JP2961697B2 - High expansion alloy - Google Patents

High expansion alloy

Info

Publication number
JP2961697B2
JP2961697B2 JP22667790A JP22667790A JP2961697B2 JP 2961697 B2 JP2961697 B2 JP 2961697B2 JP 22667790 A JP22667790 A JP 22667790A JP 22667790 A JP22667790 A JP 22667790A JP 2961697 B2 JP2961697 B2 JP 2961697B2
Authority
JP
Japan
Prior art keywords
less
steel
high expansion
room temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22667790A
Other languages
Japanese (ja)
Other versions
JPH04110446A (en
Inventor
浩久 加藤
裕 川合
高 小松
勝典 馬場園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP22667790A priority Critical patent/JP2961697B2/en
Publication of JPH04110446A publication Critical patent/JPH04110446A/en
Application granted granted Critical
Publication of JP2961697B2 publication Critical patent/JP2961697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安価な主としてバイメタル用の高膨張合金
に関する。
The present invention relates to inexpensive high expansion alloys, mainly for bimetals.

〔従来の技術とその問題点〕[Conventional technology and its problems]

高膨張合金は、Fe−Ni系のいわゆるアンバー型低膨張
合金や普通鋼、ステンレス鋼などと機械的圧接あるいは
溶接接合などにより複合部材を構成し、そのバイメタル
機能を利用して温度センサーや温度補償部品として電気
製品などに大量に使用されている。
High-expansion alloy is composed of a composite member by mechanical pressure welding or welding with Fe-Ni-based invar-type low-expansion alloy, ordinary steel, stainless steel, etc., and uses its bimetal function to provide temperature sensors and temperature compensation. It is used in large quantities in electrical products and other parts.

JIS C 2530に記載されているようにFe−Ni−Cr系合金
は高膨張合金の一種であり、汎用材料として広く利用さ
れている。
As described in JIS C 2530, Fe-Ni-Cr alloys are a kind of high expansion alloys and are widely used as general-purpose materials.

しかしながら、具体的に化学組成が明記されたものは
なく、一般的には、Fe−Ni系合金で高膨張特性を示す。
Fe−20〜22NiにCrを添加した合金が使用されている。こ
のためFe−20Ni−5CrやFe−22Ni−3Crがバイメタル用高
膨張合金として使用されることが多い。
However, there is no specific chemical composition specified, and generally, a Fe—Ni-based alloy exhibits high expansion characteristics.
An alloy in which Cr is added to Fe-20 to 22Ni is used. For this reason, Fe-20Ni-5Cr and Fe-22Ni-3Cr are often used as high expansion alloys for bimetals.

バイメタル用素材として要求される主特性は、30〜10
0℃の熱膨張係数と室温での電気抵抗率である。
The main characteristics required for bimetal materials are 30 to 10
The coefficient of thermal expansion at 0 ° C and the electrical resistivity at room temperature.

Fe−20Ni−5CrあるいはFe−22Ni−3Cr鋼より、Ni含有
量が少なく、Fe−20Ni−5Cr鋼あるいはFe−22Ni−3Cr鋼
と同等の熱膨張特性と電気抵抗率を有する安価な主とし
てバイメタル用の高膨張合金が望まれる。
Inexpensive mainly for bimetal with lower Ni content than Fe-20Ni-5Cr or Fe-22Ni-3Cr steel and having the same thermal expansion characteristics and electrical resistivity as Fe-20Ni-5Cr steel or Fe-22Ni-3Cr steel Are desired.

〔問題解決に関する知見〕[Knowledge on problem solving]

本発明者らは、前述のような問題点を解決すべく、Fe
−Ni−Cr系合金における組成と熱膨張特性ならびに電気
抵抗率との関係を詳細に調べた結果、従来材料であるFe
−22Ni−3Cr及びFe−20Ni−5Crに比べて、Ni含有量が相
当量低い場合でも、従来材料と同等の熱膨張係数を有す
るとともに、実用に供せられるに充分大きい電気抵抗率
を有する合金を知見した。
The present inventors have proposed Fe, in order to solve the above-described problems.
A detailed study of the relationship between the composition, thermal expansion characteristics, and electrical resistivity of Ni-Cr alloys revealed that
-22Ni-3Cr and Fe-20Ni-5Cr alloys with the same coefficient of thermal expansion as conventional materials and a sufficiently high electrical resistivity to be practically used, even when the Ni content is considerably lower. Was found.

〔発明の構成〕[Configuration of the invention]

本発明は Ni:9〜14% Cr:5〜13% C :0.5%以下 Si:1%以下 Mn:4%以下 C :0.2%以下 Co:2%以下 残部Feおよび不可避的不純物よりなり、室温でオース
テナイト単相組織を有し、30〜100℃の熱膨張係数が18
×10-6/℃以上でかつ室温での電気抵抗率が70μΩ・cm
以上である安価な高膨張合金を提供する。
The present invention is composed of Ni: 9 to 14% Cr: 5 to 13% C: 0.5% or less Si: 1% or less Mn: 4% or less C: 0.2% or less Co: 2% or less The balance consists of Fe and unavoidable impurities. With an austenitic single phase structure and a thermal expansion coefficient of 18
× 10 -6 / ° C or higher and electrical resistivity at room temperature is 70μΩcm
An inexpensive high expansion alloy as described above is provided.

高膨張特性を得るには、室温でオーステナイト単相組
織を有することが必須要件である。
In order to obtain high expansion characteristics, it is essential to have an austenitic single phase structure at room temperature.

次に本発明における合金組成の限定理由について述べ
る。
Next, the reasons for limiting the alloy composition in the present invention will be described.

Ni:Ni含有量が低すぎると高膨張特性を示さない。高
膨張特性を確保するには、9%以上必要であるが、Ni含
有量が多いと製造コストが高くなるため、上限を14%と
した。
Ni: If the Ni content is too low, high expansion characteristics are not exhibited. To ensure high expansion characteristics, 9% or more is required. However, if the content of Ni is large, the production cost increases, so the upper limit is set to 14%.

Cr:本発明の合金はオーステナイト単相組織である必
要があるが、本願発明の合金系では室温でマルテンサイ
トが生ずる傾向があり、この系においてCrはマルテンマ
イトの生成を抑制する作用があり、この意味で6%以上
のCrを添加する必要がある。しかし、多量のCrの添加
は、熱膨張係数を低下させるために、13%以下とした。
Cr: The alloy of the present invention needs to have an austenitic single phase structure, but in the alloy system of the present invention, martensite tends to occur at room temperature, and in this system, Cr has an action of suppressing the formation of martensite, In this sense, it is necessary to add Cr of 6% or more. However, the addition of a large amount of Cr is set to 13% or less in order to lower the coefficient of thermal expansion.

C :室温でオーステナイト単相組織を得るためには必
要であるが、多量に添加すると硬質化するため0.5%以
下とした。
C: Necessary for obtaining an austenitic single phase structure at room temperature, but if added in a large amount, it hardens, so it was made 0.5% or less.

Si:脱酸剤として通常含有される量、すなわち1%以
下とした。
Si: The amount normally contained as a deoxidizing agent, that is, 1% or less.

Mn:室温で、オーステナイト単相組織を得るために必
要であるが、4%以下で充分である。
Mn: Necessary for obtaining an austenite single phase structure at room temperature, but 4% or less is sufficient.

N :室温で、オーテスナイト単相組織を得るためには
必要であるが、過剰の添加は製鋼時の欠陥発生の原因と
なるため0.2%以下とした。
N: It is necessary to obtain an austenite single-phase structure at room temperature. However, excessive addition causes 0.2% or less of defects during steel making, so it was made 0.2% or less.

Co:Ni原料から混入するが、特性に影響を与えないた
め、2%以下の含有を許容することにした。
Although it is mixed from Co: Ni raw material, the content is not affected, so that the content of 2% or less is allowed.

〔発明の具体的開示〕[Specific disclosure of the invention]

次に実施例により本発明を具体的に説明する。 Next, the present invention will be described specifically with reference to examples.

第1表に示す20種類の合金を真空誘導溶解炉で溶製し
12Kgの鋼塊を得た。続いて鋼塊を鍛造→熱延→焼純→冷
延→焼鈍の工程を経て、熱膨張測定用試料(1.5t×5W×
50L)と電気抵抗測定用試料(1.5t×3W×200L)を作製
した。
The 20 types of alloys shown in Table 1 were melted in a vacuum induction melting furnace.
A 12 kg steel ingot was obtained. Subsequently, the steel ingot was subjected to the steps of forging → hot rolling → annealing → cold rolling → annealing, and then a sample for thermal expansion measurement (1.5t × 5W ×
50L) and a sample for electric resistance measurement (1.5t × 3W × 200L).

熱膨張係数は、30〜100℃の温度範囲で測定した。ま
た、電気抵抗率は室温(約25℃)で測定した。その結果
を合わせて第1表に示す。
The coefficient of thermal expansion was measured in a temperature range of 30 to 100 ° C. The electric resistivity was measured at room temperature (about 25 ° C.). The results are shown in Table 1.

第1表より明らかなように、Ni含有量9〜14%のS.N
o.1〜No.9の本発明合金の特性は、従来合金S.No.10およ
びNo.11のFe−20Ni−5Cr鋼あるいはFe−22Ni−3Cr鋼と
同等の値を示した。
As is clear from Table 1, SN with Ni content of 9-14%
The properties of the alloys of the present invention in o.1 to No.9 were equivalent to those of the conventional alloys S.No.10 and No.11 Fe-20Ni-5Cr steel or Fe-22Ni-3Cr steel.

〔発明の効果〕 以上説明したように、本発明合金は、Ni含有量9〜14
%とFe−20Ni−5Cr鋼あるいはFe−22Ni−3Cr鋼に比して
Ni含有量が少量で済むため安価な高膨張合金を提供する
ことができる。
[Effect of the Invention] As described above, the alloy of the present invention has a Ni content of 9 to 14%.
% And Fe-20Ni-5Cr steel or Fe-22Ni-3Cr steel
Since the Ni content is small, an inexpensive high expansion alloy can be provided.

フロントページの続き (72)発明者 馬場園 勝典 山口県新南陽市大字富田4976番地 日新 製鋼株式会社鉄鋼研究所内 (56)参考文献 特開 平3−31446(JP,A) 特開 昭60−26642(JP,A) 特開 昭52−3520(JP,A) 特公 平3−57438(JP,B2) 特公 昭54−3466(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C22C 38/58 Continuation of the front page (72) Inventor Katsunori Babaen 4976 Tomita, Odai, Shinnanyo-shi, Yamaguchi Prefecture Inside the Steel Research Laboratory, Nissin Steel Co., Ltd. (56) References JP-A-3-31446 (JP, A) JP-A-60- 26642 (JP, A) JP-A-52-3520 (JP, A) JP-B 3-57438 (JP, B2) JP-B 54-3466 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 302 C22C 38/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni:9〜14% Cr:6〜13% C :0.5%以下 Si:1%以下 Mn:4%以下 N :0.2%以下 Co:2%以下 残部Feおよび不可避的不純物からなり、室温でオーステ
ナイト単相組織を有し、30〜100℃の熱膨張係数が18×1
0-6/℃以上でかつ室温での電気抵抗率が70μΩ・cm以上
である安価な高膨張合金。
(1) Ni: 9 to 14% Cr: 6 to 13% C: 0.5% or less Si: 1% or less Mn: 4% or less N: 0.2% or less Co: 2% or less The balance consists of Fe and inevitable impurities. , Having an austenitic single phase structure at room temperature and a thermal expansion coefficient of
0 -6 / ° C. or more and less expensive high expansion alloys electrical resistivity is 70μΩ · cm or more at room temperature.
JP22667790A 1990-08-30 1990-08-30 High expansion alloy Expired - Lifetime JP2961697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22667790A JP2961697B2 (en) 1990-08-30 1990-08-30 High expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22667790A JP2961697B2 (en) 1990-08-30 1990-08-30 High expansion alloy

Publications (2)

Publication Number Publication Date
JPH04110446A JPH04110446A (en) 1992-04-10
JP2961697B2 true JP2961697B2 (en) 1999-10-12

Family

ID=16848926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22667790A Expired - Lifetime JP2961697B2 (en) 1990-08-30 1990-08-30 High expansion alloy

Country Status (1)

Country Link
JP (1) JP2961697B2 (en)

Also Published As

Publication number Publication date
JPH04110446A (en) 1992-04-10

Similar Documents

Publication Publication Date Title
US5595706A (en) Aluminum containing iron-base alloys useful as electrical resistance heating elements
JPS5816044A (en) Copper alloy
JPH0321622B2 (en)
JPS62227051A (en) Terminal and connector made of cu alloy
EP1281784B1 (en) Electric resistance material
JP2961697B2 (en) High expansion alloy
US4131457A (en) High-strength, high-expansion manganese alloy
JPS5823452B2 (en) Softening resistant copper alloy
JP3332400B2 (en) High expansion alloy for bimetal
JP3030065B2 (en) High expansion alloy
JPH0246663B2 (en)
JPH044391B2 (en)
JP2575059B2 (en) Material for electric heating element made of Fe-Cr-Al alloy with low temperature coefficient of electrical resistivity
JPS61159543A (en) Alloy for electric heating
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JP2739475B2 (en) High expansion alloy
JPS61549A (en) Co-base high-strength heat-resistant alloy for gas turbine
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JPH02118053A (en) Heat-resistant alloy
JPS627256B2 (en)
JP3587949B2 (en) High strength and high expansion alloys and materials
JPS59126746A (en) High-permeability magnetic alloy
JPH036212B2 (en)
JPS5844145B2 (en) Austenitic electric heating alloy
JP2000192194A (en) Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture