types of methods: general mechanical processing and wet etching using a hydrofluoric acid solution or the like. In the method by machining, the glass substrate 1 is directly processed from the one main surface 11 side as shown in FIGS. 3 (a) and 4 (a), and the concave portion 2 as shown in FIG. This is a method for forming a through hole 3 as shown in FIG. On the other hand, in the wet etching method, as shown in FIGS. 5A and 6A, a mask 41 made of a photoresist or the like is applied to one main surface 11 of the glass substrate 1, and the surface 11 is exposed with a hydrofluoric acid solution. Etching from the part, the recess 21 as shown in FIG. 5 (b) to FIG. 6 (b)
A through hole 31 is formed as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかし、ガラス基板1
に一般的な機械加工により凹部ないし貫通孔を形成する
方法は、基板主面11に垂直な側壁をもつ凹部2ないし貫
通孔3が形成可能であるが、被加工部を一つ一つ加工す
るため、大量に加工する際には非常に時間がかかる。ま
た、凹部ないし貫通孔の加工面にマイクロクラックや加
工歪が残り、マイクロ機構部品として用いる場合などに
割れる等の問題点がある。
However, the glass substrate 1
In a method of forming a concave portion or a through hole by general machining, it is possible to form a concave portion 2 or a through hole 3 having a side wall perpendicular to the main surface 11 of the substrate. Therefore, it takes a very long time to process a large amount. In addition, there is a problem that microcracks and processing distortion remain on the processing surface of the concave portion or the through-hole, and the microcrack is broken when used as a micromechanical component.

【0004】一方弗酸溶液等によるウェットエッチング
では、等方的なエッチングであるため、図4の21, 図5
の31に示したようにガラス基板1の主面11に垂直な側壁
をもつ凹部ないし貫通孔は形成できない。また、マスク
としてレジストを用いるためにエッチングの選択比が大
きくとれず、深い凹部ないし貫通孔を形成するのが困難
である。さらに、例えばサイエンスフォーラム社発行
「超LSIプロセスデータハンドブック」に記載されて
いるように、エッチレートが約150 Å/分と非常に小さ
いため、加工時間が長く、生産性が悪いという欠点もあ
る。
On the other hand, wet etching using a hydrofluoric acid solution or the like is an isotropic etching, and therefore, FIG.
As shown in (31), a recess or a through hole having a side wall perpendicular to the main surface 11 of the glass substrate 1 cannot be formed. Further, since a resist is used as a mask, a large etching selectivity cannot be obtained, and it is difficult to form a deep concave portion or a through hole. Furthermore, as described in, for example, "Super LSI Process Data Handbook" published by Science Forum, the etch rate is very small at about 150 .mu.m / min, so that there is a disadvantage that the processing time is long and the productivity is poor.

【0005】そこで、本発明の目的は、上述の問題を解
決し、ガラス基板に一主面に垂直な側壁をもつ凹部ない
し貫通孔を高速度, 高精度に、また数百個の凹部ないし
貫通孔を一度に均一性よく形成できるドライエッチング
方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to form a recess or through-hole having a side wall perpendicular to one main surface in a glass substrate at high speed and high accuracy, and to provide several hundred recesses or through-holes. It is an object of the present invention to provide a dry etching method capable of forming holes at once with good uniformity.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、加工されるガラス基板の一主面ウェッ
トエッチングに窓を有するマスクを被着し、陽極結合方
式のドライエッチング装置を用いてマスクの窓からガラ
ス基板を加工するドライエッチング方法において、マス
クをアルミニウムにより形成し、平行平板電極間隔が30
〜70mm, エッチング圧力が25〜50Paである条件のもとで
装置の反応室内に流量6〜150ccmの六弗化硫黄ガスと流
量1〜50ccm の酸素ガスを同時に導入し、両電極間に電
極面積に対して0.3〜0.6W/cm2 の高周波電力を印加
するものとする。そして酸素ガスの流量が六弗化硫黄ガ
スの流量の20〜50%であることが有効である。またこの
方法でガラス基板に凹部を形成することも、貫通孔を形
成することもできる。
In order to achieve the above object, the present invention provides a dry etching apparatus of the anodic bonding type, in which a mask having a window is applied to wet etching of one principal surface of a glass substrate to be processed. In a dry etching method of processing a glass substrate from a window of a mask using a mask, a mask is formed of aluminum, and a distance between parallel plate electrodes is 30.
Sulfur hexafluoride gas at a flow rate of 6 to 150 ccm and oxygen gas at a flow rate of 1 to 50 ccm were simultaneously introduced into the reaction chamber of the apparatus under the conditions of ~ 70 mm and an etching pressure of 25 to 50 Pa, and the electrode area was set between both electrodes. To be applied with a high frequency power of 0.3 to 0.6 W / cm 2 . It is effective that the flow rate of the oxygen gas is 20 to 50% of the flow rate of the sulfur hexafluoride gas. In addition, a concave portion or a through hole can be formed in the glass substrate by this method.

【0007】[0007]

【作用】本発明のドライエッチング反応機構としては次
のように考えられる。まず、SF6 ガスはプラズマ中で
解離し、Fラジカルが生成される。つぎに、マスクの窓
に露出しているガラス基板表面にFラジカルが付着し、
ガラス中に存在するSi原子と反応してSiF4 が生成さ
れ、このSiF4 は沸点は10Torrにおいて−130.4℃と非
常に低いため、自然に揮発して排気される。一方、O2
ガスもプラズマ中で同時に解離し、Oラジカルが生成さ
れる。このOラジカルは被加工部表面のFラジカルとSi
原子との反応の際に、瞬間的に中間酸化物SiOが生成す
るのに使われ、このSiOとFラジカルが反応することで
SiF4 が形成され、揮発する。それゆえ、Oラジカルは
エッチング反応の進行の役割を大きく果たしていると考
えられる。その理由として、SF6 ガス単体でエッチン
グを行ったときのエッチング速度より、SF6 ガスとO
2 ガスの混合ガスでエッチングを行ったときのそれのほ
うが大きくなるという事実があるからである。
The dry etching reaction mechanism of the present invention is considered as follows. First, SF 6 gas is dissociated in plasma, and F radicals are generated. Next, F radicals adhere to the surface of the glass substrate exposed at the window of the mask,
Reacts with Si atoms present in the glass SiF 4 is produced, the SiF 4 is boiling point for very low -130.4 ° C. at 10 Torr, and is exhausted volatilized spontaneously. On the other hand, O 2
The gas also dissociates in the plasma at the same time, generating O radicals. These O radicals are formed by F radicals on the surface of the workpiece and Si radicals.
It is used to instantaneously generate an intermediate oxide, SiO, when reacting with atoms, and this SiO reacts with F radicals.
SiF 4 is formed and volatilizes. Therefore, it is considered that the O radical plays a large role in the progress of the etching reaction. The reason is that, from the etching speed when etching was performed with SF 6 gas alone, SF 6 gas and O
This is because there is a fact that when etching is performed with a mixed gas of two gases, it becomes larger.

【0008】そして、マスクの窓からのエッチングによ
り生ずる凹部の側壁はプラズマ中に存在するOラジカル
等により一時的に酸化され、このときの一時的な酸化物
により側壁が保護されながらエッチングは進行する。こ
の状態はガラス基板に所定の深さの凹部が形成される
か、あるいは貫通するまで保たれる。ただし、エッチン
グ反応において、凹部側壁と同時に凹部底面も酸化され
るが、プラズマ中に微量に存在すると考えられる反応ガ
ス分子から解離したイオンが、プラズマ中の電界により
凹部底面方向に加速されて衝突し、底面に形成された酸
化膜はその衝撃で除去され、それゆえ底面上の瞬間的な
酸化膜は保護の役割を果たさず、凹部底面のみのエッチ
ングが進行する。この結果、平行平板電極間隔30〜70m
m, 印加高周波電力0.3〜0.6W/cm2 , エッチング圧
力25〜50Pa, 六弗化硫黄ガスの流量6〜150ccm, 酸素ガ
スの流量1〜50ccm に条件を限定した場合に側壁が主面
に垂直な凹部ないし貫通孔が形成されると推定される。
The side wall of the concave portion formed by etching from the window of the mask is temporarily oxidized by O radicals or the like existing in the plasma, and the etching proceeds while the side wall is protected by the temporary oxide at this time. . This state is maintained until a concave portion having a predetermined depth is formed or penetrates the glass substrate. However, in the etching reaction, the bottom of the recess is oxidized simultaneously with the sidewall of the recess, but ions dissociated from the reactive gas molecules, which are considered to be present in a small amount in the plasma, are accelerated toward the bottom of the recess by the electric field in the plasma and collide. The oxide film formed on the bottom surface is removed by the impact, so that the instantaneous oxide film on the bottom surface does not play a protective role, and only the bottom surface of the concave portion is etched. As a result, the parallel plate electrode spacing 30 to 70 m
m, applied high frequency power of 0.3 to 0.6 W / cm 2 , etching pressure of 25 to 50 Pa, flow rate of sulfur hexafluoride gas of 6 to 150 ccm, and flow rate of oxygen gas of 1 to 50 ccm. It is presumed that a concave portion or a through hole perpendicular to the surface is formed.

【0009】[0009]

【実施例】図1(a), (b)は本発明の一実施例によるガラ
ス基板への凹部形成方法の概要を示すもので、図3ない
し図6と共通の部分には同一の符号が付されている。例
えば厚さ500 μmのガラス基板1の一方の主面11上に真
空蒸着法により厚さ1μmのアルミニウム薄膜を形成
し、りん硝酸をエッチング液としてパターニングして図
1(a) に示すようにガラス基板面11を被加工部で露出さ
せるアルミニウムマスク4を形成した。次に、特開平2
−280324号公報に記載されている陽極結合方式のドライ
エッチング装置を用い、流量35ccm のSF6 ガスと流量
15ccm のO2 ガスの混合ガスを流入させ、反応室内の圧
力を30Paに保持して、50mmの間隔で上下に互いに対向す
る平行平板電極内に電極面積に対し0.45W/cm2 の高周
波電力を印加して、プラズマを発生させた。これによ
り、プラズマ内に存在するラジカルや反応ガスイオンと
露出したガラスとの間に物理化学的反応が起こり、図1
(b)に示すように500 μm角で深さ300 μmの主面11に
垂直な側壁をもつ凹部2が3000Å/分のエッチレートで
形成された。
1 (a) and 1 (b) show an outline of a method for forming a concave portion in a glass substrate according to an embodiment of the present invention. The same reference numerals as in FIGS. 3 to 6 denote the same parts. Is attached. For example, an aluminum thin film having a thickness of 1 μm is formed on one main surface 11 of a glass substrate 1 having a thickness of 500 μm by a vacuum evaporation method, and is patterned using phosphoric nitric acid as an etching solution to form a glass as shown in FIG. An aluminum mask 4 exposing the substrate surface 11 at the portion to be processed was formed. Next, Japanese Unexamined Patent Publication
Using a dry etching apparatus of anodic bonding method disclosed in -280,324 JP, SF 6 gas flow rate 35ccm and flow
A mixed gas of 15 ccm of O 2 gas was introduced, the pressure in the reaction chamber was maintained at 30 Pa, and a high frequency power of 0.45 W / cm 2 with respect to the electrode area was supplied to parallel plate electrodes facing each other up and down at 50 mm intervals. Upon application, a plasma was generated. As a result, a physicochemical reaction occurs between radicals and reaction gas ions present in the plasma and the exposed glass.
As shown in (b), a concave portion 2 having a side wall perpendicular to the main surface 11 of 500 μm square and depth of 300 μm was formed at an etching rate of 3000 ° / min.

【0010】図2(a), (b)は本発明の別の実施例による
ガラス基板への貫通孔形成方法の概要を示し、図1と共
通の部分には同一の符号が付されている。この場合も、
図1に示した実施例と同様に図2(a) に示すようにアル
ミニウムマスク4を形成したのち、同一の条件でのドラ
イエッチングを行うことにより、図2(b) に示すように
深さ500 μmの主面11に垂直な側壁をもつ貫通孔3が形
成された。
FIGS. 2 (a) and 2 (b) show an outline of a method of forming a through hole in a glass substrate according to another embodiment of the present invention, and portions common to FIG. 1 are denoted by the same reference numerals. . Again,
After forming an aluminum mask 4 as shown in FIG. 2A in the same manner as in the embodiment shown in FIG. 1, dry etching is performed under the same conditions so that the depth as shown in FIG. A through hole 3 having a side wall perpendicular to the main surface 11 of 500 μm was formed.

【0011】さらに、平行平板電極間隔を30〜70mmの範
囲で、エッチング圧力を25〜50Paの範囲で、SF6 ガス
の流量を6〜150ccmの範囲で、O2 ガスの流量を1〜50
ccmの範囲で、また印加高周波電力密度を0.3〜0.6W
の範囲でそれぞれ変化させたときにも図1あるいは図2
に示したような凹部あるいは貫通孔を形成できることが
わかった。なお、O2 ガスのSF6 ガスに対する混合比
は20〜50%が適当であった。
Further, the interval between the parallel plate electrodes is 30 to 70 mm, the etching pressure is 25 to 50 Pa, the flow rate of SF 6 gas is 6 to 150 ccm, and the flow rate of O 2 gas is 1 to 50 ccm.
In the range of ccm, and the applied high-frequency power density is 0.3 to 0.6 W
1 or FIG.
It has been found that a recess or a through hole as shown in FIG. The mixing ratio of the O 2 gas to the SF 6 gas was suitably from 20 to 50%.

【0012】[0012]

【発明の効果】本発明によれば、アルミニウムのマスク
を用い、各種条件を適正な範囲に限定することによりガ
ラス基板に、ウェットエッチング法では形成できない基
板主面に垂直な側壁をもつ、例えば深さ300 μmの凹部
あるいは深さ500 μmの貫通孔をドライエッチング法で
形成することができた。また、加工速度が非常に大きい
ため加工時間が短く、しかもガラス基板内で均一に、多
数の凹部ないし貫通孔が同時に形成できるため、非常に
高い生産性が確保される。さらに、本発明による方法の
場合、エッチング反応の主体は、プラズマ中のラジカル
であり、また、印加電力が非常に小さいため、ガラス基
板の加工表面にマイクロクラックが残らないことや残留
歪が非常に少ないという利点もある。
According to the present invention, by using an aluminum mask and limiting various conditions to an appropriate range, a glass substrate has a side wall perpendicular to the main surface of the substrate which cannot be formed by the wet etching method. A recess having a thickness of 300 μm or a through-hole having a depth of 500 μm could be formed by dry etching. Further, since the processing speed is very high, the processing time is short, and since a large number of concave portions or through holes can be formed simultaneously and uniformly in the glass substrate, extremely high productivity is secured. Furthermore, in the case of the method according to the present invention, the main component of the etching reaction is radicals in the plasma, and the applied power is very small, so that microcracks do not remain on the processed surface of the glass substrate and the residual strain is extremely low. There is also the advantage of being small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のガラス基板への凹部形成方
法を(a),(b)の順に示す断面図
FIG. 1 is a sectional view showing a method for forming a concave portion on a glass substrate according to an embodiment of the present invention in the order of (a) and (b).

【図2】本発明の別の実施例のガラス基板への貫通孔形
成方法を(a),(b)の順に示す断面図
FIG. 2 is a sectional view showing a method of forming a through hole in a glass substrate according to another embodiment of the present invention in the order of (a) and (b).

【図3】従来の機械加工によるガラス基板への凹部形成
方法を(a), (b)の順に示す断面図
FIG. 3 is a sectional view showing a method of forming a concave portion in a glass substrate by conventional machining in the order of (a) and (b).

【図4】従来の機械加工によるガラス基板への貫通孔形
成方法を(a),(b)の順に示す断面図
FIG. 4 is a sectional view showing a method of forming a through hole in a glass substrate by conventional machining in the order of (a) and (b).

【図5】従来のウェットエッチングによるガラス基板へ
の凹部形成方法を(a), (b)の順に示す断面図
FIG. 5 is a sectional view showing a method of forming a concave portion on a glass substrate by conventional wet etching in the order of (a) and (b).

【図6】従来のウェットエッチングによるガラス基板へ
の貫通孔形成方法を(a), (b)の順に示す断面図
FIG. 6 is a sectional view showing a conventional method for forming a through hole in a glass substrate by wet etching in the order of (a) and (b).

【符号の説明】[Explanation of symbols]

1 ガラス基板 11 基板主面 2 凹部 3 貫通孔 4 アルミニウムマスク REFERENCE SIGNS LIST 1 glass substrate 11 substrate main surface 2 concave portion 3 through hole 4 aluminum mask

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加工されるガラス基板の一主面上に窓を有
するマスクを被着し、陽極結合方式のドライエッチング
装置を用いてマスクの窓からガラス基板を加工するドラ
イエッチング方法において、マスクをアルミニウムによ
り形成し、平行平板電極間隔が30〜70mm, エッチング圧
力が25〜50Paである条件のもとで装置の反応室内に流量
6〜150ccmの六弗化硫黄ガスと流量1〜50ccm の酸素ガ
スを同時に導入し、両電極間に電極面積に対して0.3〜
0.6W/cm2 の高周波電力を印加するドライエッチング
方法。
In a dry etching method, a mask having a window is attached on one main surface of a glass substrate to be processed, and the glass substrate is processed from a window of the mask using an anodic bonding type dry etching apparatus. Is formed in aluminum, under the condition that the distance between the parallel plate electrodes is 30 to 70 mm and the etching pressure is 25 to 50 Pa, the sulfur hexafluoride gas having a flow rate of 6 to 150 ccm and the oxygen gas having a flow rate of 1 to 50 ccm are introduced into the reaction chamber of the apparatus. Gas is introduced at the same time, and 0.3 ~
A dry etching method in which a high frequency power of 0.6 W / cm 2 is applied.
【請求項2】酸素ガスの流量が六弗化硫黄ガスの流量の
20〜50%である請求項1記載のドライエッチング方法。
2. The method according to claim 1, wherein the flow rate of the oxygen gas is less than the flow rate of the sulfur hexafluoride gas.
2. The dry etching method according to claim 1, wherein the content is 20 to 50%.
【請求項3】ガラス基板に凹部を形成する請求項1ある
いは2記載のドライエッチング方法。
3. The dry etching method according to claim 1, wherein a concave portion is formed in the glass substrate.
【請求項4】ガラス基板に貫通孔を形成する請求項1あ
るいは2記載のドライエッチング方法。
4. The dry etching method according to claim 1, wherein a through hole is formed in the glass substrate.
JP3157231A 1991-06-28 1991-06-28 Dry etching method Expired - Lifetime JP2979737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157231A JP2979737B2 (en) 1991-06-28 1991-06-28 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157231A JP2979737B2 (en) 1991-06-28 1991-06-28 Dry etching method

Publications (2)

Publication Number Publication Date
JPH056874A JPH056874A (en) 1993-01-14
JP2979737B2 true JP2979737B2 (en) 1999-11-15

Family

ID=15645104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157231A Expired - Lifetime JP2979737B2 (en) 1991-06-28 1991-06-28 Dry etching method

Country Status (1)

Country Link
JP (1) JP2979737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274852B1 (en) 2010-08-23 2013-06-13 (주)엘지하우시스 Floor panel having adhesive applied sheet
CN109659230A (en) * 2018-12-13 2019-04-19 吉林华微电子股份有限公司 The semiconductor processing method of double-sided glass terminal

Also Published As

Publication number Publication date
JPH056874A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US4615764A (en) SF6/nitriding gas/oxidizer plasma etch system
JP2734915B2 (en) Dry etching method for semiconductor
US4734157A (en) Selective and anisotropic dry etching
US5522966A (en) Dry etching process for semiconductor
WO2005055303A1 (en) Plasma etching method
JP2979737B2 (en) Dry etching method
US4364793A (en) Method of etching silicon and polysilicon substrates
JPH0545057B2 (en)
KR870011672A (en) Deep Trench Etching of Monocrystalline Silicon
JP3178123B2 (en) Method of manufacturing comb-type actuator
JP5041696B2 (en) Dry etching method
JP5154013B2 (en) Dry etching method
JP3089870B2 (en) Processing method of silicon substrate
JPS5835364B2 (en) plasma etching method
JP2797685B2 (en) Dry etching method
JPH02275626A (en) Dry etching method
CN109786241B (en) Method for retarding aluminum etching side corrosion by micro-damage
JPS61131457A (en) Dry etching gas for silicon compound
JPH04280427A (en) Processing of silicon substrate
JPH0426539B2 (en)
JPS61131456A (en) Dry etching gas for silicon compound
JP2548177B2 (en) Dry etching method
KR100236078B1 (en) Etching method for semiconductor material
EP0212585A2 (en) Selective and anisotropic dry etching
JPH08148468A (en) Etching method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12