JP2961585B2 - Method for deep desulfurization of medium and light oil - Google Patents

Method for deep desulfurization of medium and light oil

Info

Publication number
JP2961585B2
JP2961585B2 JP5045154A JP4515493A JP2961585B2 JP 2961585 B2 JP2961585 B2 JP 2961585B2 JP 5045154 A JP5045154 A JP 5045154A JP 4515493 A JP4515493 A JP 4515493A JP 2961585 B2 JP2961585 B2 JP 2961585B2
Authority
JP
Japan
Prior art keywords
catalyst
desulfurization
nickel
amount
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5045154A
Other languages
Japanese (ja)
Other versions
JPH0680972A (en
Inventor
欣也 俵
彦一 岩波
武 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSUMO SEKYU KK
SEKYU SANGYO KATSUSEIKA SENTAA
Original Assignee
KOSUMO SEKYU KK
SEKYU SANGYO KATSUSEIKA SENTAA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSUMO SEKYU KK, SEKYU SANGYO KATSUSEIKA SENTAA filed Critical KOSUMO SEKYU KK
Priority to JP5045154A priority Critical patent/JP2961585B2/en
Publication of JPH0680972A publication Critical patent/JPH0680972A/en
Application granted granted Critical
Publication of JP2961585B2 publication Critical patent/JP2961585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はナフサ、灯油等を中心と
する中軽質油の深度脱硫方法に関し、特に、これら中軽
質油の水蒸気改質により水素を発生させる際の前処理工
程として行われる原料である中軽質油の深度脱硫方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for deep desulfurization of medium and light oils such as naphtha and kerosene, and more particularly to a pretreatment step for generating hydrogen by steam reforming of these medium and light oils. The present invention relates to a method for deep desulfurization of medium and light oil as a raw material.

【0002】[0002]

【従来の技術】工業用又は燃料電池システム等にて用い
る水素を、ナフサ、灯油等の中軽質油の水蒸気改質にて
得る場合には、水蒸気改質触媒を保護する目的でこれら
中軽質油からなる原料油中の全硫黄分を予め0.5wtpp
m 以下、好ましくは0.2wtppm 以下までに脱硫してお
く必要がある。従来、上記原料の水蒸気改質に先だって
行われている代表的な脱硫法は、Ni−Mo系又はCo
−Mo系触媒の存在下、水素気流中、約300〜400
℃、圧力約15〜40kg/cm2Gにて原料中の有機硫黄
を水添分解した後、生成するH2SをZnOにて吸着さ
せて除去する水添脱硫方法〔以下、脱硫法(1)とい
う〕である。また、この他に灯油を原料として用い、大
量のNiを担持させた比表面積50m2/g以上の触媒を
用いて吸着脱硫する方法が知られている〔特開平1−1
88405号公報,以下、脱硫法(2)という〕。
2. Description of the Related Art When hydrogen used in industrial or fuel cell systems is obtained by steam reforming of medium and light oils such as naphtha and kerosene, these medium and light oils are protected in order to protect the steam reforming catalyst. 0.5wtpp in advance for the total sulfur content in the feedstock
m or less, preferably to 0.2 wtppm or less. Conventionally, a typical desulfurization method performed prior to the steam reforming of the above-mentioned raw material is a Ni-Mo-based or Co-
About 300 to 400 in a hydrogen stream in the presence of a Mo-based catalyst
° C., after hydrogenolysis of organic sulfur in the feed at a pressure of about 15~40kg / cm 2 G, hydrodesulfurization process for removing by adsorbing generated H 2 S in ZnO [hereinafter desulfurization (1 ). In addition, another method is known in which kerosene is used as a raw material and adsorptive desulfurization is carried out using a catalyst supporting a large amount of Ni and having a specific surface area of 50 m 2 / g or more [Japanese Patent Application Laid-Open No. Hei 1-1]
No. 88405, hereinafter referred to as desulfurization method (2)].

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記脱
硫法(1)において原料中の硫黄分を充分に低減させる
ためには、約95%以上もの高純度の水素ガスを用いる
ことが不可欠であった。これに対し、工業用の水素製造
装置においては、水蒸気改質工程の後、生成ガス中に含
まれるCO、CO2 を除去して水素純度を高めるため、
脱炭酸工程等が設置されており、水素純度を約95%以
上に保持することを可能としている。そして、この目的
物たる高純度の水素ガスの一部を循環して原料の脱硫工
程に供給することにより、硫黄分濃度約0.5wtppm 以
下までの脱硫を達成している。
However, in order to sufficiently reduce the sulfur content in the raw material in the desulfurization method (1), it is essential to use hydrogen gas having a high purity of about 95% or more. . On the other hand, in an industrial hydrogen production apparatus, after the steam reforming step, CO and CO 2 contained in the product gas are removed to increase the hydrogen purity.
A decarboxylation step and the like are provided to enable the hydrogen purity to be maintained at about 95% or more. By circulating a part of the high-purity hydrogen gas as the target and supplying it to the raw material desulfurization step, desulfurization to a sulfur concentration of about 0.5 wtppm or less is achieved.

【0004】ところで、前述の燃料電池システム等にお
いては、ナフサ、灯油等の中軽質油を原料として水素を
得るためには、装置を小型化し、かつ安全対策上、低圧
下の条件で効率よく得られることが要求される。この要
求に応えて、装置を小型化するには、上記の脱炭酸工程
を不要とし、また10kg/cm2G以下の圧力で、かつ高
純度の水素の代わりに、水蒸気改質後のガスに含まれる
COをCO2 に転化し、このCO2 を含有する水素ガス
を用いて、原料中の硫黄分を約0.5wtppm 以下程度ま
でに脱硫することが考えられる。しかし、前述の脱硫法
(1)では、用いる水素ガス中にCO2 が含まれている
と脱硫効率が低下し、原料油中の硫黄分を所定量までに
低減することが困難であった。
In the above-mentioned fuel cell system and the like, in order to obtain hydrogen from a medium or light oil such as naphtha or kerosene as a raw material, the size of the apparatus is reduced, and in terms of safety measures, it is efficiently obtained under low pressure conditions. Is required to be In order to respond to this demand, in order to reduce the size of the apparatus, the above-described decarboxylation step is not required, and the gas after steam reforming is used at a pressure of 10 kg / cm 2 G or less and instead of high-purity hydrogen. It is conceivable to convert the contained CO into CO 2 and desulfurize the sulfur content of the raw material to about 0.5 wtppm or less using the CO 2 -containing hydrogen gas. However, in the desulfurization method (1) described above, if CO 2 is contained in the hydrogen gas used, the desulfurization efficiency is reduced, and it has been difficult to reduce the sulfur content in the feedstock oil to a predetermined amount.

【0005】また、前記脱硫法(2)で用いる触媒はN
i担持量が多いため、この触媒を用いて吸着脱硫を行う
と触媒寿命が短くなり、更にメタネーション反応が生起
し、排ガス中のメタン濃度が上昇し、発熱により温度制
御が困難になるという欠点があった。
The catalyst used in the desulfurization method (2) is N
Due to the large amount of i supported, the adsorption desulfurization using this catalyst shortens the life of the catalyst, further causes a methanation reaction, increases the methane concentration in the exhaust gas, and makes it difficult to control the temperature due to heat generation. was there.

【0006】従って、本発明は低圧条件下において、C
2 を含有する水素ガスを用いても、メタネーション反
応を伴わず、触媒寿命を減少させずにナフサ、灯油等の
中軽質油の硫黄分濃度を0.5wtppm 以下にまで低減で
きる深度脱硫方法を提供することを目的とする。
Accordingly, the present invention provides a method for producing C
Depth desulfurization method that can reduce the sulfur concentration of medium and light oils such as naphtha and kerosene to 0.5 wtppm or less without using methanation reaction and reducing catalyst life even when using hydrogen gas containing O 2 The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは、
上記の目的を達成するため鋭意研究した結果、所定量の
ニッケル又は酸化ニッケルを酸化亜鉛に担持させた触媒
を用いれば、低圧条件でCO含有水素ガスを用いても
原料中の有機硫黄の水添分解及び当該反応により発生し
たHS吸着除去の両者を極めて効率よく行うことがで
きること、更にこの触媒の40℃における一酸化窒素吸
着量を特定の範囲とすればメタネーションを防止でき、
かつ触媒寿命が延長されることを見出し、本発明を完成
するに至った。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of intensive studies for achieving the above object, a predetermined amount of nickel or the use of the nickel oxide was supported on zinc oxide catalyst, an organic sulfur water in the raw material be used CO 2 containing hydrogen gas at a low pressure condition Both the decomposition and the adsorption and removal of H 2 S generated by the reaction can be performed extremely efficiently, and furthermore, methanation can be prevented by setting the adsorption amount of nitric oxide at 40 ° C. of the catalyst to a specific range,
In addition, they have found that the life of the catalyst is extended, and have completed the present invention.

【0008】すなわち、本発明は中軽質油を脱硫する方
法において、水素を含有するガスの存在下、ニッケル又
は酸化ニッケルを酸化亜鉛に金属換算で40重量%未満
担持し、40℃において触媒表面積の単位面積当たり
0.02cc/m以上の一酸化窒素吸着能を有する触
媒を用いて、温度180〜440℃、LHSV 0.1
〜2h−1、圧力30kg/cmG以下の条件下で脱
硫することを特徴とする中軽質油の深度脱硫方法に係る
ものである。
That is, the present invention relates to a method for desulfurizing a medium-to-light oil, comprising: supporting nickel or nickel oxide on zinc oxide in an amount of less than 40% by weight in terms of metal in the presence of a hydrogen-containing gas; Using a catalyst having a capacity of adsorbing nitric oxide of 0.02 cc / m 2 or more per unit area, a temperature of 180 to 440 ° C. and an LHSV of 0.1
The present invention relates to a method for deep desulfurization of medium and light oils, wherein desulfurization is performed under the conditions of 22 h −1 and a pressure of 30 kg / cm 2 G or less.

【0009】以下、本発明を詳細に説明する。本発明で
使用される触媒は、ニッケル又は酸化ニッケル(以下、
説明の便宜上単にNiと記す)を金属換算で40重量%
未満酸化亜鉛に担持させたものであって、40℃におい
て触媒面積の単位面積当たり0.02cc/m以上の
一酸化窒素吸着能(以下、単にNO吸着能と記す)を有
するものである。また、NiのZnOへの担持量は、1
重量%以上であれば特に制限されないが40重量%未
満、特に2〜30重量%とするのが好ましい。1重量%
未満では、Niによる脱硫効果が充分でなく、40重量
%以上になると脱硫効果が飽和し、メタネーション反応
が生起し、発熱し、反応温度の制御が困難になる。
Hereinafter, the present invention will be described in detail. The catalyst used in the present invention is nickel or nickel oxide (hereinafter, referred to as nickel oxide or nickel oxide).
40% by weight in metal conversion)
It is supported on zinc oxide, and has a nitrogen monoxide adsorption capacity (hereinafter simply referred to as NO adsorption capacity) of 0.02 cc / m 2 or more per unit area of the catalyst area at 40 ° C. The amount of Ni supported on ZnO is 1
The amount is not particularly limited as long as it is not less than 40% by weight, but is preferably less than 40% by weight, particularly preferably 2 to 30% by weight. 1% by weight
If it is less than 30, the desulfurization effect of Ni is not sufficient, and if it exceeds 40% by weight, the desulfurization effect is saturated, a methanation reaction occurs, heat is generated, and it becomes difficult to control the reaction temperature.

【0010】触媒のNO吸着能が0.02cc/m
満の場合には、脱硫活性が低く、目標とする硫黄分を得
ることが困難となる。触媒のNO吸着能は、活性金属の
担体への分散性を示すものと位置付けられるが、本発明
においては活性金属の脱硫活性とNO吸着能との間に相
関性があることが見出された。従って、NO吸着量が大
きければ活性金属の脱硫能力も大きいので、用いる活性
金属がNO吸着能を最大に発揮する条件で反応を行うの
が好ましい。活性金属が最大NO吸着量を示す条件は、
担体と反応温度の両者が関係し、担体として酸化亜鉛を
用いる本発明においては、約300℃以上の高温域で最
大NO吸着能が得られる。
When the NO adsorption capacity of the catalyst is less than 0.02 cc / m 2 , the desulfurization activity is low, and it is difficult to obtain a target sulfur content. The NO adsorbing ability of the catalyst is considered to indicate the dispersibility of the active metal on the carrier. In the present invention, however, it has been found that there is a correlation between the desulfurizing activity of the active metal and the NO adsorbing ability. . Therefore, since the desulfurization ability of the active metal is large when the NO adsorption amount is large, it is preferable to carry out the reaction under the condition that the active metal used exhibits the NO adsorption ability to the maximum. Conditions under which the active metal exhibits the maximum NO adsorption amount are as follows:
Both the carrier and the reaction temperature are related, and in the present invention using zinc oxide as the carrier, the maximum NO adsorption ability is obtained in a high temperature range of about 300 ° C. or higher.

【0011】尚、ここでNO吸着量は、NiをZnOに
担持した触媒をその触媒の使用温度域まで上昇させた
後、約1〜3時間程度、水素気流中で還元処理し、40
℃まで降温させた後にヘリウム気流中で一定量のNOを
放出し、平衡に達するまで触媒にNOを吸着させ、吸着
前後のNO量の差から測定することができる。
Here, the NO adsorption amount is determined by increasing the catalyst carrying Ni on ZnO to the operating temperature range of the catalyst, and then reducing the catalyst in a hydrogen stream for about 1 to 3 hours.
After the temperature is lowered to ° C., a certain amount of NO is released in a helium stream, NO is adsorbed on the catalyst until equilibrium is reached, and measurement can be made from the difference in NO amount before and after adsorption.

【0012】本発明に用いられる触媒の場合、その比表
面積は特に制限されないが、約2m 2/g以上の比表面
積があれば充分に高い反応速度が得られる。一方、比表
面積があまり大きい場合は、単位触媒床容積あたりの触
媒充填量が減少し、単位触媒床容積あたりのH2S吸着
量が減少することにより触媒寿命が減少することがあ
る。従って、触媒の好ましい比表面積は約2〜150m
2/gであり、より好ましくは約3〜110m2/gであ
る。
In the case of the catalyst used in the present invention, its ratio table
The area is not particularly limited, but about 2 m Two/ G or more specific surface
A sufficiently high reaction rate can be obtained with the product. Meanwhile, the ratio table
If the area is too large, the
The amount of medium charged is reduced and H per unit catalyst bed volume is reduced.TwoS adsorption
The catalyst life may be reduced by reducing the amount.
You. Therefore, the preferred specific surface area of the catalyst is about 2 to 150 m
Two/ G, more preferably about 3 to 110 mTwo/ G
You.

【0013】本発明に使用される担体としての酸化亜鉛
は、ホウ酸亜鉛、塩基性炭酸亜鉛、硝酸亜鉛等の無機亜
鉛塩又は安息香酸亜鉛、乳酸亜鉛、クエン酸亜鉛、酢酸
亜鉛等の有機亜鉛を加熱分解するか、あるいは金属亜鉛
を空気中で焼成することにより製造することができる。
また、Ni源の塩としては、例えば硝酸塩、酢酸塩、塩
化物等の種々のものを挙げることができる。
The zinc oxide used as a carrier in the present invention may be an inorganic zinc salt such as zinc borate, basic zinc carbonate, zinc nitrate or the like, or an organic zinc such as zinc benzoate, zinc lactate, zinc citrate, zinc acetate, etc. Can be produced by thermal decomposition or by calcining metallic zinc in air.
Examples of the salt of the Ni source include various salts such as nitrates, acetates, and chlorides.

【0014】また、本発明の触媒には、担体としてのH
S吸着能を有する酸化亜鉛以外に酸化鉄、酸化銅等の
金属酸化物が含まれていてもよい。更に、活性金属とし
てのニッケル、酸化ニッケル以外に、マグネシウム、カ
ルシウム、バリウム、アルミニウム、チタン、ジルコニ
ウム、バナジウム、ニオブ、クロム、モリブデン、タン
グステン、マンガン、銅、コバルト、その他の金属成分
及びこれらの複合体が含まれていてもよい。
Further, the catalyst of the present invention contains H
Iron oxide other than zinc oxide having 2 S adsorption capacity, may contain metal oxides such as copper oxide. Further, besides nickel and nickel oxide as active metals, magnesium, calcium, barium, aluminum, titanium, zirconium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, copper, cobalt, other metal components and composites thereof May be included.

【0015】上記のZnOにNiを担持する方法は、含
浸法、共沈澱法等の公知の方法を用いることができる。
具体的に一例を挙げると、次のような方法により、Zn
OにNiを担持することができる。
As a method for supporting Ni on ZnO, known methods such as an impregnation method and a coprecipitation method can be used.
To give a specific example, Zn can be obtained by the following method.
O can carry Ni.

【0016】[0016]

【0017】含浸法では、まず、所定量の酸化亜鉛を秤
量し、攪拌しながら水を徐々に滴下することにより、酸
化亜鉛の内部に吸水させる。この吸水は、酸化亜鉛の内
部において飽和されるまで行うのが好ましく、この飽和
吸水量と既知の酸化亜鉛から、必要なNi量を算出す
る。次に、このNi量に基づいて適宜の濃度に調整した
上記Ni塩の水溶液を、水の場合と同様に、秤量した所
定量の酸化亜鉛に攪拌しながら徐々に滴下して飽和吸水
させ、乾燥、焼成すればよい。また共沈澱法では、亜鉛
の酢酸塩、硝酸塩等の水溶液と、Niの硝酸塩、酢酸塩
等の水溶液との混合物に、アルカリ水溶液を加えて沈澱
を作り、この沈澱を濾過、洗浄後、乾燥、焼成すればよ
い。上記の含浸法において、Niの担持量を増加させた
い場合は、上記の含浸操作を繰り返せばよい。
In the impregnation method, first, a predetermined amount of zinc oxide is weighed, and water is gradually dropped into the zinc oxide while stirring, thereby absorbing water into the zinc oxide. This water absorption is preferably performed until the inside of the zinc oxide is saturated, and the necessary amount of Ni is calculated from the saturated water absorption and the known zinc oxide. Next, an aqueous solution of the above-mentioned Ni salt adjusted to an appropriate concentration based on the amount of Ni is gradually dropped while stirring with a predetermined amount of zinc oxide weighed in the same manner as in the case of water, and saturated with water. Sintering. In the coprecipitation method, an alkaline aqueous solution is added to a mixture of an aqueous solution of zinc acetate and nitrate and an aqueous solution of Ni nitrate and acetate to form a precipitate. The precipitate is filtered, washed, dried, and dried. What is necessary is just to bake. In the above-mentioned impregnation method, when it is desired to increase the amount of supported Ni, the above-described impregnation operation may be repeated.

【0018】以上のNiを酸化亜鉛に担持させた触媒
は、本発明において、水素存在下で用いられるが、より
活性を発揮させるためには事前に還元しておくことが好
ましい。
The above-described catalyst in which Ni is supported on zinc oxide is used in the present invention in the presence of hydrogen. However, it is preferable that the catalyst be reduced in advance in order to exhibit more activity.

【0019】また、本発明で脱硫法に用いることができ
る原料は、硫黄分を約1〜150wtppm 程度含有するナ
フサ、灯油等の中軽質油である。
The raw material which can be used in the desulfurization method in the present invention is a medium or light oil such as naphtha or kerosene containing about 1 to 150 ppm by weight of sulfur.

【0020】更に、本発明の脱硫方法においては、水蒸
気改質炉出口ガスあるいは、その後のCO変成工程を経
たガス、より具体的には、CO2 を含有し水素純度が約
75%程度のガスであっても、原料脱硫工程の循環ガス
として用いることができ、所定の条件で反応させること
により、原料中の硫黄分を約0.5wtppm 以下、必要に
応じては約0.2wtppm 以下までに脱硫することができ
る。
Further, in the desulfurization method of the present invention, the gas at the outlet of the steam reforming furnace or the gas that has undergone the subsequent CO conversion step, more specifically, the gas containing CO 2 and having a hydrogen purity of about 75% However, it can be used as a circulating gas in the raw material desulfurization step, and by reacting under predetermined conditions, the sulfur content in the raw material can be reduced to about 0.5 wtppm or less, and if necessary, to about 0.2 wtppm or less. Can be desulfurized.

【0021】本発明においては、前述した触媒を固定床
反応塔に充填し、温度180〜440℃、好ましくは約
280〜440℃、LHSV約0.1〜2h-1、好まし
くは約0.2〜1.5h-1、圧力30kg/cm2G以下、
好ましくは1〜10kg/cm2Gとすることにより、水素
純度が75%程度でCO2 を含有するガスを用いること
によっても、原料中の硫黄分を約0.5wtppm 程度まで
脱硫することができる。反応温度が約180℃未満の場
合、LHSVが約2h-1より速い場合は原料中の硫黄分
濃度を約0.5wtppm 以下にすることができず、また反
応温度が約440℃より高い場合は、触媒寿命の点で好
ましくない。
In the present invention, the above-mentioned catalyst is packed in a fixed bed reactor, and the temperature is 180 to 440 ° C., preferably about 280 to 440 ° C., and the LHSV is about 0.1 to 2 h −1 , preferably about 0.2 ~ 1.5 h -1 , pressure 30 kg / cm 2 G or less,
Preferably by a 1 to 10 kg / cm 2 G, also by using gas hydrogen purity containing CO 2 at about 75%, it is possible to desulfurize the sulfur content in the raw material up to about 0.5wtppm . When the reaction temperature is less than about 180 ° C., if the LHSV is faster than about 2 h −1 , the sulfur content in the raw material cannot be reduced to about 0.5 wt ppm or less, and if the reaction temperature is higher than about 440 ° C. This is not preferred in terms of catalyst life.

【0022】[0022]

【作用】本発明では、ニッケル又は酸化ニッケルを酸化
亜鉛に担持させた触媒が特定の温度、LHSV、圧力条
件において、水素を含有するガスの存在下で、中軽質油
を、硫黄分約0.5wtppm、あるいは約0.2wt
ppmまで、深度脱硫するとともに、発生するHSを
吸着除去する作用をなす。また、この深度脱硫方法は、
市販のNi系触媒ではCO含有水素ガスの存在下で脱
硫を行うとメタネーション反応が激しく起き、触媒寿命
も著しく短いのに対し、メタネーション反応が起きず、
かつ触媒寿命が長いのが特徴である。
According to the present invention, a catalyst in which nickel or nickel oxide is supported on zinc oxide can be used to convert a medium or light oil to a sulfur content of about 0.1 at a specific temperature, LHSV and pressure in the presence of a hydrogen-containing gas. 5wtppm or about 0.2wt
In addition to deep desulfurization down to ppm, it acts to adsorb and remove the generated H 2 S. Also, this depth desulfurization method
When a commercially available Ni-based catalyst is subjected to desulfurization in the presence of a CO 2 -containing hydrogen gas, a methanation reaction occurs violently and the catalyst life is extremely short.
It is characterized by a long catalyst life.

【0023】[0023]

【実施例】次に、本発明を実施例により、更に具体的に
説明するが、本発明はこれらに限定されるものではな
い。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0024】実施例1 (使用する触媒の調製)酸化ニッケルを酸化亜鉛に対し
て9.2wt%担持した触媒を調製した。調製方法は次の
手順によった。所定量の酸化亜鉛に、攪拌しながらビュ
レットを用いて、水をゆっくり滴下し、酸化亜鉛の飽和
含水量を事前に測定したところ0.33ml/g−酸化亜
鉛であった。この値を基に、Ni(NO32・6H2
を12.3g、10mlの水に溶解したニッケル含有水溶
液を作り、上記と同様の操作を行い、所定量の酸化亜鉛
にニッケル含有水溶液を含浸させた。含浸後、120℃
で12時間乾燥、200℃、300℃、400℃で各々
1時間、510℃で14時間焼成を行い、1回目の担持
を終了した。次に、1回目のニッケル担持操作終了した
酸化亜鉛に、上記と同様の操作により2回目の担持を行
い、最終的に酸化ニッケルとして酸化亜鉛に対して9.
2wt%担持した触媒を得た。
Example 1 (Preparation of catalyst to be used) A catalyst supporting 9.2% by weight of nickel oxide with respect to zinc oxide was prepared. The preparation method followed the following procedure. Water was slowly added dropwise to a predetermined amount of zinc oxide using a burette with stirring, and the saturated water content of zinc oxide was measured in advance to be 0.33 ml / g-zinc oxide. Based on this value, Ni (NO 3 ) 2 .6H 2 O
Was dissolved in 10 ml of water to prepare a nickel-containing aqueous solution, and the same operation as described above was performed to impregnate a predetermined amount of zinc oxide with the nickel-containing aqueous solution. 120 ° C after impregnation
For 12 hours, baking at 200 ° C., 300 ° C., and 400 ° C. for 1 hour and 510 ° C. for 14 hours, respectively, to complete the first loading. Next, the zinc oxide that has been subjected to the first nickel loading operation is subjected to a second loading by the same operation as described above, and finally, as nickel oxide, the zinc oxide is subjected to 9.2.
A catalyst supporting 2 wt% was obtained.

【0025】次に、上記で得られた触媒のNO吸着量を
以下の手順に従い測定した。酸化ニッケルを酸化亜鉛に
担持した触媒をヘリウム気流中で30分間で390℃ま
で昇温し、この温度を維持しながらヘリウムを水素に換
え、120分間触媒を還元した。この後、水素を再びヘ
リウムに換え、40分間で40℃まで降温し、この温度
下で大気圧にてNOの一定量を流出させ、平衡に達する
まで繰り返しNOを吸着させた。この際、未吸着のNO
量をTCD検出器を備えたガスクロ分析装置で測定し、
吸着前後のNO量から、触媒単位重量当たりのNO吸着
量を算出した。また、触媒の比表面積をBET測定器で
測定し、3m/gを得た。
Next, the NO adsorption amount of the catalyst obtained above was measured according to the following procedure. The temperature of the catalyst in which nickel oxide was supported on zinc oxide was raised to 390 ° C. in a helium stream for 30 minutes, helium was replaced with hydrogen while maintaining this temperature, and the catalyst was reduced for 120 minutes. Thereafter, the hydrogen was replaced with helium again, the temperature was lowered to 40 ° C. in 40 minutes, a certain amount of NO was allowed to flow out at this temperature at atmospheric pressure, and NO was repeatedly adsorbed until equilibrium was reached. At this time, the unadsorbed NO
The amount is measured with a gas chromatograph equipped with a TCD detector,
The NO adsorption amount per unit weight of the catalyst was calculated from the NO amount before and after the adsorption. In addition, the specific surface area of the catalyst was measured with a BET measuring instrument to obtain 3 m 2 / g.

【0026】そして、(触媒単位重量当たりのNO吸着
量)/(触媒の比表面積)から触媒単位表面積当たりの
吸着NO量を算出した。この結果、上記触媒のNO吸着
量は0.099cc/mであった。
Then, the amount of adsorbed NO per unit surface area of the catalyst was calculated from (NO adsorption amount per unit weight of catalyst) / (specific surface area of catalyst). As a result, the NO adsorption amount of the catalyst was 0.099 cc / m 2 .

【0027】(脱硫反応1)上記により得られた酸化ニ
ッケルを酸化亜鉛に対して9.2wt%担持した触媒を6
ml取り、所定の反応管に充填し、表1に示す性状の灯油
を原料としてH2、CO2混合ガス(H2:75vol%,C
2:25vol%)の存在下、H2/灯油容量比=30
0、反応圧力5kg/cm2G反応温度320℃、LHSV
1.0h-1の条件で、脱硫反応を行った。上記の反応
管としては、直径9.5mm、内径7.9mm、長さ210
mmのものを使用した。以上の結果、脱硫後の灯油の硫黄
含有量は0.2wtppm であった。また生成ガス中のメタ
ンの濃度は0.7vol%以下であった。
(Desulfurization Reaction 1) A catalyst supporting 9.2 wt% of nickel oxide obtained as described above with respect to zinc oxide was used as a catalyst.
ml of H 2 and CO 2 mixed gas (H 2 : 75 vol%, C) using kerosene having the properties shown in Table 1 as a raw material.
O 2 : 25 vol%), H 2 / kerosene volume ratio = 30
0, reaction pressure 5 kg / cm 2 G reaction temperature 320 ° C, LHSV
The desulfurization reaction was performed under the condition of 1.0 h -1 . The above reaction tube has a diameter of 9.5 mm, an inner diameter of 7.9 mm, and a length of 210 mm.
mm. As a result, the sulfur content of the desulfurized kerosene was 0.2 wtppm. Further, the concentration of methane in the produced gas was 0.7 vol% or less.

【0028】[0028]

【表1】 密度(15℃、g/cm3) 0.7945 硫黄分(wtppm) 49 組成(vol%) 飽和分 82.8 オレフィン分 0.4 芳香族分 16.8 蒸留(JISK2254による) 初留点(℃) 155.5 10%留出点(℃) 173.0 30%留出点(℃) 186.5 50%留出点(℃) 200.5 70%留出点(℃) 217.0 90%留出点(℃) 238.5 終点(℃) 263.0Table 1 Density (15 ° C, g / cm 3 ) 0.7945 Sulfur content (wtppm) 49 Composition (vol%) Saturation content 82.8 Olefin content 0.4 Aromatic content 16.8 Distillation (according to JISK2254) Distillation point (° C) 155.5 10% distilling point (° C) 173.0 30% distilling point (° C) 186.5 50% distilling point (° C) 200.5 70% distilling point (° C) 217 0.0 90% distillation point (° C) 238.5 End point (° C) 263.0

【0029】(脱硫反応2)H2 、CO2 混合ガスの代
わりに常圧の純水素を用い反応温度380℃、LHSV
=0.5h-1にした以外は(脱硫反応1)と同様に行っ
た。その結果、脱硫灯油中の硫黄分含有量は0.11wt
ppm であった。
(Desulfurization reaction 2) Using pure hydrogen at normal pressure instead of H 2 and CO 2 mixed gas, reaction temperature 380 ° C., LHSV
= 0.5 h −1 , except that (desulfurization reaction 1) was performed. As a result, the sulfur content in desulfurized kerosene was 0.11 wt.
ppm.

【0030】実施例2 実施例1で用いたNi(NO32・6H2O水溶液の代
わりに、Ni(CH3COO)2・4H2Oの10.5g
を10mlの水に溶解した水溶液を用い、実施例1と同様
の操作を行うことにより、酸化ニッケルとして酸化亜鉛
に対して9.3wt%担持した触媒を得た。また触媒のN
O吸着量は0.08cc/m2であった。触媒の比表面積
は3.0m2/gであった。この触媒を用いて、実施例
1と同様の操作を行い脱硫反応を行った結果、脱硫後の
灯油の全硫黄含有量は0.2wtppmであった。また生成
ガス中のメタンの濃度は0.7vol%以下であった。
Example 2 10.5 g of Ni (CH 3 COO) 2 .4H 2 O was used instead of the aqueous solution of Ni (NO 3 ) 2 .6H 2 O used in Example 1.
Was dissolved in 10 ml of water, and the same operation as in Example 1 was carried out to obtain a catalyst supporting 9.3 wt% of nickel oxide with respect to zinc oxide. The catalyst N
The O adsorption amount was 0.08 cc / m 2 . The specific surface area of the catalyst was 3.0 m 2 / g. Using this catalyst, a desulfurization reaction was carried out in the same manner as in Example 1, and as a result, the total sulfur content of the desulfurized kerosene was 0.2 wtppm. Further, the concentration of methane in the produced gas was 0.7 vol% or less.

【0031】実施例3 酢酸亜鉛53gと硝酸ニッケル19gを600mlの水に
溶解し両者の混合溶液を調製し、この溶液に炭酸アンモ
ニウム22gを200mlの水に溶解した炭酸アンモニウ
ム水溶液と15%のアンモニア水を加えて、炭酸亜鉛と
塩基性炭酸ニッケルの沈澱を作り、12時間程放置し
た。この沈澱物を濾過、水洗後、120℃で12時間乾
燥、空気を投入しながら、200℃で1時間、300℃
で2時間、400℃で1時間、510℃で16時間焼成
し、酸化ニッケルの酸化亜鉛への担持量15.4wt%の
触媒を得た。また触媒のNO吸着量は0.348cc/m
2であった。触媒の比表面積は4.7m2/gであった。
この触媒を用いて、実施例1と同様の操作により脱硫反
応を行った結果、脱硫後の灯油の硫黄含有量は0.05
wtppm 以下であった。また排出ガス中のメタン濃度は
0.70vol%以下であった。
Example 3 53 g of zinc acetate and 19 g of nickel nitrate were dissolved in 600 ml of water to prepare a mixed solution of both, and an aqueous solution of ammonium carbonate in which 22 g of ammonium carbonate was dissolved in 200 ml of water and a 15% aqueous ammonia solution were added. Was added to form a precipitate of zinc carbonate and basic nickel carbonate, and the mixture was allowed to stand for about 12 hours. The precipitate was filtered, washed with water, dried at 120 ° C. for 12 hours, and charged with air at 200 ° C. for 1 hour at 300 ° C.
For 2 hours, at 400 ° C. for 1 hour, and at 510 ° C. for 16 hours to obtain a catalyst having a nickel oxide loading on zinc oxide of 15.4 wt%. The NO adsorption amount of the catalyst is 0.348 cc / m
Was 2 . The specific surface area of the catalyst was 4.7 m 2 / g.
Using this catalyst, a desulfurization reaction was carried out in the same manner as in Example 1, and as a result, the sulfur content of the desulfurized kerosene was 0.05
It was less than wtppm. The methane concentration in the exhaust gas was 0.70 vol% or less.

【0032】実施例4 酢酸亜鉛94.5gと硝酸ニッケル77.8gを120
0mlの水に溶解し両者の混合溶液を調製し、この溶液に
炭酸アンモニウム22gを200mlの水に溶解した炭酸
アンモニウム水溶液と15%のアンモニア水を加えて、
炭酸亜鉛と塩基性炭酸ニッケルの沈澱を作り、12時間
程放置した。この沈澱物を濾過、水洗後、120℃で1
2時間乾燥、空気を投入しながら、200℃で1時間、
300℃で2時間、400℃で1時間、510℃で16
時間焼成し、酸化ニッケルの酸化亜鉛への担持量29.
1%の触媒を得た。無機のNO吸着量は0.154cc/
2であった。またこの触媒の比表面積は9.0m2/g
であった。なお触媒の嵩比重は1.53g/ccであっ
た。この触媒を用いて、実施例1と同様の反応条件下で
触媒寿命の評価試験を行った。脱硫後の灯油の硫黄含有
量は0.05wtppm であった。また排出ガス中のメタン
濃度は0.70vol%以下であった。
Example 4 94.5 g of zinc acetate and 77.8 g of nickel nitrate were mixed with 120
Dissolve in 0 ml of water to prepare a mixed solution of both, and add this solution
Carbonic acid obtained by dissolving 22 g of ammonium carbonate in 200 ml of water
Add ammonium aqueous solution and 15% ammonia water,
Precipitate zinc carbonate and basic nickel carbonate for 12 hours
About left. The precipitate was filtered, washed with water, and dried at 120 ° C for 1 hour.
Drying for 2 hours, 1 hour at 200 ° C while introducing air,
2 hours at 300 ° C, 1 hour at 400 ° C, 16 at 510 ° C
After calcination for a period of time, the amount of nickel oxide supported on zinc oxide 29.
1% of catalyst was obtained. The amount of inorganic NO adsorbed is 0.154cc /
m TwoMet. The specific surface area of this catalyst is 9.0 m.Two/ G
Met. The bulk specific gravity of the catalyst was 1.53 g / cc.
Was. Using this catalyst under the same reaction conditions as in Example 1
An evaluation test of the catalyst life was performed. Sulfur content of kerosene after desulfurization
The amount was 0.05 wtppm. Methane in exhaust gas
The concentration was 0.70 vol% or less.

【0033】実施例5 実施例1と同様の操作により、Ni(NO32・6H2
Oの6.6gを10mlの水に溶解した水溶液を用い、酸
化ニッケルとして酸化亜鉛に対して5.3wt%担持した
触媒を得た。また触媒のNO吸着量は0.038cc/m
2であった。触媒の比表面積は4m2/gであった。この
触媒を用いて実施例1と同様の操作により脱硫反応を行
った結果、脱硫後の灯油の硫黄含有量は0.2wtppm で
あった。また排出ガス中のメタン濃度は0.70vol%
以下であった。
Example 5 By the same operation as in Example 1, Ni (NO 3 ) 2 .6H 2
Using an aqueous solution in which 6.6 g of O was dissolved in 10 ml of water, a catalyst supporting 5.3 wt% of nickel oxide with respect to zinc oxide was obtained. The NO adsorption amount of the catalyst is 0.038 cc / m
Was 2 . The specific surface area of the catalyst was 4 m 2 / g. A desulfurization reaction was carried out in the same manner as in Example 1 using this catalyst, and as a result, the sulfur content of the desulfurized kerosene was 0.2 wtppm. The methane concentration in the exhaust gas is 0.70 vol%
It was below.

【0034】実施例6 実施例1と同様の操作により、Ni(NO32・6H2
Oの23.2gを10mlの水に溶解した水溶液を用い、
酸化ニッケルとして酸化亜鉛に対して21.2wt%担持
した触媒を得た。この場合において、含浸操作は3回行
った。また触媒のNO吸着量は0.090cc/m2であ
った。また、上記触媒を反応管に充填後、圧力9.0kg
/m2G、温度390℃純水素を流速60ml/分で21
時間流して、還元処理を行ってから脱硫反応に供した。
脱硫は実施例1と同様の条件下で行い、その結果、脱硫
後の硫黄含有量は0.1wtppm 以下であった。また排出
ガス中のメタン濃度は0.70vol%であった。
Example 6 By the same operation as in Example 1, Ni (NO 3 ) 2 .6H 2
Using an aqueous solution obtained by dissolving 23.2 g of O in 10 ml of water,
As a result, a catalyst supporting 21.2% by weight of zinc oxide as nickel oxide was obtained. In this case, the impregnation operation was performed three times. The NO adsorption amount of the catalyst was 0.090 cc / m 2 . After the catalyst was filled in the reaction tube, the pressure was 9.0 kg.
/ M 2 G, temperature 390 ° C., pure hydrogen at a flow rate of 60 ml / min.
The mixture was allowed to flow for a time, subjected to a reduction treatment, and then subjected to a desulfurization reaction.
Desulfurization was performed under the same conditions as in Example 1, and as a result, the sulfur content after desulfurization was 0.1 wtppm or less. The methane concentration in the exhaust gas was 0.70 vol%.

【0035】[0035]

【0036】[0036]

【0037】実施例7 実施例3で用いた触媒と比較のために市販の触媒とを用
い、実施例1と同様の反応条件下で触媒寿命の評価試験
を行った。なお、市販の触媒はNiO 77.5wt
%、Al 12.0wt%、SiO 9.0wt
%、CaO 1.5wt%の組成、比表面積は165m
/gのものを用いた。以上の結果を表2に示す。
Example 7 A catalyst life evaluation test was carried out under the same reaction conditions as in Example 1 by using the catalyst used in Example 3 and a commercially available catalyst for comparison. In addition, a commercially available catalyst is NiO 77.5wt.
%, Al 2 O 3 12.0 wt%, SiO 9.0 wt%
%, CaO 1.5wt% composition, specific surface area is 165m
2 / g was used. Table 2 shows the above results.

【0038】[0038]

【表2】 [Table 2]

【0039】表2の結果より、実施例3で用いた触媒は
1000時間後も硫黄分0.15wtppm までの脱硫活性
を有していたが、市販の触媒は110時間ですでに硫黄
分0.2wtppm までの脱硫活性に低下しており、本発明
の触媒は市販の触媒に比べて約10倍の寿命を有するこ
とがわかる。また、実施例3で用いた触媒は排ガス中の
CH4 濃度が極めて低く、メタネーションを起こさない
ことがわかる。
From the results shown in Table 2, the catalyst used in Example 3 had a desulfurization activity up to 0.15 wtppm of sulfur even after 1000 hours, whereas the commercially available catalyst had a sulfur content of 0.1 hours after 110 hours. The desulfurization activity is reduced to 2 wtppm, indicating that the catalyst of the present invention has about 10 times the life as compared with a commercially available catalyst. Further, it can be seen that the catalyst used in Example 3 has an extremely low CH 4 concentration in the exhaust gas and does not cause methanation.

【0040】実施例8 実施例4で得られた触媒を用いて、実施例1と同様の反
応条件下で触媒寿命の評価試験を行った。結果を表3に
示す。
Example 8 Using the catalyst obtained in Example 4, an evaluation test of the catalyst life was conducted under the same reaction conditions as in Example 1. Table 3 shows the results.

【0041】[0041]

【表3】 [Table 3]

【0042】実施例9 酢酸亜鉛112.7gと硝酸ニッケル42.8gを10
00mlの水に溶解し両者の混合溶液を調製し、この溶
液に炭酸アンモニウム22gを200mlの水に溶解し
た炭酸アンモニウム水溶液と15%のアンモニア水を加
えて、炭酸亜鉛と塩基性炭酸ニッケルの沈澱を作り、1
2時間程放置した。この沈澱物を濾過、水洗後、120
℃で12時間乾燥、空気を投入しながら、200℃で1
時間、300℃で2時間、400℃で1時間、510℃
で16時間焼成して触媒を調製した。また調製された触
媒に補強材としてAlとして1.6%、CaOと
して0.1%加えた。かくして酸化ニッケルの酸化亜鉛
への担持量7.6%の触媒を得た。触媒のNO吸着量は
0.077cc/mであった。また、この触媒の比表
面積は105.5m/gであった。なお触媒の嵩比重
は0.759g/ccであった。この触媒を用いて、反
応温度以外は実施例1と同様の反応条件下で触媒寿命の
評価試験を行った。その結果を表4に示す。
Example 9 112.7 g of zinc acetate and 42.8 g of nickel nitrate were added to 10
The mixture was dissolved in 00 ml of water to prepare a mixed solution of the two. To this solution was added an aqueous solution of ammonium carbonate in which 22 g of ammonium carbonate was dissolved in 200 ml of water and 15% aqueous ammonia to precipitate zinc carbonate and basic nickel carbonate. Making 1
It was left for about 2 hours. The precipitate was filtered, washed with water,
Drying at 200 ° C for 12 hours,
Time, 300 ° C for 2 hours, 400 ° C for 1 hour, 510 ° C
For 16 hours to prepare a catalyst. 1.6% of Al 2 O 3 and 0.1% of CaO were added to the prepared catalyst as a reinforcing material. Thus, a catalyst having a loading of 7.6% of nickel oxide on zinc oxide was obtained. The NO adsorption amount of the catalyst was 0.077 cc / m 2 . The specific surface area of this catalyst was 105.5 m 2 / g. The bulk specific gravity of the catalyst was 0.759 g / cc. Using this catalyst, an evaluation test of the catalyst life was performed under the same reaction conditions as in Example 1 except for the reaction temperature. Table 4 shows the results.

【0043】[0043]

【表4】 [Table 4]

【0044】比較例1 酢酸亜鉛27.0gと硝酸ニッケル77.8gを900
mlの水に溶解し両者の混合溶液を調製し、この溶液に炭
酸アンモニウム22gを200mlの水に溶解した炭酸ア
ンモニウム水溶液と15%のアンモニア水を加えて、炭
酸亜鉛と塩基性炭酸ニッケルの沈澱を作り、12時間程
放置した。この沈澱物を濾過、水洗後、120℃で12
時間乾燥、空気を投入しながら、200℃で1時間、3
00℃で2時間、400℃で1時間、510℃で16時
間焼成して触媒調製し、酸化ニッケルの酸化亜鉛への担
持量59.9%の触媒を得た。触媒のNO吸着量は0.
136cc/m2であった。また、この触媒の比表面積は
18.4m2/gであった。なお触媒の嵩比重は1.5
5g/ccであった。この触媒を用いて、実施例1と同様
の反応条件下で触媒寿命の評価試験を行った。その結果
を表5に示す。
Comparative Example 1 27.0 g of zinc acetate and 77.8 g of nickel nitrate were added to 900
The mixture was dissolved in water to prepare a mixed solution of the two, and an aqueous solution of ammonium carbonate in which 22 g of ammonium carbonate was dissolved in 200 ml of water and 15% aqueous ammonia were added to this solution to precipitate zinc carbonate and basic nickel carbonate. Made and left for about 12 hours. This precipitate was filtered, washed with water, and then dried at 120 ° C. for 12 hours.
Drying at 200 ° C for 1 hour while introducing air
The catalyst was prepared by calcining at 00 ° C. for 2 hours, 400 ° C. for 1 hour, and 510 ° C. for 16 hours to obtain a catalyst having a nickel oxide loading on zinc oxide of 59.9%. The NO adsorption amount of the catalyst is 0.
It was 136 cc / m 2 . The specific surface area of this catalyst was 18.4 m 2 / g. The bulk specific gravity of the catalyst is 1.5
It was 5 g / cc. Using this catalyst, an evaluation test of the catalyst life was performed under the same reaction conditions as in Example 1. Table 5 shows the results.

【0045】[0045]

【表5】 [Table 5]

【0046】比較例2 酢酸亜鉛112.5gと硝酸ニッケル38.5gを10
00mlの水に溶解し両者の混合溶液を調製し、この溶液
に炭酸アンモニウム22gを200mlの水に溶解した炭
酸アンモニウム水溶液と15%のアンモニア水を加え
て、炭酸亜鉛と塩基性炭酸ニッケルの沈澱を作り、12
時間程放置した。この沈澱物を濾過、水洗後、120℃
で12時間乾燥、空気を投入しながら、200℃で1時
間、300℃で2時間、400℃で1時間、510℃で
16時間焼成して触媒を調製した。また調製された触媒
に補強材としてAl23として3.8%、CaOとして
2.7%加えた。かくして酸化ニッケルの酸化亜鉛への
担持量7.6%の触媒を得た。触媒のNO吸着量は0.
008cc/m2であった。また、この触媒の比表面積は
14.2m2/gであった。なお触媒の嵩比重は1.2
95g/ccであった。この触媒を用いて、反応温度以外
は実施例1と同様の反応条件下で触媒寿命の評価試験を
行った。その結果を表6に示す。
Comparative Example 2 102.5 g of zinc acetate and 38.5 g of nickel nitrate were added to 10
The mixture was dissolved in 00 ml of water to prepare a mixed solution of the two. To this solution was added an aqueous solution of ammonium carbonate in which 22 g of ammonium carbonate was dissolved in 200 ml of water and 15% aqueous ammonia to precipitate zinc carbonate and basic nickel carbonate. Making, 12
Left for about an hour. The precipitate was filtered, washed with water, and then cooled to 120 ° C.
For 12 hours, and while introducing air, calcined at 200 ° C. for 1 hour, 300 ° C. for 2 hours, 400 ° C. for 1 hour, and 510 ° C. for 16 hours to prepare a catalyst. Further, 3.8% as Al 2 O 3 and 2.7% as CaO were added to the prepared catalyst as a reinforcing material. Thus, a catalyst having a loading of 7.6% of nickel oxide on zinc oxide was obtained. The NO adsorption amount of the catalyst is 0.
008 cc / m 2 . The specific surface area of this catalyst was 14.2 m 2 / g. The bulk specific gravity of the catalyst was 1.2.
It was 95 g / cc. Using this catalyst, an evaluation test of the catalyst life was performed under the same reaction conditions as in Example 1 except for the reaction temperature. Table 6 shows the results.

【0047】[0047]

【表6】 [Table 6]

【0048】表5の結果より、NO吸着量が高くNi担
持量が40%以上あると触媒寿命があっても、メタネー
ション反応を生起し、排ガス中のCH4 濃度が高くなる
ことがわかる。また、表6の結果より、Ni担持量が4
0重量%以下であってもNO吸着量の低い触媒はメタネ
ーションは起さないが触媒活性がない、ということがわ
かる。
From the results shown in Table 5, it can be seen that when the amount of adsorbed NO is high and the amount of Ni supported is 40% or more, a methanation reaction occurs and the CH 4 concentration in the exhaust gas increases even if the catalyst has a long life. Also, from the results in Table 6, the amount of Ni carried was 4
It can be seen that the catalyst having a low NO adsorption amount does not cause methanation but has no catalytic activity even when the content is 0% by weight or less.

【0049】[0049]

【発明の効果】本発明は、燃料システム等で用いる水素
を、取扱い易い灯油等の中軽質油を原料として製造する
場合において、その原料の脱硫工程を、圧力30kg/cm
2G以下で、CO2 を含有する水素ガスの存在下におい
ても、かなりの高深度脱硫で可能とし、メタネーション
反応を抑制でき、触媒寿命も長く、極めて工業的価値の
高いものである。
According to the present invention, in the case where hydrogen used in a fuel system or the like is produced from medium-light oil such as kerosene which is easy to handle, the desulfurization step of the raw material is performed at a pressure of 30 kg / cm.
At 2 G or less, even in the presence of CO 2 -containing hydrogen gas, it is possible to achieve very high depth desulfurization, suppress methanation reaction, have a long catalyst life, and have extremely high industrial value.

フロントページの続き (56)参考文献 特開 平2−204301(JP,A) 特開 平2−261540(JP,A) 特開 昭52−54668(JP,A) 特公 昭45−38981(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C10G 45/06 Continuation of front page (56) References JP-A-2-204301 (JP, A) JP-A-2-261540 (JP, A) JP-A-52-54668 (JP, A) JP-B-45-38981 (JP) , B1) (58) Field surveyed (Int.Cl. 6 , DB name) C10G 45/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中軽質油を脱硫する方法において、水素
を含有するガスの存在下、ニッケル又は酸化ニッケルを
酸化亜鉛に金属換算で40重量%未満担持し、40℃に
おいて触媒表面積の単位面積当たり、0.02cc/m
以上の一酸化窒素吸着能を有する触媒を用い、温度1
80〜440℃、LHSV 0.1〜2h−1、圧力3
0kg/cmG以下の条件下で脱硫することを特徴と
する中軽質油の深度脱硫方法。
1. A method for desulfurizing a medium-to-light oil, wherein nickel or nickel oxide is supported on zinc oxide in an amount of less than 40% by weight in terms of metal in the presence of a hydrogen-containing gas. , 0.02cc / m
Use a catalyst that has two or more nitric oxide adsorption capacities and a temperature of 1
80-440 ° C, LHSV 0.1-2h -1 , pressure 3
A method for deep desulfurization of medium and light oils, comprising desulfurizing under a condition of 0 kg / cm 2 G or less.
JP5045154A 1992-07-17 1993-03-05 Method for deep desulfurization of medium and light oil Expired - Fee Related JP2961585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5045154A JP2961585B2 (en) 1992-07-17 1993-03-05 Method for deep desulfurization of medium and light oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19081092 1992-07-17
JP4-190810 1992-07-17
JP5045154A JP2961585B2 (en) 1992-07-17 1993-03-05 Method for deep desulfurization of medium and light oil

Publications (2)

Publication Number Publication Date
JPH0680972A JPH0680972A (en) 1994-03-22
JP2961585B2 true JP2961585B2 (en) 1999-10-12

Family

ID=26385127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5045154A Expired - Fee Related JP2961585B2 (en) 1992-07-17 1993-03-05 Method for deep desulfurization of medium and light oil

Country Status (1)

Country Link
JP (1) JP2961585B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
JP4197073B2 (en) 1999-08-27 2008-12-17 株式会社コスモ総合研究所 Deep desulfurization catalyst, method for producing the same, and desulfurization method using the same
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
JP2001262161A (en) * 2000-03-15 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
AU1893101A (en) * 1999-12-17 2001-06-25 Idemitsu Kosan Co. Ltd Fuel oil for fuel cell, fuel oil composition and automobile driving system
AU2001228855A1 (en) * 2000-01-31 2001-08-14 Idemitsu Kosan Co. Ltd. Fuel oil
JP2001262164A (en) * 2000-03-21 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
JP2001214179A (en) * 2000-01-31 2001-08-07 Idemitsu Kosan Co Ltd Fuel oil
JP4657413B2 (en) * 2000-02-15 2011-03-23 堺化学工業株式会社 Desulfurization agent and method for producing the same
US6346190B1 (en) * 2000-03-21 2002-02-12 Phillips Petroleum Company Desulfurization and novel sorbents for same
AU4688401A (en) * 2000-04-10 2001-10-23 Nippon Mitsubishi Oil Corporation Fuel for use in fuel cell system
US6837909B2 (en) 2000-04-10 2005-01-04 Nippon Oil Corporation Fuel for use in a fuel cell system
US6726836B1 (en) * 2000-09-01 2004-04-27 Utc Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
AU2003299027A1 (en) * 2002-09-23 2004-04-08 Shell Internationale Research Maatschappij B.V. Catalyst particles and its use in desulphurisation
JP4486330B2 (en) * 2003-07-14 2010-06-23 財団法人石油産業活性化センター Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
US7776784B2 (en) 2003-07-14 2010-08-17 Nippon Oil Corporation Hydrodesulfurization catalyst and hydrodesulfurization process for gasoline fractions
JP4486329B2 (en) * 2003-07-14 2010-06-23 財団法人石油産業活性化センター Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
JP2006312663A (en) * 2005-05-06 2006-11-16 Japan Energy Corp Method for desulfurizing hydrocarbon oil
JP4897434B2 (en) * 2006-11-07 2012-03-14 Jx日鉱日石エネルギー株式会社 Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP2008291146A (en) * 2007-05-25 2008-12-04 Japan Energy Corp Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP4996983B2 (en) * 2007-05-31 2012-08-08 Jx日鉱日石エネルギー株式会社 Porous desulfurizing agent and hydrocarbon desulfurization method using the same
JP4995776B2 (en) * 2008-06-30 2012-08-08 Jx日鉱日石エネルギー株式会社 Catalyst powder separator and fuel cell system
CN112742203B (en) * 2019-10-30 2023-09-05 中国石油化工股份有限公司 Gas desulfurizing agent, preparation method thereof and gas desulfurizing method

Also Published As

Publication number Publication date
JPH0680972A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JP2961585B2 (en) Method for deep desulfurization of medium and light oil
JP4197073B2 (en) Deep desulfurization catalyst, method for producing the same, and desulfurization method using the same
JP2812486B2 (en) Hydrocarbon steam reforming method
JP7453924B2 (en) Ammonia decomposition catalyst and ammonia decomposition method using the same
RU2585766C2 (en) Catalyst and catalyst preparation method
JPH0513704B2 (en)
JP7352487B2 (en) Ammonia decomposition catalyst
US7001586B2 (en) CO-free hydrogen from decomposition of methane
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
DK171434B1 (en) Catalyst precursor, process for their preparation and conversion process catalyzed by a reduced catalyst precursor
JPH1161154A (en) Production of desulfurizing agent and desulfurization of hydrocarbon
US3546140A (en) Low temperature shift reactions
JPH0451481B2 (en)
Hua et al. Influence of modifying additives on the catalytic activity and stability of Au/Fe 2 O 3–MO x catalysts for the WGS reaction
JPH0570780A (en) Depth desulfurization of middle-or low-boiling oil
JPH08229399A (en) Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
US20080227631A1 (en) Method for Producing a Catalyst for the Desulfurization of Hydrocarbon Flows
CN111905803B (en) Inert gas purification catalyst, raw material composition and preparation method
JP2008155181A (en) Catalyst for removing carbon monoxide and method for preparing the same
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
EP0592958B1 (en) A process and a catalyst for producing of hydrogen
JP2688749B2 (en) Method for producing high temperature resistant high-order desulfurizing agent
JPH09173842A (en) High dispersion-type catalyst for vapor modification and manufacture of hydrogen
JPS6012905B2 (en) Methanation method
EP0174079B1 (en) Ammonia synthesis catalysts based on oxides of iron, aluminium and cobalt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees