JP2739475B2 - High expansion alloy - Google Patents
High expansion alloyInfo
- Publication number
- JP2739475B2 JP2739475B2 JP63013722A JP1372288A JP2739475B2 JP 2739475 B2 JP2739475 B2 JP 2739475B2 JP 63013722 A JP63013722 A JP 63013722A JP 1372288 A JP1372288 A JP 1372288A JP 2739475 B2 JP2739475 B2 JP 2739475B2
- Authority
- JP
- Japan
- Prior art keywords
- point
- hardness
- alloy
- less
- high expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、安価な高膨張合金に関する。Description: TECHNICAL FIELD The present invention relates to an inexpensive high expansion alloy.
(従来の技術ならびに問題点) 高膨張合金は、Fe−Ni系のいわゆるアンバー型低膨張
合金や普通鋼、ステンレス鋼などと機械的接合あるいは
溶接接合などにより複合部材を構成し、そのバイメタル
機能を利用して温度センサーや温度補償部品として電気
製品などに大量に使用されている。(Conventional technology and problems) The high expansion alloy is composed of a composite member by mechanical joining or welding joining with so-called amber-type low-expansion alloy of Fe-Ni, ordinary steel, stainless steel, etc. It is widely used as a temperature sensor and temperature compensating component in electrical products.
JIS C 2530に記載されているようにFe−Ni−Cr系合金
は高膨張合金の一種であり、汎用材料として広く利用さ
れている。このFe−Ni−Cr系合金はその化学組成によっ
ては容易にマルテンサイト変態を生じて熱膨張係数の低
下をきたすことがあるため、マルテンサイト変態開始点
(Ms点)が低くなるように組成設計を行なう必要があ
る。As described in JIS C 2530, Fe-Ni-Cr alloys are a kind of high expansion alloys and are widely used as general-purpose materials. Depending on the chemical composition of this Fe-Ni-Cr alloy, martensitic transformation can easily occur and the thermal expansion coefficient can be reduced. Therefore, the composition design is such that the martensitic transformation start point (Ms point) is low. Need to be done.
Ms点制御の方法としては、たとえば特開昭58−202985
号に、Ms点と、組成の間に次の相関式 Ms=788.4−1358・(C%)−27.1・(Si%)−23.8・(Mn%) −27.9・(Ni%)−40.3・(Cr%)−1358・(N%) …式(1) によって与えられる関係があることが開示されている。As a method of controlling the Ms point, for example, Japanese Patent Application Laid-Open No. 58-202985
The following correlation equation between the Ms point and the composition: Ms = 788.4-1358 · (C%)-27.1 · (Si%)-23.8 · (Mn%) -27.9 · (Ni%)-40.3 · ( (Cr%)-1358 · (N%) It is disclosed that there is a relationship given by equation (1).
Ms点低下のためには、式(1)における負係数のつい
たCやCrを添加すれば良いのであるが、従来はCr量を増
加することによっていた。なぜならばCを添加すれば侵
入型元素として固溶強化能を持つため材料を硬化して製
造性に悪影響を与えると考えられ、素材特性に最も悪影
響を与えずにMs点を低下しうるのがCrと考えられていた
から原料コストが高騰するにもかかわらずCrがMs点の調
節に用いられていた。In order to lower the Ms point, C or Cr having a negative coefficient in equation (1) may be added, but conventionally, the Cr amount was increased. The reason is that if C is added, it has a solid solution strengthening ability as an interstitial element, so that it is considered that the material hardens and adversely affects the manufacturability, and the Ms point can be lowered without having the most adverse effect on the material properties. Cr was used to adjust the Ms point despite the rise in raw material costs because it was thought to be Cr.
(問題解決の手段) しかし、本発明者らは鋭意Fe−22Ni−3Cr系合金の焼
鈍材の硬さとC含有量の関係を追求した結果、過度のC
添加でなければ素材硬さをある水準以下に抑えることが
でき、またMs点低下の効果も得られることを見出し、Cr
よりも安価な原料であるC添加による原料コストの安価
な高膨張合金の提供を可能とした。(Means for Solving the Problem) However, the present inventors have intensively pursued the relationship between the hardness of the annealed material of the Fe-22Ni-3Cr-based alloy and the C content, and as a result, excessive C
Unless added, the material hardness can be suppressed to a certain level or less, and the effect of lowering the Ms point can be obtained.
By adding C, which is a cheaper raw material, a high expansion alloy having a low raw material cost can be provided.
(発明の構成) 本発明は、 Ni:18.0〜23.0% C:0.10〜0.30% Cr:0.5〜4.0% Mn:1.0%以下 Si:1.0%以下 残部がFe及び不可避的不純物からなり,Ms点が−120℃
以下で且つ硬さHvが250以下の高膨張合金を提供する。(Constitution of the Invention) The present invention is based on the following: Ni: 18.0 to 23.0% C: 0.10 to 0.30% Cr: 0.5 to 4.0% Mn: 1.0% or less Si: 1.0% or less The balance consists of Fe and unavoidable impurities. -120 ° C
Provided is a high expansion alloy having a hardness of not more than 250 and a hardness Hv of not more than 250.
以下本発明における組成限定の理由について述べる。 Hereinafter, the reasons for the composition limitation in the present invention will be described.
Ni:Fe−Ni系合金において熱膨張係数が最も高くなるの
は20%近傍であり、Ni量がこれより低すぎても高すぎて
も熱膨張係数が小さくなるため従来知られているNi含有
量として妥当な18.0〜23.0%とした。In the case of Ni: Fe-Ni alloys, the coefficient of thermal expansion becomes the highest around 20%, and the thermal expansion coefficient becomes small if the amount of Ni is too low or too high. An appropriate amount was set to 18.0 to 23.0%.
C:CはMs点を低下させるために、0.10%以上を必要とす
る。しかし、過剰の添加はMs点を低下させても素材の硬
化をひき起こすため、その上限は0.30%程度が妥当であ
る。C: C requires 0.10% or more to lower the Ms point. However, excessive addition causes hardening of the material even if the Ms point is lowered, so the upper limit is about 0.30%.
Cr:Ms点の低下をC添加のみによって図ることは素材硬
化の点から好ましくないため、CのMs点低下能を補強す
るためにはCrを少くとも0.5%含有する必要があると判
断した。多量のCr添加は製造コストを高くするため上限
を4.0%制限した。Since it is not preferable to lower the Cr: Ms point only by adding C from the viewpoint of material hardening, it was determined that Cr should be contained at least 0.5% in order to reinforce the ability of C to lower the Ms point. The addition of a large amount of Cr limits the upper limit by 4.0% to increase the production cost.
Mn、Sn:Mn、Siともに脱酸剤としての添加量で良いため
通常含有される1.0%以下とした。Mn, Sn: Since both Mn and Si can be added as deoxidizing agents, the content is usually set to 1.0% or less.
不可避的不純物であるPとSは、凝固割れ感受性や熱
間加工性に悪影響を及ぼすため、できる限り低減するこ
とが望ましく、Pは0.040%以下、Sは0.030%以下とす
る。P and S, which are inevitable impurities, adversely affect solidification cracking sensitivity and hot workability. Therefore, it is desirable to reduce P and S as much as possible. P is set to 0.040% or less and S is set to 0.030% or less.
(発明の具体的開示) 以下実施例にもとづき本発明を説明する。(Specific Disclosure of the Invention) Hereinafter, the present invention will be described based on examples.
第1図は、第1表に示す合金のビッカース硬さと、式
(1)から算出したMs点とをC含有量で整理した結果得
られたものである。C含有量の増加に伴いMs点は単調に
低下する。硬さは約0.1%Cまでは、C含有量の増加に
伴い低下するが、約0.1%Cを越えると逆にC含有量の
増加に伴い硬化することを示す。FIG. 1 shows the results obtained by arranging the Vickers hardness of the alloys shown in Table 1 and the Ms point calculated from the equation (1) by the C content. As the C content increases, the Ms point decreases monotonously. The hardness decreases with increasing C content up to about 0.1% C, but when it exceeds about 0.1% C, the hardness hardens with increasing C content.
第1表に示す成分の合金を溶製し、30kgおよび250kg
の鋼塊を得た。続いて鋼塊を熱間鍛造→疵取→熱間圧延
→焼鈍・研磨→冷間圧延→焼鈍・研磨の工程を経て熱膨
張係数測定用試料(1.5t×5w×50L)と硬さ測定の試料
を作製した。Melt alloys of the components shown in Table 1
Was obtained. Subsequently, the steel ingot is subjected to the steps of hot forging → flaw removal → hot rolling → annealing and polishing → cold rolling → annealing and polishing and the sample for thermal expansion coefficient measurement (1.5 t × 5 w × 50 L ) and hardness A sample for measurement was prepared.
熱膨張係数は室温から100℃の温度範囲で測定した。
硬さはビッカース硬度計により荷重5kgにより測定し
た。The coefficient of thermal expansion was measured in a temperature range from room temperature to 100 ° C.
Hardness was measured by a Vickers hardness tester under a load of 5 kg.
第1表中に熱膨張係数と硬さの測定結果を示す。 Table 1 shows the measurement results of the coefficient of thermal expansion and the hardness.
第1表中に示すように、本発明合金はMs点が−120℃
以下と低く熱膨張係数が19.0×10-6cm/cm/℃以上であ
り、硬さもHv250未満である。それに対して比較合金で
はC値が低い場合にはMs点が高く、組織の一部がマルテ
ンサイト化しているため熱膨張係数が19.0×10-6cm/cm/
℃未満となってしまう。逆にC値が高い場合にはMs点が
低いため、熱膨張係数は高いが素材硬さがHv250を越え
るため製造上好ましくない。As shown in Table 1, the alloy of the present invention has an Ms point of -120 ° C.
The thermal expansion coefficient is as low as 19.0 × 10 −6 cm / cm / ° C. or more, and the hardness is less than Hv250. On the other hand, in the comparative alloy, when the C value is low, the Ms point is high, and since a part of the structure is martensitic, the coefficient of thermal expansion is 19.0 × 10 −6 cm / cm /.
It will be less than ° C. Conversely, when the C value is high, the Ms point is low, and the coefficient of thermal expansion is high, but the material hardness exceeds Hv250, which is not preferable in production.
また、Ni量が本発明の範囲外にある場合には熱膨張係
数が低下する。When the Ni content is out of the range of the present invention, the thermal expansion coefficient decreases.
以上述べたように、本発明は、高膨張特性を有する合
金を従来より安価に製造し、提供することができるた
め、温度補償部品用材料等に、より一層の汎用化が可能
であり作業の発展に貢献することができる。As described above, the present invention can manufacture and provide an alloy having a high expansion characteristic at a lower cost than before, so that it is possible to further generalize the material for temperature compensating parts and the like, and to carry out the work. Can contribute to development.
第1図はFe−22Ni−3Cr系合金焼鈍材のC含有量と硬さ
及びMs点との関係を示す。FIG. 1 shows the relationship between the C content, hardness, and Ms point of the annealed Fe-22Ni-3Cr alloy.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 福村 勝彦 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (72)発明者 山崎 和信 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (72)発明者 山本 修 山口県新南陽市大字富田4976番地 日新 製鋼株式会社周南研究所内 (56)参考文献 特開 昭58−202985(JP,A) 特開 昭59−215464(JP,A) ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Katsuhiko Fukumura 4976 Tomita, Oji, Shinnanyo-shi, Yamaguchi Prefecture Inside Shunan Laboratory, Nissin Steel Co., Ltd. (72) Kazunobu Yamazaki 4976 Tomita, Oaza, Shinnanyo-shi, Yamaguchi Prefecture Shunan Laboratory Co., Ltd. (72) Inventor Osamu Yamamoto 4976 Tomita, Oita, Shinnanyo-shi, Yamaguchi Prefecture Nisshin Steel Corporation Shunan Laboratory Co., Ltd. (56) References JP-A-58-202985 (JP, A) JP-A-59- 215464 (JP, A)
Claims (1)
下で且つ硬さHvが250以下の高膨張合金。1. Ni: 18.0 to 23.0% C: 0.10 to 0.30% Cr: 0.5 to 4.0% Mn: 1.0% or less Si: 1.0% or less The balance consists of Fe and unavoidable impurities, and the Ms point is -120 ° C or less. High expansion alloy with a hardness Hv of 250 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013722A JP2739475B2 (en) | 1988-01-26 | 1988-01-26 | High expansion alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013722A JP2739475B2 (en) | 1988-01-26 | 1988-01-26 | High expansion alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01191763A JPH01191763A (en) | 1989-08-01 |
JP2739475B2 true JP2739475B2 (en) | 1998-04-15 |
Family
ID=11841137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63013722A Expired - Fee Related JP2739475B2 (en) | 1988-01-26 | 1988-01-26 | High expansion alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2739475B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11371123B2 (en) | 2017-09-01 | 2022-06-28 | Shinhokoku Material Corp. | Low thermal expansion alloy |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035238B2 (en) * | 1982-05-20 | 1985-08-13 | 住友特殊金属株式会社 | Bimetal manufacturing method |
JPS59215464A (en) * | 1983-05-20 | 1984-12-05 | Daido Steel Co Ltd | High-strength high-expansion bolt |
-
1988
- 1988-01-26 JP JP63013722A patent/JP2739475B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01191763A (en) | 1989-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4078920A (en) | Austenitic stainless steel with high molybdenum content | |
EP0306578B1 (en) | Ferritic stainless steel and process for producing | |
EP0657558A1 (en) | Fe-base superalloy | |
US5468305A (en) | Method of lowering permeability of difficult-to-work Co alloy | |
CA1038205A (en) | Low expansion iron-nickel based alloys | |
US6692585B2 (en) | Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy | |
US20010045246A1 (en) | Iron-nickel alloy having a low coefficient of expansion | |
JP2739475B2 (en) | High expansion alloy | |
JPS5945752B2 (en) | Strong precipitation hardening austenitic heat resistant steel | |
US4405390A (en) | High strength stainless steel having excellent intergranular corrosion cracking resistance and workability | |
JP3779043B2 (en) | Duplex stainless steel | |
US4022586A (en) | Austenitic chromium-nickel-copper stainless steel and articles | |
JP2664499B2 (en) | Ni-Cr austenitic stainless steel with excellent creep rupture characteristics | |
JPS59126757A (en) | Stainless cast steel of precipitation hardening type for casting strain inducing body of load cell | |
JPS62278252A (en) | Free-cutting austenitic stainless steel | |
JPH02310345A (en) | Ferritic stainless steel for cold forging having excellent electromagnetic characteristics | |
JP3587949B2 (en) | High strength and high expansion alloys and materials | |
JPH045726B2 (en) | ||
JP3451771B2 (en) | High strength low thermal expansion alloy wire rod and method of manufacturing the same | |
JP2733787B2 (en) | High expansion alloy | |
JP3030065B2 (en) | High expansion alloy | |
JPS6142778B2 (en) | ||
JP2897991B2 (en) | Manufacturing method of high temperature ductile non-heat treated tellurium free-cutting steel using curved continuous casting equipment | |
JPH09143632A (en) | Precipitation hardening stainless steel | |
JPH04218649A (en) | Manufacture of ti-al intermetallic compound type alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |