JP2739475B2 - High expansion alloy - Google Patents

High expansion alloy

Info

Publication number
JP2739475B2
JP2739475B2 JP63013722A JP1372288A JP2739475B2 JP 2739475 B2 JP2739475 B2 JP 2739475B2 JP 63013722 A JP63013722 A JP 63013722A JP 1372288 A JP1372288 A JP 1372288A JP 2739475 B2 JP2739475 B2 JP 2739475B2
Authority
JP
Japan
Prior art keywords
point
hardness
alloy
less
high expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63013722A
Other languages
Japanese (ja)
Other versions
JPH01191763A (en
Inventor
慶治 大崎
裕 川合
勝彦 福村
和信 山崎
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63013722A priority Critical patent/JP2739475B2/en
Publication of JPH01191763A publication Critical patent/JPH01191763A/en
Application granted granted Critical
Publication of JP2739475B2 publication Critical patent/JP2739475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、安価な高膨張合金に関する。Description: TECHNICAL FIELD The present invention relates to an inexpensive high expansion alloy.

(従来の技術ならびに問題点) 高膨張合金は、Fe−Ni系のいわゆるアンバー型低膨張
合金や普通鋼、ステンレス鋼などと機械的接合あるいは
溶接接合などにより複合部材を構成し、そのバイメタル
機能を利用して温度センサーや温度補償部品として電気
製品などに大量に使用されている。
(Conventional technology and problems) The high expansion alloy is composed of a composite member by mechanical joining or welding joining with so-called amber-type low-expansion alloy of Fe-Ni, ordinary steel, stainless steel, etc. It is widely used as a temperature sensor and temperature compensating component in electrical products.

JIS C 2530に記載されているようにFe−Ni−Cr系合金
は高膨張合金の一種であり、汎用材料として広く利用さ
れている。このFe−Ni−Cr系合金はその化学組成によっ
ては容易にマルテンサイト変態を生じて熱膨張係数の低
下をきたすことがあるため、マルテンサイト変態開始点
(Ms点)が低くなるように組成設計を行なう必要があ
る。
As described in JIS C 2530, Fe-Ni-Cr alloys are a kind of high expansion alloys and are widely used as general-purpose materials. Depending on the chemical composition of this Fe-Ni-Cr alloy, martensitic transformation can easily occur and the thermal expansion coefficient can be reduced. Therefore, the composition design is such that the martensitic transformation start point (Ms point) is low. Need to be done.

Ms点制御の方法としては、たとえば特開昭58−202985
号に、Ms点と、組成の間に次の相関式 Ms=788.4−1358・(C%)−27.1・(Si%)−23.8・(Mn%) −27.9・(Ni%)−40.3・(Cr%)−1358・(N%) …式(1) によって与えられる関係があることが開示されている。
As a method of controlling the Ms point, for example, Japanese Patent Application Laid-Open No. 58-202985
The following correlation equation between the Ms point and the composition: Ms = 788.4-1358 · (C%)-27.1 · (Si%)-23.8 · (Mn%) -27.9 · (Ni%)-40.3 · ( (Cr%)-1358 · (N%) It is disclosed that there is a relationship given by equation (1).

Ms点低下のためには、式(1)における負係数のつい
たCやCrを添加すれば良いのであるが、従来はCr量を増
加することによっていた。なぜならばCを添加すれば侵
入型元素として固溶強化能を持つため材料を硬化して製
造性に悪影響を与えると考えられ、素材特性に最も悪影
響を与えずにMs点を低下しうるのがCrと考えられていた
から原料コストが高騰するにもかかわらずCrがMs点の調
節に用いられていた。
In order to lower the Ms point, C or Cr having a negative coefficient in equation (1) may be added, but conventionally, the Cr amount was increased. The reason is that if C is added, it has a solid solution strengthening ability as an interstitial element, so that it is considered that the material hardens and adversely affects the manufacturability, and the Ms point can be lowered without having the most adverse effect on the material properties. Cr was used to adjust the Ms point despite the rise in raw material costs because it was thought to be Cr.

(問題解決の手段) しかし、本発明者らは鋭意Fe−22Ni−3Cr系合金の焼
鈍材の硬さとC含有量の関係を追求した結果、過度のC
添加でなければ素材硬さをある水準以下に抑えることが
でき、またMs点低下の効果も得られることを見出し、Cr
よりも安価な原料であるC添加による原料コストの安価
な高膨張合金の提供を可能とした。
(Means for Solving the Problem) However, the present inventors have intensively pursued the relationship between the hardness of the annealed material of the Fe-22Ni-3Cr-based alloy and the C content, and as a result, excessive C
Unless added, the material hardness can be suppressed to a certain level or less, and the effect of lowering the Ms point can be obtained.
By adding C, which is a cheaper raw material, a high expansion alloy having a low raw material cost can be provided.

(発明の構成) 本発明は、 Ni:18.0〜23.0% C:0.10〜0.30% Cr:0.5〜4.0% Mn:1.0%以下 Si:1.0%以下 残部がFe及び不可避的不純物からなり,Ms点が−120℃
以下で且つ硬さHvが250以下の高膨張合金を提供する。
(Constitution of the Invention) The present invention is based on the following: Ni: 18.0 to 23.0% C: 0.10 to 0.30% Cr: 0.5 to 4.0% Mn: 1.0% or less Si: 1.0% or less The balance consists of Fe and unavoidable impurities. -120 ° C
Provided is a high expansion alloy having a hardness of not more than 250 and a hardness Hv of not more than 250.

以下本発明における組成限定の理由について述べる。 Hereinafter, the reasons for the composition limitation in the present invention will be described.

Ni:Fe−Ni系合金において熱膨張係数が最も高くなるの
は20%近傍であり、Ni量がこれより低すぎても高すぎて
も熱膨張係数が小さくなるため従来知られているNi含有
量として妥当な18.0〜23.0%とした。
In the case of Ni: Fe-Ni alloys, the coefficient of thermal expansion becomes the highest around 20%, and the thermal expansion coefficient becomes small if the amount of Ni is too low or too high. An appropriate amount was set to 18.0 to 23.0%.

C:CはMs点を低下させるために、0.10%以上を必要とす
る。しかし、過剰の添加はMs点を低下させても素材の硬
化をひき起こすため、その上限は0.30%程度が妥当であ
る。
C: C requires 0.10% or more to lower the Ms point. However, excessive addition causes hardening of the material even if the Ms point is lowered, so the upper limit is about 0.30%.

Cr:Ms点の低下をC添加のみによって図ることは素材硬
化の点から好ましくないため、CのMs点低下能を補強す
るためにはCrを少くとも0.5%含有する必要があると判
断した。多量のCr添加は製造コストを高くするため上限
を4.0%制限した。
Since it is not preferable to lower the Cr: Ms point only by adding C from the viewpoint of material hardening, it was determined that Cr should be contained at least 0.5% in order to reinforce the ability of C to lower the Ms point. The addition of a large amount of Cr limits the upper limit by 4.0% to increase the production cost.

Mn、Sn:Mn、Siともに脱酸剤としての添加量で良いため
通常含有される1.0%以下とした。
Mn, Sn: Since both Mn and Si can be added as deoxidizing agents, the content is usually set to 1.0% or less.

不可避的不純物であるPとSは、凝固割れ感受性や熱
間加工性に悪影響を及ぼすため、できる限り低減するこ
とが望ましく、Pは0.040%以下、Sは0.030%以下とす
る。
P and S, which are inevitable impurities, adversely affect solidification cracking sensitivity and hot workability. Therefore, it is desirable to reduce P and S as much as possible. P is set to 0.040% or less and S is set to 0.030% or less.

(発明の具体的開示) 以下実施例にもとづき本発明を説明する。(Specific Disclosure of the Invention) Hereinafter, the present invention will be described based on examples.

第1図は、第1表に示す合金のビッカース硬さと、式
(1)から算出したMs点とをC含有量で整理した結果得
られたものである。C含有量の増加に伴いMs点は単調に
低下する。硬さは約0.1%Cまでは、C含有量の増加に
伴い低下するが、約0.1%Cを越えると逆にC含有量の
増加に伴い硬化することを示す。
FIG. 1 shows the results obtained by arranging the Vickers hardness of the alloys shown in Table 1 and the Ms point calculated from the equation (1) by the C content. As the C content increases, the Ms point decreases monotonously. The hardness decreases with increasing C content up to about 0.1% C, but when it exceeds about 0.1% C, the hardness hardens with increasing C content.

第1表に示す成分の合金を溶製し、30kgおよび250kg
の鋼塊を得た。続いて鋼塊を熱間鍛造→疵取→熱間圧延
→焼鈍・研磨→冷間圧延→焼鈍・研磨の工程を経て熱膨
張係数測定用試料(1.5t×5w×50L)と硬さ測定の試料
を作製した。
Melt alloys of the components shown in Table 1
Was obtained. Subsequently, the steel ingot is subjected to the steps of hot forging → flaw removal → hot rolling → annealing and polishing → cold rolling → annealing and polishing and the sample for thermal expansion coefficient measurement (1.5 t × 5 w × 50 L ) and hardness A sample for measurement was prepared.

熱膨張係数は室温から100℃の温度範囲で測定した。
硬さはビッカース硬度計により荷重5kgにより測定し
た。
The coefficient of thermal expansion was measured in a temperature range from room temperature to 100 ° C.
Hardness was measured by a Vickers hardness tester under a load of 5 kg.

第1表中に熱膨張係数と硬さの測定結果を示す。 Table 1 shows the measurement results of the coefficient of thermal expansion and the hardness.

第1表中に示すように、本発明合金はMs点が−120℃
以下と低く熱膨張係数が19.0×10-6cm/cm/℃以上であ
り、硬さもHv250未満である。それに対して比較合金で
はC値が低い場合にはMs点が高く、組織の一部がマルテ
ンサイト化しているため熱膨張係数が19.0×10-6cm/cm/
℃未満となってしまう。逆にC値が高い場合にはMs点が
低いため、熱膨張係数は高いが素材硬さがHv250を越え
るため製造上好ましくない。
As shown in Table 1, the alloy of the present invention has an Ms point of -120 ° C.
The thermal expansion coefficient is as low as 19.0 × 10 −6 cm / cm / ° C. or more, and the hardness is less than Hv250. On the other hand, in the comparative alloy, when the C value is low, the Ms point is high, and since a part of the structure is martensitic, the coefficient of thermal expansion is 19.0 × 10 −6 cm / cm /.
It will be less than ° C. Conversely, when the C value is high, the Ms point is low, and the coefficient of thermal expansion is high, but the material hardness exceeds Hv250, which is not preferable in production.

また、Ni量が本発明の範囲外にある場合には熱膨張係
数が低下する。
When the Ni content is out of the range of the present invention, the thermal expansion coefficient decreases.

以上述べたように、本発明は、高膨張特性を有する合
金を従来より安価に製造し、提供することができるた
め、温度補償部品用材料等に、より一層の汎用化が可能
であり作業の発展に貢献することができる。
As described above, the present invention can manufacture and provide an alloy having a high expansion characteristic at a lower cost than before, so that it is possible to further generalize the material for temperature compensating parts and the like, and to carry out the work. Can contribute to development.

【図面の簡単な説明】[Brief description of the drawings]

第1図はFe−22Ni−3Cr系合金焼鈍材のC含有量と硬さ
及びMs点との関係を示す。
FIG. 1 shows the relationship between the C content, hardness, and Ms point of the annealed Fe-22Ni-3Cr alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福村 勝彦 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (72)発明者 山崎 和信 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (72)発明者 山本 修 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (56)参考文献 特開 昭58−202985(JP,A) 特開 昭59−215464(JP,A) ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Katsuhiko Fukumura 4976 Tomita, Oji, Shinnanyo-shi, Yamaguchi Prefecture Inside Shunan Laboratory, Nissin Steel Co., Ltd. (72) Kazunobu Yamazaki 4976 Tomita, Oaza, Shinnanyo-shi, Yamaguchi Prefecture Shunan Laboratory Co., Ltd. (72) Inventor Osamu Yamamoto 4976 Tomita, Oita, Shinnanyo-shi, Yamaguchi Prefecture Nisshin Steel Corporation Shunan Laboratory Co., Ltd. (56) References JP-A-58-202985 (JP, A) JP-A-59- 215464 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni:18.0〜23.0% C:0.10〜0.30% Cr:0.5〜4.0% Mn:1.0%以下 Si:1.0%以下 残部がFe及び不可避的不純物からなり,Ms点が−120℃以
下で且つ硬さHvが250以下の高膨張合金。
1. Ni: 18.0 to 23.0% C: 0.10 to 0.30% Cr: 0.5 to 4.0% Mn: 1.0% or less Si: 1.0% or less The balance consists of Fe and unavoidable impurities, and the Ms point is -120 ° C or less. High expansion alloy with a hardness Hv of 250 or less.
JP63013722A 1988-01-26 1988-01-26 High expansion alloy Expired - Fee Related JP2739475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63013722A JP2739475B2 (en) 1988-01-26 1988-01-26 High expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63013722A JP2739475B2 (en) 1988-01-26 1988-01-26 High expansion alloy

Publications (2)

Publication Number Publication Date
JPH01191763A JPH01191763A (en) 1989-08-01
JP2739475B2 true JP2739475B2 (en) 1998-04-15

Family

ID=11841137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63013722A Expired - Fee Related JP2739475B2 (en) 1988-01-26 1988-01-26 High expansion alloy

Country Status (1)

Country Link
JP (1) JP2739475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371123B2 (en) 2017-09-01 2022-06-28 Shinhokoku Material Corp. Low thermal expansion alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035238B2 (en) * 1982-05-20 1985-08-13 住友特殊金属株式会社 Bimetal manufacturing method
JPS59215464A (en) * 1983-05-20 1984-12-05 Daido Steel Co Ltd High-strength high-expansion bolt

Also Published As

Publication number Publication date
JPH01191763A (en) 1989-08-01

Similar Documents

Publication Publication Date Title
US4078920A (en) Austenitic stainless steel with high molybdenum content
EP0306578B1 (en) Ferritic stainless steel and process for producing
EP0657558A1 (en) Fe-base superalloy
US5468305A (en) Method of lowering permeability of difficult-to-work Co alloy
CA1038205A (en) Low expansion iron-nickel based alloys
US6692585B2 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
US20010045246A1 (en) Iron-nickel alloy having a low coefficient of expansion
JP2739475B2 (en) High expansion alloy
JPS5945752B2 (en) Strong precipitation hardening austenitic heat resistant steel
US4405390A (en) High strength stainless steel having excellent intergranular corrosion cracking resistance and workability
JP3779043B2 (en) Duplex stainless steel
US4022586A (en) Austenitic chromium-nickel-copper stainless steel and articles
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JPS59126757A (en) Stainless cast steel of precipitation hardening type for casting strain inducing body of load cell
JPS62278252A (en) Free-cutting austenitic stainless steel
JPH02310345A (en) Ferritic stainless steel for cold forging having excellent electromagnetic characteristics
JP3587949B2 (en) High strength and high expansion alloys and materials
JPH045726B2 (en)
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP2733787B2 (en) High expansion alloy
JP3030065B2 (en) High expansion alloy
JPS6142778B2 (en)
JP2897991B2 (en) Manufacturing method of high temperature ductile non-heat treated tellurium free-cutting steel using curved continuous casting equipment
JPH09143632A (en) Precipitation hardening stainless steel
JPH04218649A (en) Manufacture of ti-al intermetallic compound type alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees