JP2976716B2 - Catalyst for methanol synthesis and method for producing the same - Google Patents

Catalyst for methanol synthesis and method for producing the same

Info

Publication number
JP2976716B2
JP2976716B2 JP4248613A JP24861392A JP2976716B2 JP 2976716 B2 JP2976716 B2 JP 2976716B2 JP 4248613 A JP4248613 A JP 4248613A JP 24861392 A JP24861392 A JP 24861392A JP 2976716 B2 JP2976716 B2 JP 2976716B2
Authority
JP
Japan
Prior art keywords
catalyst
solution
oxide
weight
distilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4248613A
Other languages
Japanese (ja)
Other versions
JPH0739755A (en
Inventor
昌弘 斉藤
勇樹 金井
正己 武内
圭子 守屋
大器 渡辺
基益 河井
輝充 角本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Mitsui Chemicals Inc
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Kawasaki Motors Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Agency of Industrial Science and Technology
Mitsui Chemicals Inc
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Agency of Industrial Science and Technology, Mitsui Chemicals Inc, Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd, Kawasaki Jukogyo KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4248613A priority Critical patent/JP2976716B2/en
Publication of JPH0739755A publication Critical patent/JPH0739755A/en
Application granted granted Critical
Publication of JP2976716B2 publication Critical patent/JP2976716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化炭素(一酸化炭素
及び二酸化炭素)の接触水素化によりメタノールを合成
するために使用する触媒及びその製造方法に関する。
The present invention relates to a catalyst used for synthesizing methanol by catalytic hydrogenation of carbon oxides (carbon monoxide and carbon dioxide) and a method for producing the same.

【0002】[0002]

【従来の技術】従来、合成ガス(一酸化炭素と水素の混
合ガス)を原料とするメタノール合成(CO+2H
CHOH)は、例えば、特開平3−68450号公報
に示されるように、銅/亜鉛/アルミニウムの酸化物あ
るいは銅/亜鉛/クロムの酸化物からなる触媒を用い
て、250〜350℃、50〜150気圧の条件下で工
業的に実施されている。一方、二酸化炭素を原料とした
メタノール合成(CO+3H→CHOH+H
O)は、炭素資源の循環再利用と地球環境問題の観点
から、最近注目されてきている。この場合、反応の熱力
学的平衡から、二酸化炭素を主成分とするガスを触媒上
で水素と反応させてメタノールを合成する場合には、前
述の合成ガスからのメタノール合成における反応温度よ
りも低い温度で行うことが必要である。それゆえ、前述
の合成ガスからのメタノール合成で用いられている触媒
よりもさらに高活性な触媒が要求されるが、これまで充
分な性能を示す触媒は報告されていない。
2. Description of the Related Art Conventionally, methanol synthesis (CO + 2H 2 →) using synthesis gas (mixed gas of carbon monoxide and hydrogen) as a raw material.
CH 3 OH) is, for example, as described in JP-A-3-68450, at 250 to 350 ° C. using a catalyst composed of an oxide of copper / zinc / aluminum or an oxide of copper / zinc / chromium. It is carried out industrially under the conditions of 50 to 150 atm. On the other hand, methanol synthesis using carbon dioxide as a raw material (CO 2 + 3H 2 → CH 3 OH + H
2 O) is from the point of view of circulation re-use and global environmental problems of carbon resource, it has been attracting attention recently. In this case, from the thermodynamic equilibrium of the reaction, when reacting a gas containing carbon dioxide as the main component with hydrogen on the catalyst to synthesize methanol, the temperature is lower than the reaction temperature in methanol synthesis from the aforementioned synthesis gas. It is necessary to do it at temperature. Therefore, a catalyst having higher activity than that used in the above-mentioned synthesis of methanol from synthesis gas is required, but no catalyst showing sufficient performance has been reported so far.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の諸点
に鑑みなされたもので、250℃以下の比較的低い温度
において、酸化炭素を水素と反応させてメタノールを合
成する場合、特に、二酸化炭素又は二酸化炭素を主成分
とする酸化炭素ガスを水素と反応させてメタノールを合
成する場合に、高いメタノール収率を示す高性能触媒を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a relatively low temperature of 250 ° C. or less.
In the case of synthesizing methanol by reacting carbon oxide with hydrogen , in particular, carbon dioxide or carbon dioxide as a main component
To react with the hydrogen to produce methanol
It is an object of the present invention to provide a high-performance catalyst exhibiting a high methanol yield when formed .

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、250℃以下の比較的低い温度
でも二酸化炭素又は二酸化炭素を主成分とする酸化炭素
ガスの水素化によるメタノール合成に用いることができ
る、酸化銅、酸化亜鉛及び酸化ジルコニウムを含有し、
さらに、アルミニウム、クロム及びパラジウムからなる
群から選ばれた少なくとも一種類の元素を含有する触媒
が提供される。触媒中の酸化銅の含有量は、20〜70
重量%が適当で、20重量%未満でも、70重量%を越
える値でも触媒性能が充分ではない。また、酸化亜鉛の
含有量は5〜75重量%が適当であり、酸化ジルコニウ
ムの含有量は5〜29重量%が適当である。これらの含
有量は、反応原料ガスの組成によって適当な量を定める
ことにより最高の触媒性能を得ることができる。酸化亜
鉛の含有量が5重量%未満でも、75重量%を越える値
でも触媒性能は充分ではない。また、酸化ジルコニウム
の含有量が5重量%未満でも、29重量%を越える値で
も触媒性能は充分ではない。
According to the present invention, there is provided, according to the present invention, carbon dioxide or carbon dioxide containing carbon dioxide as a main component even at a relatively low temperature of 250 ° C. or less.
It can be used for methanol synthesis by hydrogenation of gas , containing copper oxide, zinc oxide and zirconium oxide,
Further, there is provided a catalyst containing at least one element selected from the group consisting of aluminum, chromium and palladium. The content of copper oxide in the catalyst is from 20 to 70
The catalyst performance is not sufficient even if the value is less than 20% by weight or more than 70% by weight. The content of zinc oxide is suitably from 5 to 75% by weight, and the content of zirconium oxide is from 5 to 29% by weight. The best catalyst performance can be obtained by appropriately determining the content of these components depending on the composition of the reaction gas. Even if the content of zinc oxide is less than 5% by weight or more than 75% by weight, the catalytic performance is not sufficient. Further, even if the content of zirconium oxide is less than 5% by weight or more than 29% by weight, the catalytic performance is not sufficient.

【0005】上記のように、本発明によれば、酸化銅、
酸化亜鉛及び酸化ジルコニウムを含み、かつ、他の元素
を一種類以上添加した二酸化炭素又は二酸化炭素を主成
分とする酸化炭素ガスの水素化によるメタノール合成
用いるのに適した触媒が提供される。添加する他の元素
は、上述したように、アルミニウム、クロム、パラジウ
ムが有効である。そして、添加する他の金属元素は、
0.5〜30重量%が適当である。この値が0.5重量
%未満でも、30重量%を越える値でも触媒性能が向上
しない。
As described above, according to the present invention, copper oxide,
Carbon dioxide or carbon dioxide containing zinc oxide and zirconium oxide and containing at least one other element
Methanol synthesis by hydrogenation min to carbon oxide gas
A catalyst suitable for use is provided. As described above, aluminum, chromium, and palladium are effective as other elements to be added. And other metal elements to be added are
0.5 to 30% by weight is suitable. If the value is less than 0.5% by weight or exceeds 30% by weight, the catalyst performance is not improved.

【0006】触媒の調製は、下記の方法で行うことが必
要である。その方法は、銅、亜鉛及びジルコニウムを含
む溶液に塩基性溶液を加えて銅、亜鉛及びジルコニウム
を沈殿させる方法、すなわち共沈法である。なお、触媒
の調製は、はじめに一成分又は二成分を含む溶液に塩基
性溶液を加えて一成分又は二成分を沈殿させ、ついで、
該沈殿物を含む液中で残りの成分を同様に沈殿させる方
法、すなわち逐次沈殿法で行うこともできる。いずれの
方法においても、触媒調製の主原料は、銅、亜鉛及びジ
ルコニウムの化合物であり、水、メタノールなどの金属
を含まない液体に溶解するものが用いられる。また、沈
殿剤としては、炭酸ナトリウム、尿素、アンモニア、水
酸化ナトリウム、炭酸アンモニウム、水酸化カリウム、
炭酸水素ナトリウムなどの塩基性溶液を用いることがで
きる。
[0006] The preparation of the catalyst, it is necessary to carry out in a way of following. The method how to copper, and the basic solution was added to a solution containing zinc and zirconium copper to precipitate zinc and zirconium, i.e. Ru coprecipitation der. The catalyst
Is prepared by first adding a basic solution to a solution containing one or two components to precipitate one or two components,
It can also be carried out by a method of precipitating the remaining components in a liquid containing the precipitate, that is, a sequential precipitation method. In either method, the main raw material for preparing the catalyst is a compound of copper, zinc, and zirconium, which is dissolved in a metal-free liquid such as water or methanol. Further, as a precipitant, sodium carbonate, urea, ammonia, sodium hydroxide, ammonium carbonate, potassium hydroxide,
A basic solution such as sodium bicarbonate can be used.

【0007】触媒は、調製後、空気中で300〜600
℃で焼成して酸化物の状態にすることが必要である。こ
のようにすることにより、安定な触媒とすることができ
る。焼成しないか、300℃未満の温度で焼成するか、
あるいは600℃を越える温度で焼成すると性能が低下
する。上記のことから、本発明のメタノール合成用触媒
の製造方法は、銅、亜鉛及びジルコニウムを含み、か
つ、アルミニウム、クロム及びパラジウムからなる群か
ら選ばれた少なくとも一種類を含む溶液に塩基性溶液を
加えて銅、亜鉛及びジルコニウム並びにアルミニウム、
クロム及びパラジウムからなる群から選ばれた少なくと
も一種類を沈殿させた後、この沈殿物を300〜600
℃で焼成して、酸化銅の含有割合が20〜70重量%、
酸化亜鉛の含有割合が5〜75重量%及び酸化ジルコニ
ウムの含有割合が5〜29重量%であって、アルミニウ
ム、クロム及びパラジウムからなる群から選ばれた少な
くとも一種類の元素の含有量が0.5〜30重量%であ
り、250℃以下の反応温度で二酸化炭素又は二酸化炭
素を主成分とする酸化炭素ガスの水素化によるメタノー
ル合成に用いるのに適した触媒を得ることを特徴として
いる。
After preparation, the catalyst is prepared in air at 300-600.
It is necessary to bake at a temperature of ° C. to form an oxide. By doing so, a stable catalyst can be obtained. Whether it is not fired or fired at a temperature below 300 ° C.
Alternatively, firing at a temperature exceeding 600 ° C. lowers the performance. From the above, the method for producing a catalyst for methanol synthesis of the present invention includes a basic solution in a solution containing copper, zinc and zirconium, and containing at least one selected from the group consisting of aluminum, chromium and palladium. In addition, copper, zinc and zirconium and aluminum,
After precipitating at least one selected from the group consisting of chromium and palladium,
Calcination at 20 ° C., the content of copper oxide being 20 to 70% by weight,
The content ratio of zinc oxide is 5 to 75% by weight, the content ratio of zirconium oxide is 5 to 29% by weight, and the content of at least one element selected from the group consisting of aluminum, chromium and palladium is 0.1%. 5 to 30% by weight
At a reaction temperature of 250 ° C or less
By hydrogenation of carbon oxide gas containing silicon as the main component
It is characterized by obtaining a catalyst suitable for use in the synthesis of toluene .

【0008】本発明の触媒をメタノール合成反応に用い
るに際して、このまま反応に用いても良いし、触媒を水
素で予め処理して触媒中の酸化銅を還元しても良い。要
は、触媒中の銅が反応中に活性な状態になっていれば良
い。触媒は公知の方法で成型しても良いし、そのまま用
いても良い。触媒の粒子径、形状は反応の方式、反応器
の形状によって任意に選択し得る。
When the catalyst of the present invention is used in a methanol synthesis reaction, the catalyst may be used as it is, or the catalyst may be treated in advance with hydrogen to reduce copper oxide in the catalyst. The point is that the copper in the catalyst only needs to be active during the reaction. The catalyst may be molded by a known method, or may be used as it is. The particle size and shape of the catalyst can be arbitrarily selected depending on the type of reaction and the shape of the reactor.

【0009】[0009]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。なお、CuO、ZnO及びZrO からなる触
媒を共沈法、逐次沈殿法で調製した実験例についても説
明する。例1 硝酸銅三水和物61.2g及び硝酸亜鉛六水和物44.
3g及びオキシ硝酸ジルコニウム26.2gを蒸留水に
溶解して500mlの水溶液を調製しA液とした。ま
た、別に無水炭酸ナトリウム74.2gを蒸留水に溶解
して500mlの水溶液を調製しB液とした。激しく攪
拌した400mlの蒸留水中に、A液とB液をともに3
ml/minの速度で滴下した(この方法を共沈法と呼
ぶ)。得られた沈殿物を蒸留水で洗浄した後、110℃
で乾燥し、400℃にて空気中で2時間焼成した。この
触媒の組成は、CuO43.6wt%、ZnO26.1
wt%、ZrO26.1wt%であった。この触媒3
mlを反応管に充填し、250℃で2時間水素で還元し
た後(還元後の触媒体積2.5ml)、CO25容量
%とH75容量%の混合ガスを触媒層に通して、圧力
=50kg/cmG、原料流量=300ml/mi
n、温度=200℃、250℃の条件で反応を行った。
反応生成ガスをガスクロマトグラフで分析したところ、
CO転化率、メタノール選択率及びメタノール空時収
量は表1に示す通りであった。なお、その他の生成物と
しては、主にCOであり、メタン、ジメチルエーテル、
ギ酸メチルは痕跡量生成したにすぎなかった。
The present invention will be described in more detail with reference to the following examples. A contact made of CuO, ZnO and ZrO 2
Experimental examples in which the medium was prepared by the coprecipitation method and the sequential precipitation method were also explained.
I will tell. Experiment Example 1 Copper nitrate trihydrate 61.2g and zinc nitrate hexahydrate 44.
3 g and 26.2 g of zirconium oxynitrate were dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution A. Separately, 74.2 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B. Solution A and Solution B were mixed in 400 ml of distilled water with vigorous stirring.
The solution was dropped at a rate of ml / min (this method is called a coprecipitation method). After washing the obtained precipitate with distilled water,
And calcined at 400 ° C. in air for 2 hours. The composition of this catalyst was 43.6 wt% CuO, 26.1 ZnO.
wt% and ZrO 2 26.1 wt%. This catalyst 3
After filling the reaction tube with hydrogen at 250 ° C. for 2 hours with hydrogen (reduced catalyst volume 2.5 ml), a mixed gas of 25% by volume of CO 2 and 75% by volume of H 2 was passed through the catalyst layer. Pressure = 50 kg / cm 2 G, raw material flow rate = 300 ml / mi
The reaction was performed under the conditions of n, temperature = 200 ° C., 250 ° C.
When the reaction product gas was analyzed by gas chromatography,
The CO 2 conversion, methanol selectivity and methanol space-time yield were as shown in Table 1. Other products are mainly CO, methane, dimethyl ether,
Only trace amounts of methyl formate were formed.

【0010】[0010]

【表1】 [Table 1]

【0011】比較例1 硝酸銅三水和物48.0g、硝酸亜鉛六水和物34.7
g及び硝酸アルミニウム九水和物69.4gを蒸留水に
溶解して500mlの水溶液を調製しA液とした。ま
た、別に無水炭酸ナトリウム87.9gを蒸留水に溶解
して500mlの水溶液を調製しB液とした。激しく攪
拌した400mlの蒸留水中に、A液とB液をともに3
ml/minの速度で滴下した。得られた沈殿物を蒸留
水で洗浄した後、110℃で乾燥し、400℃にて空気
中で2時間焼成した。この触媒の組成は、CuO43.
6wt%、ZnO26.1wt%、Al26.1
wt%であった。この触媒を用いて、実例1と同様に
反応を行った。反応生成ガスをガスクロマトグラフで分
析したところ、CO転化率、メタノール選択率及びメ
タノール空時収量は表2に示す通りであった。なお、そ
の他の生成物としては、主にCOであり、メタン、ジメ
チルエーテル、ギ酸メチルは痕跡量生成したにすぎなか
った。
Comparative Example 1 Copper nitrate trihydrate 48.0 g, zinc nitrate hexahydrate 34.7
g and 69.4 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution A. Separately, 87.9 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B. Solution A and Solution B were mixed in 400 ml of distilled water with vigorous stirring.
The solution was dropped at a rate of ml / min. The obtained precipitate was washed with distilled water, dried at 110 ° C., and calcined at 400 ° C. in air for 2 hours. The composition of this catalyst is CuO43.
6 wt%, ZnO 26.1 wt%, Al 2 O 3 26.1
wt%. Using this catalyst, reaction was performed in the same manner as Experiment Example 1. When the reaction product gas was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 2. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0012】[0012]

【表2】 [Table 2]

【0013】実例2 硝酸銅三水和物72.5gを蒸留水に溶解して300m
lの水溶液を調製しA液とした。硝酸亜鉛六水和物5
3.8g及びオキシ硝酸ジルコニウム31.8gを蒸留
水に溶解して500mlの水溶液を調製しB液とした。
また、別に無水炭酸ナトリウム53.0gを蒸留水に溶
解して500mlの水溶液を調製しC液とした。激しく
攪拌した400mlの蒸留水中に、はじめにB液とC液
をともに3ml/分の速度で94ml滴下し、亜鉛とジ
ルコニウムの沈殿物を得た(この方法を逐次沈殿法と呼
ぶ)。次に、この沈殿物を含んだまま、A液とC液をと
もに3ml/分の速度で96ml滴下し、銅の沈殿物を
得た。得られた沈殿物を蒸留水で洗浄した後、110℃
で乾燥し、400℃にて空気中で2時間焼成した。この
触媒の組成は、CuO43.6wt%、ZnO26.1
wt%、ZrO26.1wt%であった。この触媒を
用いて、実例1と同様に反応を行った。反応生成ガス
をガスクロマトグラフで分析したところ、CO転化
率、メタノール選択率及びメタノール空時収量は表1に
併記する通りであった。なお、その他の生成物として
は、主にCOであり、メタン、ジメチルエーテル、ギ酸
メチルは痕跡量生成したにすぎなかった。
[0013] was dissolved Experiment Example 2 of copper nitrate trihydrate 72.5g of distilled water 300m
1 aqueous solution was prepared and used as solution A. Zinc nitrate hexahydrate 5
3.8 g and 31.8 g of zirconium oxynitrate were dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B.
Separately, 53.0 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution C. First, 94 ml of both solution B and solution C were dropped at a rate of 3 ml / min into 400 ml of distilled water which was vigorously stirred to obtain a precipitate of zinc and zirconium (this method is referred to as a sequential precipitation method). Next, 96 ml of the solution A and the solution C were added dropwise at a rate of 3 ml / min while containing the precipitate to obtain a copper precipitate. After washing the obtained precipitate with distilled water,
And calcined at 400 ° C. in air for 2 hours. The composition of this catalyst was 43.6 wt% CuO, 26.1 ZnO.
wt% and ZrO 2 26.1 wt%. Using this catalyst, reaction was performed in the same manner as Experiment Example 1. When the reaction product gas was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 1. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0014】実例3 硝酸銅三水和物146.6g及び硝酸亜鉛六水和物7
0.4g及びオキシ硝酸ジルコニウム41.9gを蒸留
水に溶解して11の水溶液を調製しA液とした。また、
無水炭酸ナトリウム116.6gを蒸留水に溶解して1
1の水溶液を調製しB液とした。激しく攪拌した400
mlの蒸留水中に、A液とB液をともに3ml/min
の速度で滴下した。得られた沈殿物を蒸留水で洗浄した
後、110℃で乾燥し、350℃にて空気中で2時間焼
成した。焼成後、触媒を200kg/cmで加圧成型
した。この触媒の組成は、CuO55.6wt%、Zn
O22.2wt%、ZrO22.2wt%であった。
この触媒3mlを反応管に充填し、250℃で2時間水
素で還元した後(還元後の触媒体積2.4ml)、実
例1と同様に反応を行った。反応生成ガスをガスクロマ
トグラフで分析したところ、CO転化率、メタノール
選択率及びメタノール空時収量は表1に併記する通りで
あった。なお、その他の生成物としては、主にCOであ
り、メタン、ジメチルエーテル、ギ酸メチルは痕跡量生
成したにすぎなかった。
[0014] Experimental Example 3 copper nitrate trihydrate 146.6g and zinc nitrate hexahydrate 7
0.4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to prepare 11 aqueous solutions, which were designated as solution A. Also,
116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1
The aqueous solution of No. 1 was prepared and used as solution B. 400 with vigorous stirring
Solution A and Solution B in 3 ml of distilled water
At a speed of. The obtained precipitate was washed with distilled water, dried at 110 ° C., and calcined at 350 ° C. in air for 2 hours. After calcination, the catalyst was molded under pressure at 200 kg / cm 2 . The composition of the catalyst was 55.6 wt% CuO, Zn
O was 22.2 wt% and ZrO 2 was 22.2 wt%.
The catalyst 3ml was filled in the reaction tube, after reduction with 2 hours hydrogen at 250 ° C. (catalyst volume 2.4ml after reduction), reaction was performed in the same manner as Experiment <br/> Example 1. When the reaction product gas was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 1. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0015】比較例2 硝酸銅三水和物61.2g及び硝酸亜鉛六水和物44.
3gを蒸留水に溶解して500mlの水溶液を調製しA
液とした。無水炭酸ナトリウム59.7gを蒸留水に溶
解して500mlの水溶液を調製しB液とした。激しく
攪拌した400mlの蒸留水中に、A液とB液をともに
3ml/分の速度で滴下し、銅と亜鉛の沈殿物を得た。
得られた沈殿物を蒸留水で洗浄し沈殿Cとした。次に、
硝酸ジルコニウム26.2gを蒸留水に溶解して500
mlの水溶液を調製しD液とした。28%アンモニア水
13.1gを500mlに希釈しE液とした。激しく攪
拌した400mlの蒸留水中に、D液とE液をともに3
ml/分の速度で滴下し、ジルコニウムの沈殿物を得
た。得られた沈殿物を蒸留水で洗浄し沈殿Fとした。沈
殿Cと沈殿Fをよく混合した(この方法を混合法と呼
ぶ)。この混合沈殿物を110℃で乾燥し、400℃に
て空気中で2時間焼成した。この触媒の組成は、CuO
43.6wt%、ZnO26.1wt%、ZrO
6.1wt%であった。この触媒を用いて、実例1と
同様に反応を行った。反応生成ガスをガスクロマトグラ
フで分析したところ、CO転化率、メタノール選択率
及びメタノール空時収量は表2に併記する通りであっ
た。なお、その他の生成物としては、主にCOであり、
メタン、ジメチルエーテル、ギ酸メチルは痕跡量生成し
たにすぎなかった。
Comparative Example 2 61.2 g of copper nitrate trihydrate and zinc nitrate hexahydrate
3 g was dissolved in distilled water to prepare a 500 ml aqueous solution.
Liquid. 59.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B. The solution A and the solution B were added dropwise at a rate of 3 ml / min to 400 ml of distilled water which was vigorously stirred to obtain a precipitate of copper and zinc.
The obtained precipitate was washed with distilled water to obtain precipitate C. next,
26.2 g of zirconium nitrate is dissolved in distilled water and 500
An aqueous solution (ml) was prepared and used as solution D. Solution E was prepared by diluting 13.1 g of 28% aqueous ammonia to 500 ml. Solution D and E were mixed in 400 ml of distilled water with vigorous stirring.
It was dropped at a rate of ml / min to obtain a zirconium precipitate. The obtained precipitate was washed with distilled water to obtain precipitate F. The precipitate C and the precipitate F were mixed well (this method is called a mixing method). The mixed precipitate was dried at 110 ° C. and calcined at 400 ° C. in air for 2 hours. The composition of this catalyst is CuO
43.6 wt%, ZnO 26.1 wt%, ZrO 2 2
It was 6.1% by weight. Using this catalyst, reaction was performed in the same manner as Experiment Example 1. When the reaction product gas was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 2. Other products are mainly CO,
Only trace amounts of methane, dimethyl ether and methyl formate were produced.

【0016】比較例3 はじめに、硝酸亜鉛六水和物89.4g及びオキシ硝酸
ジルコニウム53.3gを蒸留水に溶解して500ml
の水溶液を調製しA液とした。無水炭酸ナトリウム5
3.0gを蒸留水に溶解して500mlの水溶液を調製
しB液とした。激しく攪拌した400mlの蒸留水中
に、A液とB液をともに3ml/分の速度で滴下し、亜
鉛とジルコニウムの沈殿物を得た。得られた沈殿物を蒸
留水で洗浄した後、110℃で乾燥し、350℃で焼成
した。この焼成物6gに、硝酸銅三水和物15.2gを
100mlの蒸留水に溶解したものを含浸させ(この方
法を含浸法と呼ぶ)、110℃で乾燥し、400℃にて
空気中で2時間焼成した。この触媒の組成は、CuO4
3.6wt%、ZnO26.1wt%、ZrO26.
1wt%であった。この触媒を用いて、実例1と同様
に反応を行った。反応生成ガスをガスクロマトグラフで
分析したところ、CO転化率、メタノール選択率及び
メタノール空時収量は表2に併記する通りであった。な
お、その他の生成物としては、主にCOであり、メタ
ン、ジメチルエーテル、ギ酸メチルは痕跡量生成したに
すぎなかった。
Comparative Example 3 First, 89.4 g of zinc nitrate hexahydrate and 53.3 g of zirconium oxynitrate were dissolved in distilled water to obtain 500 ml.
An aqueous solution was prepared and used as solution A. Anhydrous sodium carbonate 5
3.0 g was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B. The solution A and the solution B were dripped at a rate of 3 ml / min into 400 ml of distilled water which was vigorously stirred to obtain a precipitate of zinc and zirconium. The obtained precipitate was washed with distilled water, dried at 110 ° C, and calcined at 350 ° C. 6 g of this calcined product is impregnated with 15.2 g of copper nitrate trihydrate dissolved in 100 ml of distilled water (this method is referred to as impregnation method), dried at 110 ° C., and dried at 400 ° C. in air. It was baked for 2 hours. The composition of this catalyst is CuO4
3.6 wt%, ZnO 26.1 wt%, ZrO 2 26.
It was 1 wt%. Using this catalyst, reaction was performed in the same manner as Experiment Example 1. When the reaction product gas was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 2. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0017】実例4 実例3で用いたと同じ触媒3mlを反応管に充填し、
250℃で2時間水素で還元した後(還元後の触媒体積
2.4ml)、CO16.7容量%、CO11.1容
量%及びH72.2容量%の混合ガスを触媒層に通し
て、圧力=50kg/cmG、原料流量=300ml
/min、温度=200℃、250℃の条件で反応を行
った。反応生成ガスをガスクロマトグラフで分析したと
ころ、(CO+CO)転化率、メタノール選択率及び
メタノール空時収量は表3に示す通りであった。なお、
その他の生成物としては、メタン、ジメチルエーテル、
ギ酸メチル、エタノールが痕跡量生成したにすぎなかっ
た。
[0017] filled with the same catalyst 3ml reaction tube as used in Experiment Example 4 Experiment Example 3,
After hydrogen reduction at 250 ° C. for 2 hours (reduced catalyst volume 2.4 ml), a mixed gas of 16.7% by volume of CO 2 , 11.1% by volume of CO, and 72.2% by volume of H 2 was passed through the catalyst layer. Pressure = 50 kg / cm 2 G, raw material flow rate = 300 ml
The reaction was carried out under the following conditions: / min, temperature = 200 ° C., 250 ° C. When the reaction product gas was analyzed by gas chromatography, (CO 2 + CO) conversion, methanol selectivity, and methanol space-time yield were as shown in Table 3. In addition,
Other products include methane, dimethyl ether,
Only trace amounts of methyl formate and ethanol were produced.

【0018】[0018]

【表3】 [Table 3]

【0019】実例5 実例3で用いたと同じ触媒を3mlを反応管に充填
し、250℃で2時間水素で還元した後、CO8.3
容量%、CO22.2容量%及びH69.4容量%の
混合ガスを触媒層に通して、圧力=50kg/cm
G、原料流量=300ml/min、温度=200
℃、250℃の条件で反応を行った。反応生成ガスをガ
スクロマトグラフで分析したところ、(CO+CO)
転化率、メタノール選択率及びメタノール空時収量は表
3に併記する通りであった。なお、その他の生成物とし
ては、メタン、ジメチルエーテル、ギ酸メチル、エタノ
ールが痕跡量生成したにすぎなかった。
[0019] After filling the 3ml the same catalyst as that used in Experimental Example 5 Experimental Example 3 in the reaction tube was reduced by 2 h of hydrogen at 250 ° C., CO 2 8.3
% Of CO, 22.2% by volume of CO, and 69.4% by volume of H 2 were passed through the catalyst layer to obtain a pressure of 50 kg / cm.
2 G, raw material flow rate = 300 ml / min, temperature = 200
The reaction was performed under the conditions of 250C and 250C. When the reaction product gas was analyzed by gas chromatography, (CO 2 + CO)
The conversion, methanol selectivity, and methanol space-time yield were as shown in Table 3. As other products, only trace amounts of methane, dimethyl ether, methyl formate, and ethanol were produced.

【0020】以下は、本発明の好適な実施例の説明であ
る。 実施例 硝酸銅三水和物42.1g、硝酸亜鉛六水和物20.2
g、オキシ硝酸ジルコニウム9.7g及び硝酸アルミニ
ウム九水和物8.0gを蒸留水に溶解して300mlの
水溶液を調製しA液とした。また、無水炭酸ナトリウム
32.9gを蒸留水に溶解して300mlの水溶液を調
製してB液とした。激しく攪拌した蒸留水400ml中
に、A液及びB液をともに3ml/minの速度で滴下
した。得られた沈殿物を蒸留水で洗浄した後、110℃
で乾燥し、350℃にて空気中で2時間焼成した。この
触媒の組成は、CuO55.6wt%、ZnO22.2
wt%、ZrO17.8wt%、Al4.4w
t%であった。この触媒を200kg/cmで加圧成
型した後、粉砕し、60〜80メッシュの粒度にした。
この触媒3mlを反応管に充填し、250℃で2時間水
素還元した後(この時の触媒体積は2.4ml)、CO
25容量%とH275容量%の混合ガスを触媒層に通
して、圧力=50kg/cmG、原料ガス流量=30
0ml/min、温度=200℃、250℃の条件で反
応を行った。このようにして得られた生成物をガスクロ
マトグラフで分析したところ、CO転化率、メタノー
ル選択率及びメタノール空時収量は表4に示す通りであ
った。なお、その他の生成物としては、主にCOであ
り、メタン、ジメチルエーテル、ギ酸メチルは痕跡量生
成したにすぎなかった。
The following is a description of a preferred embodiment of the present invention.
You. Example 1 Copper nitrate trihydrate 42.1 g, zinc nitrate hexahydrate 20.2
g, 9.7 g of zirconium oxynitrate and 8.0 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. Further, 32.9 g of anhydrous sodium carbonate was dissolved in distilled water to prepare 300 ml of an aqueous solution, which was used as solution B. The solution A and the solution B were dripped at a rate of 3 ml / min into 400 ml of vigorously stirred distilled water. After washing the obtained precipitate with distilled water,
And calcined in air at 350 ° C. for 2 hours. The composition of this catalyst was 55.6 wt% CuO, 22.2 ZnO.
wt%, ZrO 2 17.8wt%, Al 2 O 3 4.4w
t%. This catalyst was molded under pressure at 200 kg / cm 2 and then pulverized to a particle size of 60 to 80 mesh.
3 ml of this catalyst was filled in a reaction tube, and hydrogen reduction was performed at 250 ° C. for 2 hours (at this time, the catalyst volume was 2.4 ml).
2 25 volume% and H275 volume% of the mixed gas was passed through the catalyst layer, the pressure = 50 kg / cm 2 G, the raw material gas flow rate = 30
The reaction was performed under the conditions of 0 ml / min, temperature = 200 ° C. and 250 ° C. When the product thus obtained was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity, and methanol space-time yield were as shown in Table 4. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0021】[0021]

【表4】 [Table 4]

【0022】実施例 硝酸銅三水和物43.6g、硝酸亜鉛六水和物21.0
g、オキシ硝酸ジルコニウム11.5g及び硝酸クロム
九水和物2.5gを蒸留水に溶解して300mlの水溶
液を調製しA液とした。また、無水炭酸ナトリウム3
2.1gを蒸留水に溶解して300mlの水溶液を調製
してB液とした。激しく攪拌した蒸留水400ml中
に、A液及びB液をともに3ml/minの速度で滴下
した。得られた沈殿物を蒸留水で洗浄した後、110℃
で乾燥し、350℃にて空気中で2時間焼成した。この
触媒の組成は、CuO55.6wt%、ZnO22.2
wt%、ZrO20.4wt%、Cr1.8w
t%であった。この触媒を200kg/cmで加圧成
型した後、粉砕し、60〜80メッシュの粒度にした。
この触媒を使用して、実施例と同様に反応を行った。
このようにして得られた生成物をガスクロマトグラフで
分析したところ、CO転化率、メタノール選択率及び
メタノール空時収量は表4に併記する通りであった。な
お、その他の生成物としては、主にCOであり、メタ
ン、ジメチルエーテル、ギ酸メチルは痕跡量生成したに
すぎなかった。
Example 2 43.6 g of copper nitrate trihydrate, 21.0 g of zinc nitrate hexahydrate
g, 11.5 g of zirconium oxynitrate and 2.5 g of chromium nitrate nonahydrate were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was used as solution A. Also, anhydrous sodium carbonate 3
A solution B was prepared by dissolving 2.1 g in distilled water to prepare a 300 ml aqueous solution. The solution A and the solution B were dripped at a rate of 3 ml / min into 400 ml of vigorously stirred distilled water. After washing the obtained precipitate with distilled water,
And calcined in air at 350 ° C. for 2 hours. The composition of this catalyst was 55.6 wt% CuO, 22.2 ZnO.
wt%, ZrO 2 20.4 wt%, Cr 2 O 3 1.8 w
t%. This catalyst was molded under pressure at 200 kg / cm 2 and then pulverized to a particle size of 60 to 80 mesh.
Using this catalyst, a reaction was carried out in the same manner as in Example 1 .
When the product thus obtained was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity and methanol space-time yield were as shown in Table 4. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0023】実施例 硝酸銅三水和物40.5g、硝酸亜鉛六水和物21.6
g及びオキシ硝酸ジルコニウム12.9g及び10%硝
酸パラジウム水溶液1.2gを蒸留水に溶解して300
mlの水溶液を調製しA液とした。また、無水炭酸ナト
リウム32.7gを蒸留水に溶解して300mlの水溶
液を調製してB液とした。激しく攪拌した蒸留水400
ml中に、A液及びB液をともに3ml/minの速度
で滴下した。得られた沈殿物を蒸留水で洗浄した後、1
10℃で乾燥し、350℃にて空気中で2時間焼成し
た。この触媒の組成は、CuO50.3wt%、ZnO
22.3wt%、ZrO22.3wt%、PdO5.
1wt%であった。この触媒を200kg/cmで加
圧成型した後、粉砕し、60〜80メッシュの粒度にし
た。この触媒を使用して、実施例と同様に反応を行っ
た。このようにして得られた生成物をガスクロマトグラ
フで分析したところ、CO転化率、メタノール選択率
及びメタノール空時収量は表4に併記する通りであっ
た。なお、その他の生成物としては、主にCOであり、
メタン、ジメチルエーテル、ギ酸メチルは痕跡量生成し
たにすぎなかった。
Example 3 Copper nitrate trihydrate 40.5 g, zinc nitrate hexahydrate 21.6
g and 12.9 g of zirconium oxynitrate and 1.2 g of a 10% aqueous solution of palladium nitrate were dissolved in distilled water to give 300 g.
An aqueous solution (ml) was prepared and used as solution A. In addition, 32.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare 300 ml of an aqueous solution, which was used as solution B. Vigorously stirred distilled water 400
The solution A and the solution B were added dropwise at a rate of 3 ml / min. After washing the obtained precipitate with distilled water, 1
It was dried at 10 ° C and calcined at 350 ° C in air for 2 hours. The composition of this catalyst is 50.3 wt% of CuO, ZnO
22.3 wt%, ZrO 2 22.3 wt%, PdO5.
It was 1 wt%. This catalyst was molded under pressure at 200 kg / cm 2 and then pulverized to a particle size of 60 to 80 mesh. Using this catalyst, a reaction was carried out in the same manner as in Example 1 . When the product thus obtained was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity and methanol space-time yield were as shown in Table 4. Other products are mainly CO,
Only trace amounts of methane, dimethyl ether and methyl formate were produced.

【0024】実施例 硝酸銅三水和物38.8g、硝酸亜鉛六水和物20.7
g、オキシ硝酸ジルコニウム9.9g、硝酸アルミニウ
ム九水和物8.2g及び10%硝酸パラジウム水溶液
1.1gを蒸留水に溶解して300mlの水溶液を調製
しA液とした。また、無水炭酸ナトリウム33.8gを
蒸留水に溶解して300mlの水溶液を調製してB液と
した。激しく攪拌した蒸留水400ml中に、A液及び
B液をともに3ml/minの速度で滴下した。得られ
た沈殿物を蒸留水で洗浄した後、110℃で乾燥し、3
50℃にて空気中で2時間焼成した。この触媒の組成
は、CuO50.3wt%、ZnO22.3wt%、Z
rO17.8wt%、Al4.5wt%、Pd
O5.1wt%であった。この触媒を200kg/cm
で加圧成型した後、粉砕し、60〜80メッシュの粒
度にした。この触媒を使用して、実施例と同様に反応
を行った。このようにして得られた生成物をガスクロマ
トグラフで分析したところ、CO転化率、メタノール
選択率及びメタノール空時収量は表4に併記する通りで
あった。なお、その他の生成物としては、主にCOであ
り、メタン、ジメチルエーテル、ギ酸メチルは痕跡量生
成したにすぎなかった。
Example 4 Copper nitrate trihydrate 38.8 g, zinc nitrate hexahydrate 20.7
g, 9.9 g of zirconium oxynitrate, 8.2 g of aluminum nitrate nonahydrate and 1.1 g of a 10% aqueous solution of palladium nitrate were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was used as solution A. In addition, 33.8 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was used as solution B. The solution A and the solution B were dripped at a rate of 3 ml / min into 400 ml of vigorously stirred distilled water. The obtained precipitate was washed with distilled water, dried at 110 ° C.
Calcination was performed in air at 50 ° C. for 2 hours. The composition of this catalyst was 50.3 wt% of CuO, 22.3 wt% of ZnO, Z
rO 2 17.8 wt%, Al 2 O 3 4.5 wt%, Pd
O was 5.1 wt%. 200 kg / cm
After being press-molded in 2 , it was pulverized to a particle size of 60 to 80 mesh. Using this catalyst, a reaction was carried out in the same manner as in Example 1 . When the product thus obtained was analyzed by gas chromatography, the CO 2 conversion, methanol selectivity and methanol space-time yield were as shown in Table 4. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0025】実施例 触媒の水素還元温度を300℃とした以外は実施例
同様にして反応を行ったところ、CO転化率、メタノ
ール選択率及びメタノール空時収量は表4に併記する通
りであった。なお、その他の生成物としては、主にCO
であり、メタン、ジメチルエーテル、ギ酸メチルは痕跡
量生成したにすぎなかった。
Example 5 A reaction was carried out in the same manner as in Example 4 except that the hydrogen reduction temperature of the catalyst was changed to 300 ° C. The conversion of CO 2 , the selectivity of methanol and the space-time yield of methanol are also shown in Table 4. It was right. The other products are mainly CO 2
And only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0026】実施例 実施例で用いたと同じ触媒3mlを反応管に充填し、
250℃で2時間水素還元した後、CO16.7容量
%、CO11.1容量%及びH72.2容量%の混合
ガスを触媒層に通して、圧力=50kg/cmG、原
料ガス流量=300ml/min、温度=200℃、2
50℃の条件で反応を行った。このようにして得られた
生成物をガスクロマトグラフで分析したところ、(CO
+CO)転化率、メタノール選択率及びメタノール空
時収量は表5に示す通りであった。なお、その他の生成
物としては、メタン、ジメチルエーテル、ギ酸メチル、
エタノールが痕跡量生成したにすぎなかった。
Example 6 A reaction tube was charged with 3 ml of the same catalyst as used in Example 1 ,
After hydrogen reduction at 250 ° C. for 2 hours, a mixed gas of 16.7% by volume of CO 2 , 11.1% by volume of CO, and 72.2% by volume of H 2 was passed through the catalyst layer, and the pressure = 50 kg / cm 2 G, raw material Gas flow rate = 300 ml / min, temperature = 200 ° C., 2
The reaction was carried out at 50 ° C. When the product thus obtained was analyzed by gas chromatography, (CO 2
2 + CO) conversion, methanol selectivity, and methanol space-time yield were as shown in Table 5. In addition, as other products, methane, dimethyl ether, methyl formate,
Only traces of ethanol were produced.

【0027】[0027]

【表5】 [Table 5]

【0028】実施例 実施例で用いたと同じ触媒3mlを反応管に充填し、
250℃で2時間水素還元した後、CO4.2容量
%、CO27.8容量%及びH68.0容量%の混合
ガスを触媒層に通して、圧力=50kg/cmG、原
料ガス流量=300ml/min、温度=200℃、2
50℃の条件で反応を行った。このようにして得られた
生成物をガスクロマトグラフで分析したところ、(CO
+CO)転化率、メタノール選択率及びメタノール空
時収量は表5に併記する通りであった。なお、その他の
生成物としては、メタン、ジメチルエーテル、ギ酸メチ
ル、エタノールが痕跡量生成したにすぎなかった。
Example 7 A reaction tube was filled with 3 ml of the same catalyst as used in Example 1 ,
After hydrogen reduction at 250 ° C. for 2 hours, a mixed gas of 4.2% by volume of CO 2 , 27.8% by volume of CO, and 68.0% by volume of H 2 was passed through the catalyst layer, and pressure = 50 kg / cm 2 G, raw material Gas flow rate = 300 ml / min, temperature = 200 ° C., 2
The reaction was carried out at 50 ° C. When the product thus obtained was analyzed by gas chromatography, (CO 2
2 + CO) conversion, methanol selectivity and methanol space-time yield were as shown in Table 5. As other products, only trace amounts of methane, dimethyl ether, methyl formate, and ethanol were produced.

【0029】[0029]

【発明の効果】以上説明したように、本発明の触媒を使
用すれば、250℃以下の比較的低い温度においても酸
化炭素を水素と反応させて、メタノールを高い速度で合
成することができる。したがって、二酸化炭素又は二酸
化炭素を主成分とする酸化炭素ガスを触媒上で水素と反
応させてメタノールを合成する場合でも、高いメタノー
ル合成性能を得ることができる。
As described above, when the catalyst of the present invention is used, carbon oxide can be reacted with hydrogen even at a relatively low temperature of 250 ° C. or less, and methanol can be synthesized at a high rate. Therefore, carbon dioxide or diacid
Carbon oxide gas containing carbonized carbon as the main component reacts with hydrogen on the catalyst.
High methanol, even when synthesizing methanol
The performance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 999999999 株式会社神戸製鋼所 京都府京都市中京区西ノ京桑原町1番地 (73)特許権者 000000974 川崎重工業株式会社 兵庫県神戸市中央区東川崎町3丁目1番 1号 (73)特許権者 000005887 三井化学株式会社 東京都千代田区霞が関三丁目2番5号 (73)特許権者 999999999 大阪瓦斯株式会社 東京都千代田区大手町2丁目2番1号 (72)発明者 斉藤 昌弘 茨城県つくば市小野川16−3 資源環境 技術総合研究所内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 (72)発明者 武内 正己 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 (72)発明者 河井 基益 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 第7東洋 海事ビル8F 財団法人 地球環境産業 技術研究機構内 合議体 審判長 沼沢 幸雄 審判官 能美 知康 審判官 新居田 知生 (56)参考文献 特開 昭60−106534(JP,A) 特開 昭60−209255(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (73) Patent holder 999999999 Kobe Steel, Ltd. 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto-shi, Kyoto (73) Patent holder 000000974 Kawasaki Heavy Industries, Ltd. 3-chome, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo No. 1 No. 1 (73) Patent holder 000005887 Mitsui Chemicals, Inc. 3-5-2 Kasumigaseki, Chiyoda-ku, Tokyo (73) Patent holder 999999999 Osaka Gas Co., Ltd. 2-2-1 Otemachi, Chiyoda-ku, Tokyo ( 72) Inventor Masahiro Saito 16-3 Onogawa, Tsukuba, Ibaraki Pref., National Institute for Natural Resources and Environment (72) Inventor Yuki Kanai 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Maritime Building 8F Global Environmental Industry Technology Within the Research Organization (72) Inventor Masaki Takeuchi 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Foundation Inside the Global Environmental Technology Research Institute (72) Keiko Moriya 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Inside the Global Environmental Technology Institute (72) Inventor Daiki Watanabe Tokyo 2-8-11 Nishi-Shimbashi, Minato-ku 7th Oriental Maritime Building 8F Inside the Research Institute of Innovative Technology for the Earth (72) Inventor Motoi Kawai 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Foundation (72) Inventor Terumitsu Kadomoto 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Judge, Yukio Numazawa, Judge, Councilor, Global Environmental Industry Research Institute Tomoyasu Nomi, Judge Tomoo Niida (56) References JP-A-60-106534 (JP, A) JP-A-60-209255 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化銅、酸化亜鉛及び酸化ジルコニウム
を含有し、さらに、アルミニウム、クロム及びパラジウ
ムからなる群から選ばれた少なくとも一種類の元素を含
有する触媒であって、酸化銅の含有割合が20〜70重
量%、酸化亜鉛の含有割合が5〜75重量%及び酸化ジ
ルコニウムの含有割合が5〜29重量%であり、アルミ
ニウム、クロム及びパラジウムからなる群から選ばれた
少なくとも一種類の元素の含有量が0.5〜30重量%
であり、250℃以下の反応温度で二酸化炭素又は二酸
化炭素を主成分とする酸化炭素ガスの水素化によるメタ
ノール合成に用いるのに適したことを特徴とするメタノ
ール合成用触媒。
1. A catalyst containing copper oxide, zinc oxide and zirconium oxide and further containing at least one element selected from the group consisting of aluminum, chromium and palladium, wherein the content of copper oxide is 20 to 70% by weight, a content of zinc oxide of 5 to 75% by weight, a content of zirconium oxide of 5 to 29% by weight, and at least one element selected from the group consisting of aluminum, chromium and palladium. Content is 0.5 to 30% by weight
Der Ri, 250 ° C. carbon dioxide or diacid in the following reaction temperature
By hydrogenation of carbon oxide gas containing carbon fluoride as a main component
A catalyst for methanol synthesis characterized by being suitable for use in the synthesis of phenol.
【請求項2】 銅、亜鉛及びジルコニウムを含み、か
つ、アルミニウム、クロム及びパラジウムからなる群か
ら選ばれた少なくとも一種類を含む溶液に塩基性溶液を
加えて銅、亜鉛及びジルコニウム並びにアルミニウム、
クロム及びパラジウムからなる群から選ばれた少なくと
も一種類を沈殿させた後、この沈殿物を300〜600
℃で焼成して、酸化銅の含有割合が20〜70重量%、
酸化亜鉛の含有割合が5〜75重量%及び酸化ジルコニ
ウムの含有割合が5〜29重量%であって、アルミニウ
ム、クロム及びパラジウムからなる群から選ばれた少な
くとも一種類の元素の含有量が0.5〜30重量%であ
り、250℃以下の反応温度で二酸化炭素又は二酸化炭
素を主成分とする酸化炭素ガスの水素化によるメタノー
ル合成に用いるのに適した触媒を得ることを特徴とする
メタノール合成用触媒の製造方法。
2. A solution containing copper, zinc and zirconium and containing at least one selected from the group consisting of aluminum, chromium and palladium, and adding a basic solution to the solution to form copper, zinc and zirconium and aluminum;
After precipitating at least one selected from the group consisting of chromium and palladium,
Calcination at 20 ° C., the content of copper oxide being 20 to 70% by weight,
The content ratio of zinc oxide is 5 to 75% by weight, the content ratio of zirconium oxide is 5 to 29% by weight, and the content of at least one element selected from the group consisting of aluminum, chromium and palladium is 0.1%. 5 to 30% by weight
At a reaction temperature of 250 ° C or less
By hydrogenation of carbon oxide gas containing silicon as the main component
A method for producing a catalyst for methanol synthesis, comprising obtaining a catalyst suitable for use in methanol synthesis.
JP4248613A 1992-08-25 1992-08-25 Catalyst for methanol synthesis and method for producing the same Expired - Lifetime JP2976716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248613A JP2976716B2 (en) 1992-08-25 1992-08-25 Catalyst for methanol synthesis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248613A JP2976716B2 (en) 1992-08-25 1992-08-25 Catalyst for methanol synthesis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0739755A JPH0739755A (en) 1995-02-10
JP2976716B2 true JP2976716B2 (en) 1999-11-10

Family

ID=17180725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248613A Expired - Lifetime JP2976716B2 (en) 1992-08-25 1992-08-25 Catalyst for methanol synthesis and method for producing the same

Country Status (1)

Country Link
JP (1) JP2976716B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824455B2 (en) 2003-07-10 2010-11-02 General Motors Corporation High activity water gas shift catalysts based on platinum group metals and cerium-containing oxides
US7238333B2 (en) * 2004-03-18 2007-07-03 General Motors Corporation High activity water gas shift catalysts with no methane formation
EP2043778A1 (en) * 2006-07-17 2009-04-08 Basf Se Process for hydrogenating unsaturated hydrocarbons in the presence of catalysts containing copper and zinc
KR20110119804A (en) 2009-02-23 2011-11-02 미쓰이 가가쿠 가부시키가이샤 Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
WO2011048976A1 (en) 2009-10-23 2011-04-28 三菱瓦斯化学株式会社 Methanol synthesis catalyst
WO2012067222A1 (en) 2010-11-19 2012-05-24 三井化学株式会社 Methanol production process
JP5628016B2 (en) * 2010-12-08 2014-11-19 三井化学株式会社 Method for producing copper catalyst and method for aging copper catalyst precursor
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
WO2013183577A1 (en) 2012-06-04 2013-12-12 三井化学株式会社 Catalyst for methanol production, method for producing same, and method for producing methanol
RU2020123775A (en) * 2017-12-20 2022-01-20 Басф Се CATALYTIC SYSTEM AND METHOD FOR PRODUCING DIMETHYL ETHER
US20220111354A1 (en) 2018-11-29 2022-04-14 Jawaharlal Nehru Centre For Advanced Scientific Research Catalyst and process of preparing the same
CN113893843A (en) * 2021-11-04 2022-01-07 中国船舶重工集团公司第七一九研究所 For CO2Zn for preparing methanol by catalytic hydrogenation1Zr2O3Process for preparing catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106534A (en) * 1983-11-14 1985-06-12 Mitsubishi Gas Chem Co Inc Fluidized catalyst for methanol synthesis
FR2560531B1 (en) * 1984-03-02 1988-04-08 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC, ALUMINUM AND AT LEAST ONE GROUP METAL FORMED BY RARE EARTHS AND ZIRCONIUM AND USE OF THE CATALYSTS OBTAINED FOR REACTIONS USING SYNTHESIS GAS

Also Published As

Publication number Publication date
JPH0739755A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
CA1228345A (en) Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst
EP0234745B1 (en) Catalysts
KR0169188B1 (en) Method of preparing hydrocarbon
JP2976716B2 (en) Catalyst for methanol synthesis and method for producing the same
US4149009A (en) Process for producing methyl formate
US5508246A (en) Catalysts for iso-alcohol synthesis from CO+H2
EP0548679A1 (en) Process for the preparation of synthetic gases
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
JP3163374B2 (en) Catalyst for methanol synthesis
JP3530937B2 (en) Catalyst for methanol synthesis
CN113145127B (en) Cu catalyst for preparing hydrogen by reforming methanol and steam, and preparation method and application thereof
JPH05221602A (en) Production of synthesis gas
JP3837520B2 (en) Catalyst for CO shift reaction
JP2713684B2 (en) Methanol synthesis method
JPS647974B2 (en)
JP2813770B2 (en) Ethanol production method
JPH039772B2 (en)
JP3089677B2 (en) How to reduce carbon dioxide with propane
JP2006239557A (en) Catalyst for water gas shift reaction
JP3376380B2 (en) Catalyst for methanol synthesis
CN116920855B (en) Heterogeneous N-alkylation catalyst and preparation method and application thereof
JP2000288395A (en) Catalyst for dehydrogenation of cyclohexanol
JP2802415B2 (en) Catalyst for methanol synthesis
CN114797903B (en) Catalyst for preparing low-carbon alcohol from synthesis gas and preparation method and application thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term