JP2963455B1 - Method for forming boron nitride film - Google Patents

Method for forming boron nitride film

Info

Publication number
JP2963455B1
JP2963455B1 JP10243323A JP24332398A JP2963455B1 JP 2963455 B1 JP2963455 B1 JP 2963455B1 JP 10243323 A JP10243323 A JP 10243323A JP 24332398 A JP24332398 A JP 24332398A JP 2963455 B1 JP2963455 B1 JP 2963455B1
Authority
JP
Japan
Prior art keywords
film
cbn
forming
substrate
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10243323A
Other languages
Japanese (ja)
Other versions
JP2000073161A (en
Inventor
正男 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Priority to JP10243323A priority Critical patent/JP2963455B1/en
Application granted granted Critical
Publication of JP2963455B1 publication Critical patent/JP2963455B1/en
Publication of JP2000073161A publication Critical patent/JP2000073161A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【要約】 【課題】 超硬合金や高速度鋼の基板上に密着力にすぐ
れ、かつ耐摩耗性、強度的にすぐれた長寿命の立方晶窒
化ホウ素膜を形成する成膜法を提供する。 【解決手段】 ボンバード処理を施した基板1上にTi
N膜2を形成したのち、Ti膜、B膜、さらに段階的に
組成比率を変えたBN膜からなる3の緩衝膜Iを被覆
し、ついでその上にcBN膜4を形成することにより、
基板1との密着性にすぐれ、長寿命の立方晶窒化ホウ素
膜を得る。
An object of the present invention is to provide a film forming method for forming a long-life cubic boron nitride film having excellent adhesion, excellent wear resistance and strength on a substrate of cemented carbide or high-speed steel. SOLUTION: Ti is provided on a substrate 1 subjected to a bombardment process.
After the N film 2 is formed, a Ti film, a B film, and a third buffer film I composed of a BN film having a stepwise changed composition ratio are covered, and then a cBN film 4 is formed thereon.
A cubic boron nitride film having excellent adhesion to the substrate 1 and a long life is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、立方晶窒化ホウ
素膜の成膜方法に関し、詳しくは高硬度、低摩擦係数、
耐熱性等の物性が他の物質よりすぐれている立方晶窒化
ホウ素膜を切削工具や耐摩耗工具などの工具部材表面に
付与して、これら部材の長寿命化を達成することを目的
として、立方晶窒化ホウ素膜を再現性よく成膜する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a cubic boron nitride film, and more particularly to a method for forming a cubic boron nitride film having a high hardness, a low friction coefficient,
A cubic boron nitride film, which has better properties such as heat resistance than other materials, is applied to the surface of tool members such as cutting tools and wear-resistant tools to achieve a longer life of these members. The present invention relates to a method for forming a crystalline boron nitride film with good reproducibility.

【0002】[0002]

【従来の技術】立方晶窒化ホウ素(cBN)は、ダイヤ
モンドに次ぐ硬度を持ち、しかも熱的および化学的安定
性にすぐれており、鉄系材料との反応性がダイヤモンド
に比べて低いなどの特性を有することから、超高圧、高
温下で焼結して得られたcBN焼結体はワイヤ放電加工
機等で適当な大きさに切断し、超硬チップ、エンドミル
等に蝋付けして切削用工具としたり、耐摩耗性用品の材
料として用いられている。
2. Description of the Related Art Cubic boron nitride (cBN) has the second highest hardness next to diamond, has excellent thermal and chemical stability, and has lower reactivity with iron-based materials than diamond. Therefore, the cBN sintered body obtained by sintering under ultra high pressure and high temperature is cut into a suitable size by a wire electric discharge machine, brazed to a carbide tip, end mill, etc. for cutting. It is used as a tool and as a material for wear-resistant articles.

【0003】しかしながら、cBN成形体の製造には上
述のように、超高圧、高温による合成を必要とすること
から、複雑な形状のものが得難く、また量産性が低く、
かつ製造コストが非常に高くつくなどから、この成形体
の使用範囲は著しく限定されている。また、処理工程の
煩雑さと処理温度が高温であるため、量産工具であるハ
イス材小型工具への適応が行えないこともあって大幅な
普及には至っていない。
However, as described above, the production of a cBN compact requires synthesis at an ultra-high pressure and high temperature, so that it is difficult to obtain a complex-shaped one, and the mass productivity is low.
In addition, the production range is extremely limited because of the high production cost and the like. Further, since the processing step is complicated and the processing temperature is high, it has not been widely used because it cannot be applied to high-speed steel small tools which are mass-produced tools.

【0004】そこで、上記したcBNが持っている特性
を活かすべく、基材表面にcBNからなる被覆層を形成
することにより、低コストで基材の耐摩耗性、耐食性を
向上させた成形体を得る試みが広く行われている。この
ようなcBNによる被覆はCVD法やPVD法などによ
り、cBN膜を基材表面に析出させることが試みられ、
cBNの気相合成による被覆が工業的に可能になってき
ている。
[0004] Therefore, in order to take advantage of the above-mentioned properties of cBN, a molded body having a low-cost and improved abrasion resistance and corrosion resistance of the substrate is formed by forming a coating layer of cBN on the surface of the substrate. Attempts to gain are widely made. Such cBN coating is attempted to deposit a cBN film on the surface of a base material by a CVD method, a PVD method, or the like.
Coating by vapor phase synthesis of cBN has become industrially possible.

【0005】[0005]

【発明が解決しようとする課題】上記の気相合成法によ
って得たcBN皮膜は、その製法の如何に係わらず大き
な内部応力を持っているため成膜後に剥離を起こしやす
く、cBN膜のみでは0.1μm以上になると剥離して
しまう。このようなcBN膜の剥離を防止するために、
例えば特開平8−60339号公報では基材界面に中間
層としてTi膜を形成し、その後に窒素組成を変化させ
ながらホウ素のイオンプレーティングを行って、ホウ素
と窒素の傾斜層を形成させ、この傾斜層を介してcBN
層を形成することで0.5μm程度のcBN膜を得る方
法が提案されている。
The cBN film obtained by the above-mentioned vapor phase synthesis method has a large internal stress irrespective of the production method, so that it tends to peel off after the film formation. If it exceeds 1 μm, it will peel off. In order to prevent such cBN film peeling,
For example, in Japanese Patent Application Laid-Open No. H8-60339, a Ti film is formed as an intermediate layer at the interface of the base material, and thereafter, boron ion plating is performed while changing the nitrogen composition to form a gradient layer of boron and nitrogen. CBN via graded layer
A method of obtaining a cBN film of about 0.5 μm by forming a layer has been proposed.

【0006】しかし、このような成膜方法によるcBN
膜では、切削テストで剥離が生じることから実用的な密
着強度を得ることは困難である。
However, cBN by such a film forming method is used.
With a film, it is difficult to obtain a practical adhesion strength because peeling occurs in a cutting test.

【0007】基材に対するcBN膜の付着力向上を図る
ための対策として、上記した特開平8−60339号公
報では、傾斜層を介して形成したcBN層にホウ素イオ
ンを注入したのち、800℃前後でアニーリングを施す
方法が開示され、また、特開平9−95774号公報に
おいては、基体上に形成したホウ素過剰の窒化ホウ素膜
を窒素または不活性ガス雰囲気下で200〜1000℃
でアニーリングする方法が、特開平8−165558号
公報では基材表面に窒化チタンと炭化ホウ素の中間層を
形成する方法が提案されている。さらに、特開平10−
18025号公報には、基材上に設けた窒化チタン膜か
らなる中間層上に、イオン注入によってホウ素を蒸着す
ると同時に窒素ガスと不活性ガスを注入して窒化チタン
と窒化ホウ素のミキシング層を形成する方法が開示され
ている。
As a countermeasure for improving the adhesion of the cBN film to the base material, Japanese Patent Application Laid-Open No. H8-60339 described above discloses a method in which boron ions are implanted into a cBN layer formed via an inclined layer, and then the temperature is increased to about 800 ° C. Japanese Patent Application Laid-Open No. 9-95774 discloses a method of annealing a boron-excess boron nitride film formed on a substrate in a nitrogen or inert gas atmosphere at 200 to 1000 ° C.
Japanese Patent Application Laid-Open No. 8-165558 proposes a method of forming an intermediate layer of titanium nitride and boron carbide on the surface of a substrate. Further, Japanese Patent Application Laid-Open
Japanese Patent No. 18025 discloses that a mixing layer of titanium nitride and boron nitride is formed by simultaneously depositing boron by ion implantation and injecting a nitrogen gas and an inert gas onto an intermediate layer made of a titanium nitride film provided on a base material. A method for doing so is disclosed.

【0008】これらの上記した方法によって基材上に成
膜したcBN膜のなかには切削テストにおいて異常のな
いものも見られるが、殆どのものが成膜処理において、
イオン源の近傍における温度上昇、基板加熱、アニール
処理など温度条件が500℃を超え、高速度鋼の硬度が
維持できない方法であって、従って上記の方法は何れも
主として超硬材を対象基材とするものである。
[0008] Among the cBN films formed on the base material by the above-mentioned methods, there are some which have no abnormality in the cutting test.
The temperature conditions, such as temperature rise near the ion source, substrate heating, and annealing treatment, exceed 500 ° C., and the hardness of high-speed steel cannot be maintained. It is assumed that.

【0009】cBN膜は、その膜厚が0.8〜1.0μ
mになると、cBN構造が変化する傾向がある。従っ
て、cBN膜が1.0μm以上の厚膜の場合には、cB
N膜の特性が劣化する恐れがある。また、cBN膜は、
cBN微結晶の集合体であって結晶粒界に粒界不純物を
含んでいる場合があり、この粒界不純物が耐候性に弱い
とされている。このため、上記したような方法による最
表面にcBN膜が析出した被覆体にあっては空気中の湿
度等の影響によって最表面のcBN膜が徐々に変質、体
積膨張して剥離するという問題がある。
The cBN film has a thickness of 0.8 to 1.0 μm.
At m, the cBN structure tends to change. Therefore, when the cBN film is a thick film of 1.0 μm or more, cB
The characteristics of the N film may be degraded. Also, the cBN film is
It is an aggregate of cBN microcrystals and may contain grain boundary impurities at crystal grain boundaries, and these grain boundary impurities are said to be weak in weather resistance. For this reason, in the case where the cBN film is deposited on the outermost surface by the method described above, there is a problem that the cBN film on the outermost surface is gradually deteriorated due to the influence of humidity in the air, the volume is expanded, and the cBN film is peeled off. is there.

【0010】上記に鑑みて、この発明は基板へのcBN
膜の成膜に当たって、cBN膜の基板界面との密着性の
向上および耐候性の改良を図るべく検討した結果、Ti
N膜を介在させ、さらに上述した従来公知の傾斜組成層
やミキシング層に変えて成膜条件を数段階に変えた段階
的BN成膜による積層構造の成膜法とすることで、汎用
工具材料である高速度鋼にも対応することのできる成膜
法を提供するものである。
In view of the above, the present invention provides a method for cBN on a substrate.
In forming the film, as a result of studying to improve the adhesion of the cBN film to the substrate interface and to improve the weather resistance,
A general-purpose tool material can be obtained by interposing an N film and further changing the film formation conditions to several stages by changing the film formation conditions to several stages in place of the conventionally known gradient composition layer or mixing layer. It is intended to provide a film forming method capable of coping with high-speed steel.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
a:基板のボンバード処理を行う工程と、b:ボンバー
ド処理した基板界面にTi膜および/またはTiN膜を
形成する工程と、c:上記Ti膜および/またはTiN
膜上にTi膜、B膜さらに段階的に組成比率を変えたB
N膜からなる緩衝膜Iを形成する工程と、d:上記緩衝
膜I上にcBN膜を形成する工程と、からなることを特
徴とする窒化ホウ素膜の成膜方法である。
According to the first aspect of the present invention,
a: a step of bombarding the substrate; b: a step of forming a Ti film and / or a TiN film on the interface of the bombarded substrate; c: the Ti film and / or TiN
Ti film, B film on the film and B with composition ratio changed stepwise
A method for forming a boron nitride film, comprising: a step of forming a buffer film I made of an N film; and d: a step of forming a cBN film on the buffer film I.

【0012】請求項2記載の発明は、a:基板のボンバ
ード処理を行う工程と、b:ボンバード処理した基板界
面にTi膜および/またはTiN膜を形成する工程と、
c:上記Ti膜および/またはTiN膜上にTi膜、B
膜さらに段階的に組成比率を変えたBN膜からなる緩衝
膜Iを形成する工程と、d:上記緩衝膜I上にcBN膜
を形成する工程と、を複数回繰り返してcBNの多層膜
を形成するに際し、この繰り返し工程におけるcBN膜
上へのTiN膜の形成に当たって、B膜、Ti膜からな
る緩衝膜IIの形成工程を介在させることを特徴とする
窒化ホウ素多層膜の成膜方法である。
According to a second aspect of the present invention, a: a step of performing a bombarding process on the substrate; b: a step of forming a Ti film and / or a TiN film on the interface of the substrate subjected to the bombarding process;
c: Ti film, B on the Ti film and / or TiN film
A step of forming a buffer film I made of a BN film having a composition ratio changed stepwise and a step of forming a cBN film on the buffer film I are repeated a plurality of times to form a multilayer film of cBN. In this case, a method of forming a boron nitride multilayer film is characterized in that a step of forming a buffer film II composed of a B film and a Ti film is interposed in forming a TiN film on a cBN film in this repeated step.

【0013】請求項3記載の発明は、上記請求項2記載
の成膜方法において、最表面をcBN膜に代えてTiN
膜とすることを特徴とする。また、請求項4記載の発明
は、上記請求項1乃至3記載の成膜方法のいずれかにお
いて、TiN膜が3層以上の奇数の多層構成からなるこ
とを特徴とするものである。
According to a third aspect of the present invention, in the film forming method according to the second aspect, the outermost surface is replaced with TiN instead of a cBN film.
It is characterized in that it is a film. According to a fourth aspect of the present invention, in any one of the film forming methods of the first to third aspects, the TiN film has an odd multilayer structure of three or more layers.

【0014】上記の請求項1の発明は、基板に窒化ホウ
素膜を成膜するに当たって、まずボンバード処理した基
板にTi膜および/またはTiN膜を形成し、次いでT
i膜、B膜、さらに段階的に組成比率を変えたBN膜か
らなる緩衝膜Iを形成してから、その上にcBN膜を形
成するものであり、TiN膜で基板との密着性をはか
り、またTi膜、B膜、さらに段階的に組成比率を変え
たBN膜からなる緩衝膜Iの形成は、TiN膜に直接c
BN膜を形成した場合に、大気中で両者の界面で剥離が
発生しやすいという現象を防止するものであり、さら
に、この緩衝膜IとしてTi膜、B膜についで段階的に
組成比率を変えたBN膜を形成することによって、cB
N膜が形成される界面のBN膜のB/N比を1に近い組
成とし、cBN膜とのより高い実用的な密着力を得るこ
とができるのである。
According to the first aspect of the present invention, in forming a boron nitride film on a substrate, first, a Ti film and / or a TiN film is formed on a bombarded substrate, and then a T film is formed.
A buffer film I composed of an i film, a B film, and a BN film having a composition ratio changed stepwise is formed, and then a cBN film is formed thereon. The TiN film is used to measure the adhesion to the substrate. In addition, the formation of the buffer film I composed of a Ti film, a B film, and a BN film in which the composition ratio is changed stepwise is performed by directly forming the buffer film I on the TiN film.
When a BN film is formed, it is intended to prevent a phenomenon that peeling is likely to occur at the interface between the two in the atmosphere. Further, the composition ratio is changed stepwise after the Ti film and the B film as the buffer film I. Forming a BN film, the cB
By setting the B / N ratio of the BN film at the interface where the N film is formed to a composition close to 1, it is possible to obtain higher practical adhesion to the cBN film.

【0015】請求項2の発明は、請求項1の成膜方法を
繰り返してcBNの多層膜を形成するに際して、cBN
膜とTiN膜との間にB膜、Ti膜からなる緩衝膜II
を介在させることによってcBN膜とTiN膜との密着
性を改善し、cBN膜の多層構造を可能としたものであ
る。
According to a second aspect of the present invention, there is provided a method of forming a cBN multilayer film by repeating the film forming method of the first aspect.
Buffer film II consisting of B film and Ti film between film and TiN film
This improves the adhesion between the cBN film and the TiN film, thereby enabling a multilayer structure of the cBN film.

【0016】これは、cBN膜は0.8〜1.0μm程
度の膜厚になると、cBN構造とは異なる構造の薄膜と
なる傾向がみられる。このため、cBN構造を維持して
実用的に応用可能なcBN膜を得ようとすると、その膜
厚は0.8μm程度までとすることが望まれる。従って
この発明では膜厚0.5〜2.0μmを持つTiN/B
Nを基本単位とした多層積層構造とすることで0.5〜
20μmの多層膜を得ることができる。
This is because when the cBN film has a thickness of about 0.8 to 1.0 μm, it tends to become a thin film having a structure different from the cBN structure. Therefore, in order to obtain a practically applicable cBN film while maintaining the cBN structure, it is desired that the film thickness be up to about 0.8 μm. Therefore, in the present invention, TiN / B having a thickness of 0.5 to 2.0 μm is used.
By using a multilayer laminate structure with N as a basic unit, 0.5 to
A multilayer film of 20 μm can be obtained.

【0017】請求項3の発明は、請求項2の発明におい
て得られる窒化ホウ素膜がその最表面層がcBN膜とな
っていて、上述したように耐候性劣化によって剥離する
おそれがあるため、cBN膜をTiN膜で覆ってcBN
膜が直接大気に曝されることを防止することで耐候性を
改善するものである。
According to a third aspect of the present invention, the boron nitride film obtained in the second aspect of the present invention has a cBN film as the outermost surface layer, and as described above, there is a possibility that the boron nitride film is peeled off due to deterioration of weather resistance. The film is covered with TiN film and cBN
It is intended to improve the weather resistance by preventing the film from being directly exposed to the atmosphere.

【0018】請求項4の発明は、請求項1〜3の発明に
おいて形成するTiN膜を3層またはそれ以上の奇数の
結晶構造の異なる多層膜構成とすることで、結晶粒によ
る表面荒れがなくなり、膜中のピンホールを埋める効果
を果たすことができる。
According to a fourth aspect of the present invention, the TiN film formed in the first to third aspects of the present invention has a multilayer structure having three or more odd-numbered crystal structures different from each other, thereby eliminating surface roughness due to crystal grains. The effect of filling the pinhole in the film can be achieved.

【0019】[0019]

【発明の実施の形態】以下、この発明の成膜方法につい
て説明する。この発明の方法はアーク放電型イオンプレ
ーティング法、反応性イオンプレーティング法、磁界励
起型イオンプレーティング法などの各種のイオンプレー
ティング法によることが可能であるが、なかでも基板ボ
ンバードから最終の皮膜形成工程までを一つの装置で実
施することのできる磁界励起型イオンプレーティング法
が特に好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a film forming method according to the present invention will be described. The method of the present invention can be performed by various ion plating methods such as an arc discharge type ion plating method, a reactive ion plating method, and a magnetic field excitation type ion plating method. Particularly preferred is a magnetic field excitation type ion plating method in which the steps up to the film formation step can be performed by one apparatus.

【0020】そのような磁界励起型イオンプレーティン
グ方法に用いる装置の一例は図5に示すようなものであ
り、真空槽21内の基板ホルダー32に基板1が取り付
けられ、この基板ホルダー32のやや下方にエッチング
防止板33が設けられている。真空槽21内の下方の蒸
発源22には、蒸発材料23を入れた坩堝24と蒸発材
料23を加熱して蒸発させる電子銃25を備えている。
FIG. 5 shows an example of an apparatus used in such a magnetic field excitation type ion plating method. The substrate 1 is mounted on a substrate holder 32 in a vacuum chamber 21. An etching prevention plate 33 is provided below. The lower evaporation source 22 in the vacuum chamber 21 is provided with a crucible 24 containing an evaporation material 23 and an electron gun 25 for heating and evaporating the evaporation material 23.

【0021】上記の基板1の下方寄りには熱電子放出用
カソード41と、これと対向するアノード43が設けら
れ、その同一水平面内の位置に平行磁界発生用マグネッ
トケース46a、46bに収容した一対の磁石45a、
45bが配置されており、上記マグネットケース46
a、46bの背面には基板1付近で磁束密度均一分布を
大とするための逆L字型のヨーク47a、47bが設置
されている。また、48は鉄系材料よりなるメッシュ板
である。
A cathode 41 for emitting thermoelectrons and an anode 43 facing the cathode 41 are provided below the substrate 1, and a pair of magnets 46a and 46b accommodated in the parallel magnetic field generating magnets 46a and 46b are located in the same horizontal plane. Magnet 45a,
45b are disposed, and the magnet case 46 is provided.
Inverted L-shaped yokes 47a, 47b for increasing the uniform magnetic flux density distribution in the vicinity of the substrate 1 are provided on the back surfaces of the substrates a, 46b. Reference numeral 48 denotes a mesh plate made of an iron-based material.

【0022】そして、真空槽21を真空排気後、ガスノ
ズル38からArガス等を導入し、カソード41とアノ
ードに電圧を印加して磁石45a、45b間にプラズマ
を発生させると同時に蒸発源の電子ビーム26を作動し
て蒸発材料を蒸発させ、基板1に印加した高周波電力3
4によって蒸発材料23を基板1上に反応生成膜として
形成させるのである。
After the vacuum chamber 21 is evacuated, Ar gas or the like is introduced from the gas nozzle 38, a voltage is applied to the cathode 41 and the anode to generate plasma between the magnets 45a and 45b, and at the same time, an electron beam as an evaporation source 26 is operated to evaporate the evaporation material, and the high-frequency power 3 applied to the substrate 1
4, the evaporating material 23 is formed on the substrate 1 as a reaction product film.

【0023】上記の方法において、基板に窒化ホウ素膜
を成膜するに当たって、基板のクリーニングのためにボ
ンバードを行うが、この発明ではクリーニングの効果を
顕著なものとするために、以下に示す順で3種類のボン
バードを行う。
In the above method, when a boron nitride film is formed on a substrate, bombardment is performed for cleaning the substrate. In the present invention, in order to make the cleaning effect remarkable, the following order is used. Perform three types of bombard.

【0024】(a)グロー放電ボンバード:基板をセッ
トし真空排気した真空槽内にArガス、H2 ガスまたは
Ar+H2 の混合ガスを導入し、基板に印加した高周波
または負の電圧により、基板−真空壁間でグロー放電を
起こさせて、基板表面を10〜20分間クリーニングす
る。 (b)高真空ボンバード:真空槽内に導入した4〜8×
10-2PaのArガスを平行磁界の重畳されたアノード
と熱電子放出フィラメントであるカソード間で放電さ
せ、この放電で生成されたArイオンで基材に印加した
高周波または負の電圧により、基板表面を10〜20分
間クリーニングする。 (c)Tiボンバード:1×10-3Pa程度の高真空と
した真空槽内で、坩堝内のTiを蒸発源によって蒸発さ
せ、1〜3×10-2PaのArガスを導入し、このAr
ガスまたはTiを平行磁界の重畳されたアノードと熱電
子放出フィラメントであるカソード間で放電させ、この
放電で生成された、主にTiイオンで基材に印加した高
周波または負の電圧により、基板表面を3〜10分間ク
リーニングする。
(A) Glow discharge bombard: Ar gas, H 2 gas or a mixed gas of Ar + H 2 is introduced into a vacuum chamber in which a substrate has been set and evacuated, and the substrate is subjected to high frequency or negative voltage applied to the substrate. Glow discharge is caused between the vacuum walls to clean the substrate surface for 10 to 20 minutes. (B) High vacuum bombard: 4 to 8 × introduced into vacuum chamber
An Ar gas of 10 -2 Pa is discharged between an anode on which a parallel magnetic field is superimposed and a cathode which is a thermionic emission filament, and a high frequency or negative voltage applied to a substrate by Ar ions generated by this discharge is applied to the substrate. Clean the surface for 10-20 minutes. (C) Ti bombard: In a vacuum chamber having a high vacuum of about 1 × 10 −3 Pa, Ti in the crucible is evaporated by an evaporation source, and Ar gas of 1 to 3 × 10 −2 Pa is introduced. Ar
A gas or Ti is discharged between an anode on which a parallel magnetic field is superimposed and a cathode which is a thermionic emission filament, and the high frequency or negative voltage applied to the base material mainly by Ti ions generated by this discharge is applied to the substrate surface. Clean for 3-10 minutes.

【0025】この発明の方法によって基板に窒化ホウ素
膜を成膜するに際し、まず最初に基板界面にTi膜およ
び/またはTiN膜を形成させるが、これは種々の基板
に密着性よく付着するTi膜および/またはTiN膜の
特性を応用するものであり、この形成によってcBN膜
が基板の種類により変化する付着特性を回避できるので
ある。この他、TiN膜を形成させることにより、基板
界面での付着力を向上させる手法として既に確立されて
いる技術を使用できるという利点がある。また、この発
明の方法によるcBN膜作成条件では、イオン源と基板
との距離が近いため、生成イオンによる基板のエッチン
グ力が大きく、基板界面に形成される薄膜の耐エッチン
グ性が重視されるが、この点に関してもTiN膜はすぐ
れているのである。
When a boron nitride film is formed on a substrate by the method of the present invention, first, a Ti film and / or a TiN film are formed on the interface of the substrate. And / or apply the characteristics of the TiN film, and by this formation, the adhesion characteristics of the cBN film, which varies depending on the type of the substrate, can be avoided. In addition, by forming the TiN film, there is an advantage that a technique already established as a technique for improving the adhesive force at the substrate interface can be used. Further, under the conditions for forming a cBN film according to the method of the present invention, since the distance between the ion source and the substrate is short, the etching power of the substrate by the generated ions is large, and the etching resistance of the thin film formed at the substrate interface is emphasized. Also in this regard, the TiN film is excellent.

【0026】また、TiN膜は、この発明の成膜法にお
いて、耐候性の点から最表面層としても用いるが、この
TiN膜層は膜中のピンホール、平滑度を維持すること
が必要である。このためには、結晶構造の異なるTiN
層を交互に積層させる構成とすれば、結晶粒による表面
荒れが少なくなり、ピンホールを埋める効果が期待でき
るのである。このため、TiN膜は膜厚0.2〜1.0
μm、3層〜9層の奇数の多層構造とし、Ti:Nの組
成比を奇数層は1:1の層とし、偶数層はNの量を1よ
り少とする層を配置する。
The TiN film is also used as the outermost surface layer in the film forming method of the present invention from the viewpoint of weather resistance. However, this TiN film layer needs to maintain pinholes and smoothness in the film. is there. For this purpose, TiN having different crystal structures is used.
If the layers are alternately stacked, the surface roughness due to crystal grains is reduced, and the effect of filling pinholes can be expected. For this reason, the TiN film has a thickness of 0.2 to 1.0.
μm, an odd-numbered multilayer structure of 3 to 9 layers, an odd-numbered layer having a composition ratio of Ti: N of 1: 1, and an even-numbered layer having a number of N less than 1 are arranged.

【0027】このようにしてTiN膜を形成した基板上
には密着性の問題から直接cBN膜ができず、この発明
ではTi膜、B膜、段階的に組成比率を変えたBN膜か
らなる緩衝膜Iを介在させたのちにcBN膜を形成す
る。このBN膜は、Ti膜を形成した後に、B膜の形成
からBとNの組成比を0から1まで傾斜する緩衝膜を作
成する方法では剥離を起こしやすいhBN層が形成され
る恐れがあるので、この剥離しやすいhBN層を回避す
ることを目的として、B膜形成後にArガスとN 2 ガス
の流量比、基板バイアス(高周波電力)量、成膜時間を
4段階に制御することで上層になるにしたがってB/N
=1に近い組成のBN膜を形成する。かくして形成した
緩衝膜Iの上に0.3〜0.8μmのcBN膜を成膜す
ることでこの発明の窒化ホウ素膜が得られる。
On the substrate on which the TiN film is thus formed,
Cannot directly form a cBN film due to the problem of adhesion.
Then, Ti film, B film, BN film with composition ratio changed step by step
The cBN film is formed after the buffer film I
You. This BN film is formed by forming a B film after forming a Ti film.
To form a buffer film that slopes the composition ratio of B and N from 0 to 1.
In the method of forming, the hBN layer which is easily peeled is formed.
Avoiding the easily peelable hBN layer
Ar gas and N after the formation of the B film for the purpose of Twogas
Flow rate ratio, substrate bias (high frequency power) amount, deposition time
By controlling in four stages, B / N becomes higher as the layer becomes higher.
= 1 is formed. Thus formed
Form a 0.3-0.8 μm cBN film on the buffer film I
Thus, the boron nitride film of the present invention is obtained.

【0028】上記のcBN膜は0.8〜1.0μm程度
の膜厚になると、cBN構造とは異なる構造の膜となる
傾向がみられる。cBN構造を維持して実用的に応用可
能なcBN膜を得ようとすると、その膜厚は0.8μm
程度までとすることが望まれる。従ってこの発明では膜
厚0.5〜2.0μmを持つTiN/BNを基本単位と
した多層構造とすることで0.5〜20μmの多層膜を
得ることができるのである。この場合、cBN膜上に直
接TiN膜を成膜すると、上述したようにTiN膜の剥
離が起きるが、cBN膜上にB膜、Ti膜からなる緩衝
膜IIを形成することにより、上記の多層膜の成膜を可
能とするものである。
When the cBN film has a thickness of about 0.8 to 1.0 μm, the film tends to have a structure different from the cBN structure. To obtain a practically applicable cBN film while maintaining the cBN structure, the thickness is 0.8 μm.
It is desired to be up to the extent. Therefore, in the present invention, a multilayer film of 0.5 to 20 μm can be obtained by forming a multilayer structure having a basic unit of TiN / BN having a thickness of 0.5 to 2.0 μm. In this case, if the TiN film is formed directly on the cBN film, the peeling of the TiN film occurs as described above. However, by forming the buffer film II composed of the B film and the Ti film on the cBN film, This enables a film to be formed.

【0029】[0029]

【実施例】次に、この発明を実施例により詳細に説明す
る。 実施例1 基板として3.4mmφの高速度鋼製ストレートドリル
を用い、これを例えば図5に示す成膜装置(磁界励起型
イオンプレーティング装置)を使用して、以下の順序で
窒化ホウ素膜の成膜を行った。なお、使用材料は99.
9%純度のホウ素、99%純度のチタン、99.99%
純度のAr、および99.99%純度のN2 である。
Next, the present invention will be described in detail with reference to examples. Example 1 A high-speed steel straight drill having a diameter of 3.4 mm was used as a substrate, and the straight drill was used to form a boron nitride film in the following order using, for example, a film forming apparatus (magnetic field excitation type ion plating apparatus) shown in FIG. A film was formed. The material used is 99.
9% pure boron, 99% pure titanium, 99.99%
Purity of Ar, and 99.99% pure N 2.

【0030】(A).基板クリーニング 上記ドリルを基板1として真空槽21内の基板ホルダー
22に取付け、槽内を2×10-4Paまで真空排気し、
基板温度を250℃に保持したのち、まず基板クリーニ
ングとして次の3種類のボンバードを続けて実施した。 (1)グロー放電ボンバード:2.5〜40PaのAr
ガスを導入し、基板に印加した100〜200Wの高周
波電力により基板−真空壁間でグロー放電を起こさせて
20分間基板表面のクリーニングを行った。 (2)高真空ボンバード:次いで、6.7×10-2Pa
のArガスを槽内に導入し、平行磁界中に65V印加さ
れたアノード電圧と、300Wのカソード間でアノード
電流15Aとなる放電をさせ、この放電によって生成し
たArイオンにより基板に印加した200W〜300W
の高周波電力で基板表面をクリーニングした。 (3)Tiボンバード:Tiを5.5kWの電子銃にて
加熱蒸発させ、2.0×10-2PaのArガスを導入
し、平行磁界中に65V印加されたアノード電圧と、3
00Wのカソード間でアノード電流15Aとなる放電に
よってイオン化したTiイオンにより、基板1に360
Wの高周波バイアスを印加して2分間のクリーニングを
行った(図1(a))。
(A). Substrate cleaning The above-mentioned drill was attached to the substrate holder 22 in the vacuum chamber 21 as the substrate 1 and the inside of the chamber was evacuated to 2 × 10 −4 Pa,
After maintaining the substrate temperature at 250 ° C., first, the following three types of bombarding were successively performed as substrate cleaning. (1) Glow discharge bombard: Ar of 2.5 to 40 Pa
A gas was introduced, a glow discharge was caused between the substrate and the vacuum wall by high-frequency power of 100 to 200 W applied to the substrate, and the surface of the substrate was cleaned for 20 minutes. (2) High vacuum bombard: Then, 6.7 × 10 -2 Pa
Ar gas was introduced into the tank, and a discharge was applied between the anode voltage of 65 V applied in the parallel magnetic field and the cathode of 300 W to produce an anode current of 15 A. The Ar ions generated by this discharge applied 200 W to the substrate. 300W
The surface of the substrate was cleaned with the high-frequency power. (3) Ti bombard: Ti is heated and evaporated with a 5.5 kW electron gun, an Ar gas of 2.0 × 10 −2 Pa is introduced, and an anode voltage of 65 V applied in a parallel magnetic field, and 3
Due to the Ti ions ionized by the discharge having the anode current of 15 A between the cathodes of 00 W, 360
Cleaning was performed for 2 minutes by applying a high frequency bias of W (FIG. 1A).

【0031】(B).TiN膜の成膜 次いで、上記でクリーニングした基板1表面に以下のよ
うにしてTiN膜2を成膜した。即ち、Tiを5.5k
Wの電子銃25にて加熱蒸発させ、2.0×10-2Pa
のArガスをガスノズル38から導入し、平行磁界中に
50V印加されたアノード43と、300Wのカソード
41間でアノード電流20Aとなる放電をさせてTiを
イオン化させながら、基板1に200Wの高周波バイア
ス(RF)34を印加し、N2 ガスを3分間導入して図
1(b)のような0.3〜0.7μmのTiN膜2を成
膜した。なお、このTiN膜は、上記N2 ガスの3分間
の導入量を、最初の1分間150mL/min、次の1
分間75mL/min、そして最後の1分間は150m
L/minと変えることによって、図2(a)に示すよ
うに中間の層2bがその上下の層2a、2cに比べてN
2 量の少ない3層構成のTiN膜2となるようにした。
(B). Next, a TiN film 2 was formed on the surface of the substrate 1 cleaned as described above as follows. That is, 5.5k of Ti
2.0 × 10 -2 Pa by heating and evaporating with a W electron gun 25
Is introduced from the gas nozzle 38, and a discharge is applied between the anode 43 applied with 50 V in a parallel magnetic field and the 300 W cathode 41 so as to have an anode current of 20 A to ionize Ti. (RF) 34 was applied, and N 2 gas was introduced for 3 minutes to form a 0.3-0.7 μm TiN film 2 as shown in FIG. The TiN film was supplied at a rate of 150 mL / min for the first minute and the next 1 minute for the introduction amount of the N 2 gas for 3 minutes.
75mL / min per minute, and 150m for the last minute
By changing it to L / min, as shown in FIG. 2 (a), the intermediate layer 2b has a higher N than the upper and lower layers 2a, 2c.
The three-layered TiN film 2 having a small amount of two was formed.

【0032】(C).cBN膜の成膜 (C)−1 緩衝膜Iの成膜 上記でTiN膜2を形成した基板1上に、0.1μm以
上のcBN膜を成膜する場合にはTiN膜とcBN膜と
の密着性を維持するために、TiN膜2上にTi膜、B
膜、段階的に組成比率を変えたBN膜からなる0.1〜
0.3μmの緩衝膜I(図2(b))を上記TiN膜の
成膜と同じ方法で、但し次のような条件にて成膜3した
(図1(c))。 Ti膜成膜の条件:Tiの電子銃出力 5.5kW アノード電圧 50V アノード電流 10A カソード電流 300W 導入Arガス圧力 2.0×10-2Pa RF出力 200W 成膜時間 15秒 B膜成膜の条件: Bの電子銃出力 6.0kW アノード電圧 40V アノード電流 10A カソード電流 300W 導入Arガス圧力 6.7×10-2Pa 導入Arガス量 12mL/min RF出力 150W 成膜時間 15秒 組成比率を段階的に変えたBN膜の成膜条件は、上記B
膜を15秒間で成膜したのち、Arガス圧力と同圧力で
2 ガスを同時に導入し、この両者の流量比、RF出
力、成膜時間を、 N2 :Ar=1:1、 RF=220W、 15秒 N2 :Ar=1.5:1、 RF=220W、 15秒 N2 :Ar=1.5:1、 RF=250W、 45秒 N2 :Ar=1.5:1、 RF=300W、 120秒 とすることにより、B膜層上に形成させるBN層をその
下層から上層にいくに従って、N2 量を多くしてホウ素
過剰なアモルファスBNを形成していき、最終的には最
表面がB/N=1に近いBN膜とすることで、この層上
へ形成するcBN膜との密着性を充分に維持することが
できるのである。
(C). Formation of cBN film (C) -1 Formation of buffer film I When a cBN film having a thickness of 0.1 μm or more is formed on the substrate 1 on which the TiN film 2 is formed, the TiN film and the cBN film are In order to maintain the adhesion, a Ti film, B
Film, consisting of a BN film with a composition ratio changed step by step
A 0.3 μm buffer film I (FIG. 2 (b)) was formed 3 in the same manner as the above-mentioned TiN film formation, but under the following conditions (FIG. 1 (c)). Conditions for Ti film formation: Ti gun electron gun output 5.5 kW Anode voltage 50 V Anode current 10 A Cathode current 300 W Introduced Ar gas pressure 2.0 × 10 -2 Pa RF output 200 W Film formation time 15 seconds Conditions for B film formation : Electron gun output of B 6.0 kW Anode voltage 40 V Anode current 10 A Cathode current 300 W Introduced Ar gas pressure 6.7 × 10 -2 Pa Introduced Ar gas amount 12 mL / min RF output 150 W Film forming time 15 seconds Composition ratio is stepwise The film formation conditions of the BN film changed to
After the film was formed for 15 seconds, N 2 gas was simultaneously introduced at the same pressure as the Ar gas pressure, and the flow rate ratio, RF output and film formation time of the two were set as follows: N 2 : Ar = 1: 1, RF = 220 W, 15 seconds N 2 : Ar = 1.5: 1, RF = 220 W, 15 seconds N 2 : Ar = 1.5: 1, RF = 250 W, 45 seconds N 2 : Ar = 1.5: 1, RF = 300 W, 120 seconds, so that as the BN layer formed on the B film layer goes from the lower layer to the upper layer, the amount of N 2 is increased to form a boron-excess amorphous BN. By using a BN film whose outermost surface is close to B / N = 1, it is possible to sufficiently maintain the adhesion to the cBN film formed on this layer.

【0033】(C)−2.cBN膜の成膜 次いで、上記で形成した3の緩衝膜Iの上に、 Bの電子銃出力 6.0kW アノード電圧 40V アノード電流 10A カソード電流 300W 導入ガス圧力 6.7×10-2Pa 導入Arガス量 12mL/min 導入N2 ガス量 18mL/min RF出力 360W 成膜時間 4分 の条件で0.3〜0.8μmのcBN膜4の成膜を行な
って、図1(d)に示すようなこの発明の窒化ホウ素膜
を得た。
(C) -2. Next, the electron gun output of B is 6.0 kW, the anode voltage is 40 V, the anode current is 10 A, the cathode current is 300 W, the introduced gas pressure is 6.7 × 10 −2 Pa, and the Ar is introduced on the buffer film I formed above. A gas amount of 12 mL / min, an introduced N 2 gas amount of 18 mL / min, an RF output of 360 W and a film formation time of 4 minutes were used to form a 0.3 to 0.8 μm cBN film 4, as shown in FIG. Thus, a boron nitride film of the present invention was obtained.

【0034】実施例2 上記実施例1における(C)−2のcBN膜を成膜した
のち、引き続いて真空槽21内にて実施例1と同じ方法
にて、B膜、Ti膜からなる5の0.1〜0.3μm
(但し、膜厚比はB/Ti=1である)の緩衝膜II
(図2(c))を次の(D)の条件にて形成し、さらに
実施例1の(B)のTiN成膜工程、(C)のcBN成
膜工程を1サイクル繰り返して(合計2サイクル)図3
に示すような構成の窒化ホウ素の多層膜を得た。また、
同じ方法で3サイクルの成膜工程を施し、最表面層をT
iN膜とした窒化ホウ素の多層薄膜構成を図4に示し
た。そして、この場合の最表面層TiN膜の成膜は下記
(E)の条件で行った。 (D).緩衝膜IIの成膜 (D)−1 B膜の成膜 Bの電子銃出力 6.0kW アノード電圧 40V アノード電流 10A カソード電流 300W 導入ガス圧力 6.7×10-2Pa 導入Arガス量 12mL/min RF出力 150W 成膜時間 15秒 (D)−2 Ti膜の成膜 Tiの電子銃出力 5.5kW アノード電圧 50V アノード電流 10A カソード電流 300W 導入ガス圧力 2.0×10-2Pa 導入Arガス量 12mL/min RF出力 200W 成膜時間 15秒 (E).TiN膜の成膜 Tiの電子銃出力 5.5kW アノード電圧 50V アノード電流 20A カソード電流 300W 導入ガス圧力 2.0×10-2Pa 導入Arガス量 12mL/min N2 ガス量 最初の1分間150mL/min 次の1分間75mL/min 次の1分間150mL/min RF出力 200W 成膜時間 3分
Embodiment 2 After forming the cBN film of (C) -2 in Embodiment 1 described above, subsequently, a B film and a Ti film 5 were formed in the vacuum chamber 21 in the same manner as in Embodiment 1. 0.1-0.3 μm
(Where the film thickness ratio is B / Ti = 1)
(FIG. 2C) was formed under the following condition (D), and the TiN film forming step of (B) and the cBN film forming step of (C) of Example 1 were repeated for one cycle (total 2). Cycle) Figure 3
A multilayer film of boron nitride having a structure as shown in FIG. Also,
In the same manner, a film forming process of three cycles is performed, and the outermost surface layer is made of T
FIG. 4 shows a multilayer thin film configuration of boron nitride as an iN film. In this case, the formation of the outermost surface TiN film was performed under the following condition (E). (D). Film formation of buffer film II (D) -1 Film formation of B film Electron gun output of B 6.0 kW Anode voltage 40 V Anode current 10 A Cathode current 300 W Introduced gas pressure 6.7 × 10 -2 Pa Introduced Ar gas amount 12 mL / min RF output 150 W Film formation time 15 seconds (D) -2 Ti film formation Ti electron gun output 5.5 kW Anode voltage 50 V Anode current 10 A Cathode current 300 W Introduced gas pressure 2.0 × 10 -2 Pa Introduced Ar gas Amount 12 mL / min RF output 200 W Film formation time 15 seconds (E). Formation of TiN film Ti electron gun output 5.5 kW Anode voltage 50 V Anode current 20 A Cathode current 300 W Introduced gas pressure 2.0 × 10 -2 Pa Introduced Ar gas amount 12 mL / min N 2 gas amount 150 mL / min for the first minute min Next 1 minute 75 mL / min Next 1 minute 150 mL / min RF output 200 W Film formation time 3 minutes

【0035】かくして得られた被膜が立方晶窒化ホウ素
相を含有しているか否かを同定するため、被膜を形成し
たドリルの刃先近傍部をフーリエ変換赤外吸収分光法
(FT−IR)にて測定したところ、図6に示されるよ
うにcBN相を多く含んでいる被膜であることが認めら
れた。
In order to identify whether or not the coating thus obtained contains a cubic boron nitride phase, the vicinity of the cutting edge of the drill on which the coating was formed was subjected to Fourier transform infrared absorption spectroscopy (FT-IR). As a result of the measurement, it was confirmed that the film contained a large amount of the cBN phase as shown in FIG.

【0036】次に、上記実施例2にて3サイクルの成膜
を行ってcBNの多層膜を3.5μm形成したφ3.4
mmの高速度鋼製ストレートドリルを用い、比較テスト
として、未処理のφ3.4mmの高速度鋼製ストレート
ドリル(比較品1)および高真空アーク放電型イオンプ
レーティング方式にてTiN膜を3.0μm成膜したφ
3.4mmの高速度鋼製ストレートドリル(市販品、比
較品2)を用いて、ドリル回転数:500rpm、被削
材:SUS304、切削速度:5.3m/min、送り
量:0.1〜0.35mm/rev(一回転)、切削
材:無給油、穴深さ:10mmの切削条件にて切削テス
トを行ったところ、この発明の成膜を行ったドリルは穴
あけ回数47回を記録したのに対し、比較品1は5回、
比較品2は16回の結果を得、この発明の成膜によって
未処理のものの9倍以上、市販品に比べても約3倍の寿
命を示した。
Next, in Example 2, three cycles of film formation were performed to form a cBN multilayer film having a thickness of 3.5 μm.
As a comparative test, an untreated φ3.4 mm high-speed steel straight drill (Comparative product 1) and a high vacuum arc discharge type ion plating method were used to form a TiN film on a TiN film. 0μm deposited φ
Using a 3.4 mm high speed steel straight drill (commercial product, comparative product 2), drill rotation speed: 500 rpm, work material: SUS304, cutting speed: 5.3 m / min, feed amount: 0.1 to When a cutting test was performed under the cutting conditions of 0.35 mm / rev (one rotation), cutting material: no lubrication, and hole depth: 10 mm, the drill that formed the film of the present invention recorded 47 times of drilling. On the other hand, the comparative product 1 is 5 times,
The result of the comparison product 2 was obtained 16 times, and the life of the film was 9 times or more that of the untreated product by the film formation of the present invention, and was about 3 times as long as that of the commercial product.

【0037】以上のテスト結果から、この発明の成膜方
法によれば、切削工具上に切削に耐え得る密着性にすぐ
れたcBN積層被膜が形成されていることが認められ、
しかも高速度鋼ドリルを用いて市販品より顕著な長寿命
を確認できたことによって、この成膜方法が500℃程
度の比較的低温で成膜可能であることを如実に示すもの
である。
From the above test results, it was recognized that the cBN laminate film having excellent adhesion to the cutting tool was formed on the cutting tool according to the film forming method of the present invention.
Moreover, the use of a high-speed steel drill has confirmed a remarkably longer life than that of a commercially available product, which clearly shows that this film forming method can form a film at a relatively low temperature of about 500 ° C.

【0038】[0038]

【発明の効果】以上説明したように、この発明の成膜方
法は、最初にTiN膜を施すことで多種類の、特に密着
性の点で直接cBN被膜を形成することのできなかった
基板にもcBN膜を適用可能とし、また多層膜構造とす
ることによって、これを高速度鋼、超硬合金等の切削工
具に適用して、切削時に摩耗による薄膜の消耗があって
も、次々にcBN膜面が表れるために長寿命化が期待で
きる。また、切削時にcBN膜面にたとえ亀裂が入って
もTiN膜面でストップすることができること、さらに
cBN膜面をTiN膜で覆うことで耐候性を改良できる
ので、これまでcBN膜を最表面膜としていて大気中の
湿度等の影響でcBN膜が変質し、cBN膜中の粒界部
で剥離が発生するといった問題も充分防止することがで
きるのである。
As described above, the film forming method of the present invention can be applied to a variety of types of substrates, in particular, a cBN film cannot be directly formed in terms of adhesion by applying a TiN film first. It is also possible to apply a cBN film and a multilayer film structure to apply it to cutting tools such as high-speed steel and cemented carbide. A longer life can be expected because the film surface appears. In addition, even if a crack is formed in the cBN film surface during cutting, the cBN film surface can be stopped at the TiN film surface, and the cBN film surface can be covered with the TiN film to improve weather resistance. However, it is possible to sufficiently prevent the problem that the cBN film is degraded due to the influence of the humidity in the atmosphere and the like, and separation occurs at the grain boundary portion in the cBN film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の成膜方法の一実施例の手順と構成を
示す模式断面図である。
FIG. 1 is a schematic sectional view showing a procedure and a configuration of an embodiment of a film forming method of the present invention.

【図2】この発明の成膜方法で実施するTiN膜、緩衝
膜I、IIの膜構成を示す模式面図である。
FIG. 2 is a schematic plan view showing a film configuration of a TiN film and buffer films I and II to be implemented by the film forming method of the present invention.

【図3】この発明の成膜方法の他の実施例の構成を示す
模式断面図である。
FIG. 3 is a schematic sectional view showing the configuration of another embodiment of the film forming method of the present invention.

【図4】この発明の成膜方法のさらに他の実施例の構成
を示す模式断面図である。
FIG. 4 is a schematic sectional view showing the configuration of still another embodiment of the film forming method of the present invention.

【図5】この発明の方法を実施するに用いる成膜装置の
一例を示す概略図である。
FIG. 5 is a schematic view showing an example of a film forming apparatus used to carry out the method of the present invention.

【図6】この発明の成膜方法で得られたcBN膜のIR
スペクトル図である。
FIG. 6 shows IR of a cBN film obtained by the film forming method of the present invention.
It is a spectrum diagram.

【符号の説明】[Explanation of symbols]

1 基板 2 TiN膜 3 緩衝膜I 4 cBN膜 5 緩衝膜II 21 真空槽 23 蒸発材料 25 電子銃 33 エッチング防止板 41 熱電子放出用カソード 43 アノード 45a、45b 磁石 DESCRIPTION OF SYMBOLS 1 Substrate 2 TiN film 3 Buffer film I 4 cBN film 5 Buffer film II 21 Vacuum tank 23 Evaporation material 25 Electron gun 33 Etching prevention plate 41 Cathode for thermionic emission 43 Anodes 45a, 45b Magnet

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 a:基板のボンバード処理を行う工程
と、 b:ボンバード処理した基板界面にTi膜および/また
はTiN膜を形成する工程と、 c:上記Ti膜および/またはTiN膜上にTi膜、B
膜さらに段階的に組成比率を変えたBN膜からなる緩衝
膜Iを形成する工程と、 d:上記緩衝膜I上にcBN膜を形成する工程と、から
なることを特徴とする窒化ホウ素膜の成膜方法。
1. A step of performing a bombardment treatment on a substrate; b. A step of forming a Ti film and / or a TiN film on an interface of a substrate subjected to the bombardment treatment; and c: Ti on the Ti film and / or TiN film. Membrane, B
A step of forming a buffer film I made of a BN film in which the composition ratio is changed stepwise; and d: a step of forming a cBN film on the buffer film I. Film formation method.
【請求項2】 a:基板のボンバード処理を行う工程
と、 b:ボンバード処理した基板界面にTi膜および/また
はTiN膜を形成する工程と、 c:上記Ti膜および/またはTiN膜上にTi膜、B
膜さらに段階的に組成比率を変えたBN膜からなる緩衝
膜Iを形成する工程と、 d:上記緩衝膜I上にcBN膜を形成する工程と、を複
数回繰り返してcBNの多層膜を形成するに際し、この
繰り返し工程におけるcBN膜上へのTiN膜の形成に
当たって、B膜、Ti膜からなる緩衝膜IIの形成工程
を介在させることを特徴とする窒化ホウ素多層膜の成膜
方法。
2. A step of performing a bombardment treatment on a substrate; b. A step of forming a Ti film and / or a TiN film on the interface of the substrate subjected to the bombardment treatment; and c: Ti on the Ti film and / or TiN film. Membrane, B
A step of forming a buffer film I composed of a BN film having a composition ratio changed stepwise, and a step of forming a cBN film on the buffer film I a plurality of times to form a multilayer film of cBN. In this case, a method of forming a TiN film on a cBN film in the repetition step includes a step of forming a buffer film II composed of a B film and a Ti film.
【請求項3】 上記窒化ホウ素膜の成膜方法において、
最表面をcBN膜に代えてTiN膜とすることを特徴と
する請求項2に記載の窒化ホウ素膜の成膜方法。
3. The method for forming a boron nitride film according to claim 1,
3. The method according to claim 2, wherein the outermost surface is a TiN film instead of the cBN film.
【請求項4】 上記窒化ホウ素膜の成膜方法において、
TiN膜が3層以上の奇数の多層構成からなることを特
徴とする請求項1乃至3のいずれかに記載の窒化ホウ素
膜の成膜方法。
4. The method for forming a boron nitride film according to claim 1,
4. The method for forming a boron nitride film according to claim 1, wherein the TiN film has an odd multi-layer structure of three or more layers.
JP10243323A 1998-08-28 1998-08-28 Method for forming boron nitride film Expired - Fee Related JP2963455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10243323A JP2963455B1 (en) 1998-08-28 1998-08-28 Method for forming boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10243323A JP2963455B1 (en) 1998-08-28 1998-08-28 Method for forming boron nitride film

Publications (2)

Publication Number Publication Date
JP2963455B1 true JP2963455B1 (en) 1999-10-18
JP2000073161A JP2000073161A (en) 2000-03-07

Family

ID=17102128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10243323A Expired - Fee Related JP2963455B1 (en) 1998-08-28 1998-08-28 Method for forming boron nitride film

Country Status (1)

Country Link
JP (1) JP2963455B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246082B2 (en) * 2009-07-15 2013-07-24 大日本印刷株式会社 Gas barrier sheet, gas barrier sheet manufacturing method, sealing body, and apparatus
JP5471842B2 (en) * 2009-11-12 2014-04-16 三菱マテリアル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2000073161A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US5330853A (en) Multilayer Ti-Al-N coating for tools
US5679448A (en) Method of coating the surface of a substrate and a coating material
US4480010A (en) Method and coating materials by ion plating
US7241492B2 (en) Multilayered film having excellent wear resistance, heat resistance and adhesion to substrate and method for producing the same
US20050136656A1 (en) Process for depositing composite coating on a surface
US8440327B2 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
JP2008512261A (en) Cutting tool with wear-resistant coating and method for producing the same
JP2008512261A6 (en) Cutting tool with wear-resistant coating and method for producing the same
JPH0588310B2 (en)
JP2011127165A (en) Coating, cutting tool and method for manufacturing coating
CN108118304A (en) Nano-composite coating and its preparation process
CN111945111A (en) Composite coating deposited on surface of cubic boron nitride cutter and deposition method
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP4449187B2 (en) Thin film formation method
KR20090052174A (en) Diffusion thinfilm deposition method and apparatus the same
JP3971336B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
JP2963455B1 (en) Method for forming boron nitride film
EP1541707B1 (en) METHOD FOR PREPARING ALUMNA COATING FILM HAVING a-TYPE CRYSTAL STRUCTURE AS PRIMARY STRUCTURE
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
KR100920725B1 (en) Thin film deposition apparatus, thin film deposition process and coated tool thereof
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2939251B1 (en) Boron nitride film forming equipment
KR101054298B1 (en) Diffusion thinfilm deposition method
JP5229826B2 (en) Coating, cutting tool, and manufacturing method of coating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees