JPH044391B2 - - Google Patents

Info

Publication number
JPH044391B2
JPH044391B2 JP60040561A JP4056185A JPH044391B2 JP H044391 B2 JPH044391 B2 JP H044391B2 JP 60040561 A JP60040561 A JP 60040561A JP 4056185 A JP4056185 A JP 4056185A JP H044391 B2 JPH044391 B2 JP H044391B2
Authority
JP
Japan
Prior art keywords
less
shape memory
alloys
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60040561A
Other languages
Japanese (ja)
Other versions
JPS61201761A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4056185A priority Critical patent/JPS61201761A/en
Priority to EP85306285A priority patent/EP0176272B1/en
Priority to DE8585306285T priority patent/DE3573932D1/en
Publication of JPS61201761A publication Critical patent/JPS61201761A/en
Priority to US07/024,855 priority patent/US4780154A/en
Publication of JPH044391B2 publication Critical patent/JPH044391B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度高靭性で形状記憶効果にすぐ
れ、必要な場合には耐食性、熱間加工性を有する
Fe−Mn−Si系形状記憶合金に関するものであ
る。 (従来の技術) 形状記憶現象を示す合金は、Ti−Ni合金を始
め、銅基合金、鉄基合金など数多く知られている
(例えば「金属」1983年3月号38頁)。これらのう
ち例えば本出願人の出願に係る特願昭59−187403
号に示されるFe−Mn−Si合金は、通常の溶解圧
延方法によつて製造してもすぐれた形状記憶特性
を示す。しかし100%の形状記憶効果を示すには
至つていない。 (発明が解決しようとする課題) さてFe−Mn−Si系合金は加工によつてマルテ
ンサイトが生じる温度(Md点)以下、例えば室
温で変形すると面心立方構造のオーステナイト
(γ)母相が稠密六方構造のマルテンサイト(ε)
に変態する。この後逆変態終了温度(Af点)以
上に加熱すると、このεマルテンサイトがもとの
γ母相に逆変態し形状記憶効果を示す。この際変
態によつてεマルテンサイトのみが生じればよい
が、γ母相のすべり変形も同時に生じる。このγ
のすべりは加熱によつて回復不可能なひずみの原
因となり、Fe−Mn−Si系合金で形状回復率が
100%とならない一因と考えられる。またFe−
Mn−Si系合金では実用材料として用いる場合に
は耐食性、耐熱性、靭性に問題がある。 (課題を解決するための手段) Fe−Mn−Si系合金の形状記憶効果を高めるた
めにはγ→ε変態の生じる応力を、γのすべり変
形の生じる応力よりも相対的に低くなるようにす
ればよい。γとεはともに最稠密構造であり、そ
の構造のちがいは積層のちがいである。そこで積
層欠陥エネルギーを低くすればγ→ε変態が起こ
りやすくなると考えられる。 積層欠陥エネルギーは合金元素添加の影響を大
きくうけ、γ鉄合金の場合、Cr、Mo、Co、C、
Alの添加でその値の低くなることが知られてい
る。 そこで本発明者等はこれら合金元素を添加し
た。ところγ→ε変態が容易となり、形状記憶特
性が向上することを見出した。またCuを少量添
加すると形状記憶特性を劣化させずに耐食性を向
上させることが可能であり、さらにNiは形状記
憶特性を劣化させずに靭性を向上させる等々の知
見を得た。 本発明はこのような知見に基づくものであつ
て、重量パーセントとして、Mn20〜40%および
Si3.5〜8%に加えて、10%以下のCr、Ni、Co、
2%以下のMo、1%以下のC、Al、Cuの1種ま
たは2種以上を含有し、残部は実質的にFeより
なることを特徴とする形状記憶合金を要旨とする
ものである。すなわち本発明はFe−Mn−Si系形
状記憶合金に種々の合金元素を添加することによ
り形状記憶特性の改善と、耐食性、耐熱性、高靭
性を付与したことを特徴とするものである。 本発明では、前述のMn、Siを含む基本成分に、
形状記憶特性の改善のためにCo、Mo、C、Al
を、耐食性を向上させるためにCr、Cuを、また
靭性などを付与するためにNiを添加したもので
ある。 これらの合金元素の添加効果は、主要な効果を
もとに分類したものであり、個々の元素によつて
は、後述するように複数の効果を認めることもで
きる。 すなわち、本発明は、以下に示すような組成を
有することを特徴とする形状記憶合金である。 (1) 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下の
Mo、1%以下のC、1%以下のAlの1種また
は2種以上を含有し、残部が実質的にFeより
なることを特徴とする形状記憶合金。 (2) 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下の
Mo、1%以下のC、1%以下のAlの1種また
は2種以上と、10%以下のCr、1%以下のCu
の1種または2種を含有し、残部が実質的に
Feよりなることを特徴とする形状記憶合金。 (3) 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下の
Mo、1%以下のC、1%以下のAlの1種また
は2種以上と、10%以下のNiを含有し、残部
が実質的にFeよりなることを特徴とする形状
記憶合金。 (4) 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下の
Mo、1%以下のC、1%以下のAlの1種また
は2種以上、10%以下のCr、1%以下のCuの
1種または2種、および10%以下のNiを含有
し、残部が実質的にFeよりなることを特徴と
する形状記憶合金。 ここで本発明合金が含有する合金元素の量の限
定理由について説明する。 Mnは20%未満では応力誘起によつてε相の生
成とともにα′相も導入され形状記憶効果が低下す
る。また逆にMnが40%を越えるとγが安定化さ
れ、γ→ε変態よりもγのすべり変形が優先的に
生じるようになる。 Siはγ→ε変態を促進させる元素であるが、そ
の充分な効果は3.5%以上の添加によつて得られ
る。しかし、Siを8%を越えて添加すると、合金
の加工性および成形性が損なわれてしまう。 Crは耐食性の向上に役立つが、10%を越えて
添加すると、Siと低融点の金属間化合物を形成
し、合金の溶製が困難となる。またCrはγ→ε
変態を容易にし、形状記憶特性を向上させるうえ
でも効果的である。 Niは形状記憶特性を劣化させることなく靭性
の向上に寄与するが、これもまた10%を越えて添
加すると熱間加工性が悪くなる。 Coは形状記憶効果を向上させ、熱間加工性も
向上させるが高価であり、また多量に添加しても
効果が顕著ではないのでその上限を10%とした。 Moは形状記憶効果を向上させるとともに耐熱
性をも向上させるが、2%を越えて添加すると熱
間加工性が悪くなり、逆に形状記憶特性も劣化す
る。 Cは形状記憶効果を向上させるが、1%を越え
る添加では靭性が著しく劣化する。 Alは脱酸剤としてはたらくとともに、形状記
憶効果を向上させるが、1%以上の添加では効果
に変化がない。 Cuは形状記憶効果を劣化させることなく、耐
食性を向上させるが、その添加は上限1%で十分
である。 (実施例) 以下に実施例を示す。 実施例 第1表に高周波加熱大気炉を用いて溶製した合
金の成分を示す。これらは造塊後すべて1250〜
1050℃で1時間保持し、圧延により13mm厚の板材
として、0.5×1.5×30mmの板材を切り出し、室温
で〜45°の曲げ変形を加え、Af点以上に加熱した
際の回復角度を曲げ角度で除した値で形状記憶効
果の度合を判定し表示した。また熱間成形性につ
いては1200℃で1時間加熱後、13mm迄圧延したス
ラブの表面性状などから判断し、全く問題がない
場合には○、やや難がある場合には△、割れなど
が発生した場合には×で示した。また耐食性につ
いては2×100×100mmの形状の試験片を大気暴露
を1年間行ない、Fe−30Mn−6Si合金の腐食量
を100として、50〜150の場合には△、20〜50の場
合には○、20以下の場合には◎とした。一部につ
いては塩水噴霧テスト(JISZ2371)により耐食
性を評価し、24hr噴霧後の赤錆発生率が20%未満
を◎、20%以上50%未満を○、50%以上を△で示
した。 この結果から、本発明合金は形状記憶特性がす
ぐれているのみでなく、必要に応じては耐食性を
付与することも可能であることが判る。 第2表に、上記と同様の方法で溶製したNiを
添加した合金の衝撃試験の結果を示す。Niを添
加した合金では、室温における吸収エネルギーが
向上していることが判る。
(Industrial Application Field) The present invention has high strength, high toughness, excellent shape memory effect, and has corrosion resistance and hot workability when necessary.
This relates to Fe-Mn-Si shape memory alloys. (Prior Art) Many alloys exhibiting a shape memory phenomenon are known, including Ti--Ni alloys, copper-based alloys, and iron-based alloys (for example, "Metal", March 1983 issue, p. 38). Among these, for example, patent application No. 187403 filed by the present applicant.
The Fe-Mn-Si alloy shown in the above issue exhibits excellent shape memory properties even when manufactured by the usual melting and rolling method. However, 100% shape memory effect has not yet been demonstrated. (Problem to be solved by the invention) Now, when Fe-Mn-Si alloys are deformed at temperatures below the temperature at which martensite occurs (Md point), for example at room temperature, the austenite (γ) matrix with a face-centered cubic structure forms. Martensite with dense hexagonal structure (ε)
transform into Thereafter, when heated above the reverse transformation end temperature (Af point), this ε martensite transforms back to the original γ matrix and exhibits a shape memory effect. At this time, it is sufficient that only ε martensite is generated by the transformation, but sliding deformation of the γ matrix also occurs at the same time. This γ
Slip causes irrecoverable strain when heated, and the shape recovery rate is low in Fe-Mn-Si alloys.
This is considered to be one of the reasons why it does not reach 100%. Also Fe−
Mn-Si alloys have problems in corrosion resistance, heat resistance, and toughness when used as practical materials. (Means for solving the problem) In order to enhance the shape memory effect of Fe-Mn-Si alloys, the stress that occurs during γ→ε transformation should be made relatively lower than the stress that occurs during γ sliding deformation. do it. Both γ and ε have densest structures, and the difference in structure is the difference in lamination. Therefore, it is thought that if the stacking fault energy is lowered, the γ→ε transformation will occur more easily. The stacking fault energy is greatly affected by the addition of alloying elements, and in the case of γ iron alloys, Cr, Mo, Co, C,
It is known that the addition of Al lowers this value. Therefore, the present inventors added these alloying elements. However, it has been found that the γ→ε transformation becomes easier and the shape memory properties are improved. We also found that adding a small amount of Cu can improve corrosion resistance without deteriorating shape memory properties, and that Ni can improve toughness without deteriorating shape memory properties. The present invention is based on this knowledge, and the present invention is based on the knowledge that Mn is 20 to 40% and
In addition to 3.5 to 8% Si, 10% or less Cr, Ni, Co,
The gist of the present invention is a shape memory alloy containing 2% or less of Mo, 1% or less of one or more of C, Al, and Cu, and the remainder being substantially Fe. That is, the present invention is characterized by improving shape memory properties and imparting corrosion resistance, heat resistance, and high toughness by adding various alloying elements to a Fe-Mn-Si shape memory alloy. In the present invention, the above-mentioned basic components including Mn and Si include
Co, Mo, C, Al to improve shape memory properties
Cr and Cu are added to improve corrosion resistance, and Ni is added to add toughness. The effects of adding these alloying elements are classified based on the main effects, and depending on the individual element, multiple effects may be observed as described below. That is, the present invention is a shape memory alloy characterized by having the composition shown below. (1) Mn20~40%, Si3.5~ as weight percentage
8% plus less than 10% Co, less than 2%
A shape memory alloy containing one or more of Mo, 1% or less of C, and 1% or less of Al, with the remainder being substantially Fe. (2) Mn20~40%, Si3.5~ as weight percentage
8% plus less than 10% Co, less than 2%
One or more of Mo, 1% or less C, 1% or less Al, 10% or less Cr, 1% or less Cu
Contains one or two of the following, with the remainder substantially
A shape memory alloy characterized by being made of Fe. (3) Mn20~40%, Si3.5~ as weight percentage
8% plus less than 10% Co, less than 2%
1. A shape memory alloy containing one or more of Mo, 1% or less C, and 1% or less Al, and 10% or less Ni, with the balance substantially consisting of Fe. (4) Mn20~40%, Si3.5~ as weight percentage
8% plus less than 10% Co, less than 2%
Contains one or more of Mo, 1% or less C, 1% or less Al, 10% or less Cr, 1% or less Cu, and 10% or less Ni, with the balance A shape memory alloy characterized in that substantially consists of Fe. Here, the reason for limiting the amount of alloying elements contained in the alloy of the present invention will be explained. If Mn is less than 20%, the α' phase is also introduced along with the formation of the ε phase due to stress induction, resulting in a decrease in the shape memory effect. Conversely, when Mn exceeds 40%, γ is stabilized, and γ slip deformation occurs preferentially over γ→ε transformation. Although Si is an element that promotes γ→ε transformation, its sufficient effect can be obtained by adding 3.5% or more. However, if more than 8% of Si is added, the workability and formability of the alloy will be impaired. Cr helps improve corrosion resistance, but when added in excess of 10%, it forms a low melting point intermetallic compound with Si, making it difficult to melt the alloy. Also, Cr is γ→ε
It is also effective in facilitating transformation and improving shape memory properties. Ni contributes to improving toughness without deteriorating shape memory properties, but when added in excess of 10%, hot workability deteriorates. Although Co improves the shape memory effect and hot workability, it is expensive and the effect is not significant even when added in large amounts, so the upper limit was set at 10%. Mo improves the shape memory effect and heat resistance, but if it is added in an amount exceeding 2%, hot workability deteriorates, and conversely, the shape memory properties also deteriorate. Although C improves the shape memory effect, addition of more than 1% significantly deteriorates toughness. Al acts as a deoxidizing agent and improves the shape memory effect, but there is no change in the effect if it is added in an amount of 1% or more. Cu improves corrosion resistance without deteriorating the shape memory effect, but an upper limit of 1% is sufficient for its addition. (Example) Examples are shown below. Examples Table 1 shows the components of alloys produced using a high-frequency heating atmospheric furnace. These are all 1250 ~ after ingot formation.
Hold at 1050℃ for 1 hour, cut out a 0.5 x 1.5 x 30 mm plate material by rolling to obtain a 13 mm thick plate material, apply bending deformation of ~45° at room temperature, and calculate the recovery angle when heated above the Af point as the bending angle The degree of shape memory effect was determined and displayed based on the value divided by . Regarding hot formability, judge from the surface properties of the slab rolled to 13 mm after heating at 1200℃ for 1 hour. If so, it is indicated with an x. Regarding corrosion resistance, a test piece with a shape of 2 x 100 x 100 mm was exposed to the atmosphere for one year, and the amount of corrosion of Fe-30Mn-6Si alloy was set as 100. If it was 20 or less, it was rated ◎. For some, the corrosion resistance was evaluated by a salt spray test (JISZ2371), and red rust occurrence rate after 24 hours of spraying was rated ◎ if it was less than 20%, ○ if it was 20% or more and less than 50%, and △ if it was 50% or more. These results show that the alloy of the present invention not only has excellent shape memory properties, but can also be provided with corrosion resistance if necessary. Table 2 shows the results of impact tests on alloys with added Ni produced in the same manner as above. It can be seen that the absorbed energy at room temperature is improved in the alloy containing Ni.

【表】【table】

【表】 *印、塩水噴霧テストによる評価を示す。
[Table] * indicates evaluation by salt spray test.

【表】 (発明の効果) 以上説明したように本発明は比較的安価な合金
成分系を用い、形状記憶性、耐食性、熱間加工性
のすぐれた形状記憶合金を得ることができる。
[Table] (Effects of the Invention) As explained above, according to the present invention, a shape memory alloy having excellent shape memory properties, corrosion resistance, and hot workability can be obtained using a relatively inexpensive alloy component system.

Claims (1)

【特許請求の範囲】 1 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下のMo、
1%以下のC、1%以下のAlの1種または2種
以上を含有し、残部が実質的にFeよりなること
を特徴とする形状記憶合金。 2 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下のMo、
1%以下のC、1%以下のAlの1種または2種
以上と、10%以下のCr、1%以下のCuの1種ま
たは2種を含有し、残部が実質的にFeよりなる
ことを特徴とする形状記憶合金。 3 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下のMo、
1%以下のC、1%以下のAlの1種または2種
以上と、10%以下のNiを含有し、残部が実質的
にFeよりなることを特徴とする形状記憶合金。 4 重量パーセントとしてMn20〜40%、Si3.5〜
8%に加えて、10%以下のCo、2%以下のMo、
1%以下のC、1%以下のAlの1種または2種
以上、10%以下のCr、1%以下のCuの1種また
は2種、および10%以下のNiを含有し、残部が
実質的にFeよりなることを特徴とする形状記憶
合金。
[Claims] 1. Mn 20-40%, Si 3.5-40% by weight
In addition to 8%, Co of 10% or less, Mo of 2% or less,
A shape memory alloy containing one or more of 1% or less of C and 1% or less of Al, with the remainder being substantially Fe. 2 Mn20~40%, Si3.5~ as weight percentage
In addition to 8%, Co of 10% or less, Mo of 2% or less,
Contains one or more of 1% or less C, 1% or less Al, and 10% or less Cr, 1% or less Cu, with the balance essentially consisting of Fe. A shape memory alloy characterized by 3 Mn20~40%, Si3.5~ as weight percentage
In addition to 8%, Co of 10% or less, Mo of 2% or less,
A shape memory alloy containing one or more of 1% or less of C, 1% or less of Al, and 10% or less of Ni, with the balance substantially consisting of Fe. 4 Mn20~40%, Si3.5~ as weight percentage
In addition to 8%, Co of 10% or less, Mo of 2% or less,
Contains 1% or less of C, 1% or less of one or more of Al, 10% or less of Cr, 1% or less of Cu, and 10% or less of Ni, with the remainder being substantially A shape memory alloy characterized by being essentially composed of Fe.
JP4056185A 1984-09-07 1985-03-01 Shape memory alloy Granted JPS61201761A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4056185A JPS61201761A (en) 1985-03-01 1985-03-01 Shape memory alloy
EP85306285A EP0176272B1 (en) 1984-09-07 1985-09-04 Shape memory alloy and method for producing the same
DE8585306285T DE3573932D1 (en) 1984-09-07 1985-09-04 Shape memory alloy and method for producing the same
US07/024,855 US4780154A (en) 1984-09-07 1987-03-17 Shape memory alloy and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056185A JPS61201761A (en) 1985-03-01 1985-03-01 Shape memory alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22751691A Division JPH0672285B2 (en) 1991-09-07 1991-09-07 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPS61201761A JPS61201761A (en) 1986-09-06
JPH044391B2 true JPH044391B2 (en) 1992-01-28

Family

ID=12583870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056185A Granted JPS61201761A (en) 1984-09-07 1985-03-01 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPS61201761A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1323511C (en) * 1988-04-05 1993-10-26 Hisatoshi Tagawa Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
US4929289A (en) * 1988-04-05 1990-05-29 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
US5032195A (en) * 1989-03-02 1991-07-16 Korea Institute Of Science And Technology FE-base shape memory alloy
JP5035825B2 (en) * 2006-08-31 2012-09-26 独立行政法人物質・材料研究機構 Damping alloy
JP6103746B2 (en) * 2012-08-23 2017-03-29 国立研究開発法人物質・材料研究機構 Free-cutting iron shape memory alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576043A (en) * 1978-11-30 1980-06-07 Nippon Steel Corp Steel having partial form memory effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576043A (en) * 1978-11-30 1980-06-07 Nippon Steel Corp Steel having partial form memory effect

Also Published As

Publication number Publication date
JPS61201761A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
EP0336157B1 (en) Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
EP0176272B1 (en) Shape memory alloy and method for producing the same
EP2617854B1 (en) Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance
JPH06505535A (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JPH05504788A (en) Aluminum-manganese-iron duplex alloy
CA1323511C (en) Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
JPS62170457A (en) Shape memory iron alloy
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
EP1281784B1 (en) Electric resistance material
JPH044391B2 (en)
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
WO1985005129A1 (en) High chromium duplex stainless steel
KR880001356B1 (en) Low interstitial 29% chromium-48% molybdenun weldable ferrite stainless steel containing columbium or titanium
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPS62112720A (en) Improvement of characteristic fe-mn-si shape memory alloy
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
US4578320A (en) Copper-nickel alloys for brazed articles
JP4882246B2 (en) Refractory steel with excellent toughness of weld heat affected zone
JPH04365837A (en) Shape memory alloy
JP2801832B2 (en) Fe-Cr alloy with excellent workability
JPH0586463B2 (en)
JPS61124556A (en) Low nickel austenitic stainless steel sheet and its manufacture
JPH02228451A (en) Iron-base shape memory alloy