JP2952382B2 - Manufacturing method of hot pipe making tool - Google Patents
Manufacturing method of hot pipe making toolInfo
- Publication number
- JP2952382B2 JP2952382B2 JP12942795A JP12942795A JP2952382B2 JP 2952382 B2 JP2952382 B2 JP 2952382B2 JP 12942795 A JP12942795 A JP 12942795A JP 12942795 A JP12942795 A JP 12942795A JP 2952382 B2 JP2952382 B2 JP 2952382B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- scale
- tool
- casting
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 53
- 239000010959 steel Substances 0.000 claims description 53
- 238000004512 die casting Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 239000010410 layer Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- 239000000758 substrate Substances 0.000 description 20
- 238000005096 rolling process Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 14
- 238000007528 sand casting Methods 0.000 description 14
- 238000005266 casting Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000037303 wrinkles Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 102200082816 rs34868397 Human genes 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、マンネスマン方式によ
り継目無管を製造する際の穿孔圧延や延伸圧延に内面圧
延工具として使用される熱間製管工具の製造方法に関す
る。なお、本明細書では特にことわりのない限り%は重
量%を表わす。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hot pipe making tool used as an inner rolling tool for piercing and elongation rolling when manufacturing a seamless pipe by the Mannesmann method. In this specification,% represents% by weight unless otherwise specified.
【0002】[0002]
【従来の技術】マンネスマン方式による継目無管の製造
では、ピアサー等の圧延機でビレットを穿孔圧延してホ
ローシェルとなし、引き続きエロンゲーター等の圧延機
でそのホローシェルを延伸圧延する。これらの圧延には
ピアサープラグ、マンドレルといった内面圧延工具が用
いられる。2. Description of the Related Art In manufacturing a seamless pipe by the Mannesmann method, a billet is pierced and rolled into a hollow shell by a rolling mill such as a piercer, and then the hollow shell is stretched and rolled by a rolling mill such as an elongator. For these rollings, internal rolling tools such as piercer plugs and mandrels are used.
【0003】これらの工具は通常、砂型鋳造ののち工具
形状に切削加工して製作した鋼製基体の表面に、潤滑性
に富んだ酸化スケールを形成して使用される。鋼製基体
の材質としては、例えばピアサープラグの場合、普通鋼
を加工対象として開発された3%Cr−1%Niベース
の鋼(以下これを3Cr−1Ni鋼と称す)が一般的で
ある。[0003] These tools are usually used by forming a highly lubricious oxide scale on the surface of a steel substrate manufactured by cutting into a tool shape after sand casting. As a material of the steel base, for example, in the case of a piercer plug, a 3% Cr-1% Ni-based steel (hereinafter referred to as a 3Cr-1Ni steel) developed for ordinary steel is generally used.
【0004】[0004]
【発明が解決しようとする課題】3Ni−1Cr鋼から
なるピアサープラグを用いてS45Cを穿孔圧延した場
合、使用するミルの圧延条件等にもよるが、平均的には
100〜500回程度の圧延でピアサープラグが使用不
能となる。その原因は次の通りである。When S45C is pierced and rolled using a piercer plug made of 3Ni-1Cr steel, the average rolling time is about 100 to 500 times, depending on the rolling conditions of the mill used. Disables the piercer plug. The cause is as follows.
【0005】鋼製基体の高温強度が十分でないため、厳
しい使用条件の場合は使用回数が増加するにつれて表面
しわ疵などの塑性流動が発生し使用不能となる。大型工
具を使用する圧延や長時間の連続圧延などの熱的負荷が
大きい場合は、圧延による組織の粗大化によっても高温
強度不足となり、表面しわ疵により使用不能となること
がある。鋼製基体の靱性が十分でないため、穿孔圧延応
力の繰り返しにより疲労破壊が進んだり、熱間穿孔圧延
と水冷の繰り返しによる表層部の熱サイクルのために表
層部から熱割れなどの破壊が進み、割損に至る場合もあ
る。[0005] Since the high temperature strength of the steel substrate is not sufficient, under severe use conditions, plastic flow such as surface wrinkles occurs as the number of uses increases, and the steel base becomes unusable. When the thermal load such as rolling using a large tool or continuous rolling for a long time is large, the high-temperature strength is insufficient even by the coarsening of the structure due to rolling, and the surface cannot be used due to wrinkles. Because the toughness of the steel substrate is not sufficient, fatigue fracture progresses due to repeated piercing rolling stress, and fracture such as thermal cracking progresses from the surface layer due to the heat cycle of the surface layer due to repeated hot piercing rolling and water cooling, In some cases, it may result in breakage.
【0006】ピアサープラグの寿命を延ばすために、従
来からも鋼製基体の成分組成の改良や鋼製基体の表面に
酸化スケールを形成するための熱処理の工夫は行われて
きた。しかし最近は継目無管の高品質化が一段と進み、
圧延条件が非常に苛酷化する一方で、製管コスト低減に
対する要求が従来に増して厳しくなってきた。そのため
成分組成の改良や熱処理の工夫だけでは最近の高度な要
求に十分に応えることができず、従来とは異なる観点か
らの新たな対策が必要となってきた。In order to extend the life of the piercer plug, improvements in the composition of the steel base and heat treatment for forming an oxide scale on the surface of the steel base have been conventionally devised. However, recently the quality of seamless pipes has been further improved,
While the rolling conditions have become very severe, the demands for reducing the cost of pipe production have become more stringent than before. For this reason, it is not possible to sufficiently respond to recent advanced requirements only by improving the composition of the components and devising the heat treatment, and new countermeasures are required from a viewpoint different from conventional ones.
【0007】本発明の目的は、成分組成および熱処理以
外の面から対策を講じることにより、工具寿命の大幅延
長を可能とする熱間製管工具の製造方法を提供すること
にある。An object of the present invention is to provide a method for manufacturing a hot pipe making tool which can significantly extend the tool life by taking measures from aspects other than the composition of the components and heat treatment.
【0008】[0008]
【課題を解決するための手段】3Ni−1Cr鋼からな
るピアサープラグの使用寿命は、前述したように、酸化
スケールの磨耗というよりも、むしろ鋼製基体の高温強
度不足による表面シワ等の発生により決定される。そこ
で本発明者らは鋼製基体の高温強度を不足させている原
因の一つを基体の製法に求め、種々の実験検討を行った
結果、次の事実を突き止め、本発明を完成させるに至っ
た。As described above, the service life of the piercer plug made of 3Ni-1Cr steel is not due to the wear of the oxide scale, but rather to the occurrence of surface wrinkles or the like due to insufficient high-temperature strength of the steel base. It is determined. Therefore, the present inventors sought one of the causes of the lack of the high-temperature strength of the steel base in the manufacturing method of the base, and conducted various experimental studies.As a result, the following facts were found, and the present invention was completed. Was.
【0009】従来の鋼製基体は砂型鋳造により作製され
ている。砂型鋳造材は金型鋳造材に比べて格段に低コス
トであるので、コスト低減の要求が厳しく現状より基体
作製コストを引き上げることができない熱間製管工具分
野では、砂型から金型への変更は困難であると考えられ
ていた。A conventional steel substrate is manufactured by sand casting. Sand casting is much lower cost than mold casting, so the demand for cost reduction is so severe that it is not possible to raise the cost of fabricating substrates from the current situation. Was considered difficult.
【0010】しかし、本発明者らの調査によると、基体
の製法を砂型鋳造から金型鋳造へ変更した場合、基体の
機械的性質が上がり、且つ表面の酸化スケールが改質さ
れることにより、使用寿命が1.5倍以上も延びること、
合わせて基体の表面部だけでなく内層部までその優れた
機械的性質が付与されるため、再度の切削とスケール付
けとにより基体の繰り返し使用が可能になること、これ
らにより砂型鋳造の場合より工具原単位が大幅に向上す
ることが判明した。However, according to the investigation by the present inventors, when the production method of the substrate is changed from sand casting to die casting, the mechanical properties of the substrate are increased, and the oxide scale on the surface is modified. Extending the service life by more than 1.5 times,
In addition, the excellent mechanical properties are imparted not only to the surface part of the substrate but also to the inner layer, so that the substrate can be used repeatedly by re-cutting and re-scaling. It was found that the basic unit greatly improved.
【0011】本発明の熱間製管工具の製造方法は、鋼製
基体の表面に酸化スケールを形成して使用する酸化スケ
ール型の熱間製管工具の製造方法において、前記鋼製基
体を金型鋳造により作製するものである。The method for manufacturing a hot pipe making tool according to the present invention is directed to a method for manufacturing an oxide scale type hot pipe making tool which uses an oxide scale formed on the surface of a steel base. It is produced by die casting.
【0012】[0012]
【作用】金型は砂型に比較して鋳造時の冷却速度が大き
い。そのための凝固組織が微細となり、主成分・不純物
のマクロ・ミクロ偏析が少なくなる。その結果、金型鋳
造により作製した鋼製基体は、砂型鋳造により作製した
鋼製基体と比べて高温強度が高く、室温〜高温域におけ
る延性・靱性に優れ、更に使用中の熱影響による軟化も
少ないため、表面シワ、熱亀裂の発生・進展に対する抵
抗性が高く、しかも塑性流動による表面損傷に対する抵
抗性が高い。また、基体表面に生成する酸化スケールは
基地組織の微細化に伴って緻密になり、耐剥離性および
耐焼付き性が向上する。これらの結果、工具寿命は1.5
倍以上になる。[Effect] The mold has a higher cooling rate during casting than the sand mold. Therefore, the solidification structure becomes fine, and macro-micro segregation of main components and impurities is reduced. As a result, the steel substrate produced by die casting has a higher high-temperature strength than the steel substrate produced by sand casting, and has excellent ductility and toughness in a temperature range from room temperature to high temperature. Due to its small amount, it has high resistance to surface wrinkles and generation and propagation of thermal cracks, and also high resistance to surface damage due to plastic flow. Further, the oxide scale formed on the surface of the substrate becomes denser as the base structure becomes finer, and the peeling resistance and the seizure resistance are improved. As a result, the tool life is 1.5
More than double.
【0013】その上、これらの優れた特性は基体の表層
部だけでなく内層部まで維持され、外削によってもその
劣化が殆ど認められないので、再度の切削とスケール付
けとにより繰り返し使用が可能となる。In addition, these excellent properties are maintained not only on the surface layer of the substrate but also on the inner layer, and the deterioration is hardly recognized by external cutting, so that it can be used repeatedly by cutting again and scaling. Becomes
【0014】一般に金型鋳造材の製造コストは金型の繰
り返し使用を考慮しても砂型鋳造材の製造コストの2倍
になると言われているが、金型鋳造材からなる鋼製基体
は使用寿命が1.5倍以上になること、その繰り返し使用
が可能となることにより、鋳造コストの高さを相殺して
余りある優れた経済性を示す。It is generally said that the cost of manufacturing a mold casting material is twice as large as the cost of producing a sand casting material even if repeated use of the mold is taken into consideration. The service life is 1.5 times or more, and its repetitive use is possible, so that the high cost of casting can be offset to show excellent economic efficiency.
【0015】本発明の方法では通常、素材鋼を工具より
やや大きい形状に金型鋳造し、その鋳造材を工具形状に
切削加工して鋼製基体を作製した後、スケール付けのた
めの熱処理を行う。In the method of the present invention, usually, a raw steel is die-cast into a shape slightly larger than a tool, and the cast material is cut into a tool shape to produce a steel base, which is then subjected to a heat treatment for scaling. Do.
【0016】素材鋼は3Cr−1Ni鋼の他、例えばM
oとWを合計量で1.5%以上添加して高温強度を高めた
Mo−W添加鋼等を用いることができ、特に鋼種を限定
するものではない。本発明では鋼種に関係なく工具の使
用寿命を1.5倍以上に延長することができる。本発明に
適用可能な素材鋼の主要成分は次の通りである。The material steel is 3Cr-1Ni steel, for example, M
It is possible to use Mo-W added steel or the like in which o and W are added in a total amount of 1.5% or more to increase the high-temperature strength, and the steel type is not particularly limited. In the present invention, the service life of the tool can be extended 1.5 times or more regardless of the type of steel. The main components of the material steel applicable to the present invention are as follows.
【0017】重量%でC:0.05〜0.5%、Si:0.0
5〜1.0%、Mn:0.1〜2.0%、Cr:5.0%以下、
Ni:4.0%以下、Wおよび/またはMo:合計で10
%以下、更に必要に応じてCo:3.0%以下、Tiおよ
び/またはNb:合計で0.5%以下の1種または2種。C: 0.05 to 0.5% by weight, Si: 0.0
5 to 1.0%, Mn: 0.1 to 2.0%, Cr: 5.0% or less,
Ni: 4.0% or less, W and / or Mo: 10 in total
% Or less, and, if necessary, one or two of Co: 3.0% or less, and Ti and / or Nb: 0.5% or less in total.
【0018】Cは高温強度の向上に有効である。C<0.
05%では十分な高温強度が得られず、C>0.5%では
製管後表面に焼きが入る部分の硬度が高くなりすぎ、製
管後の水冷等で焼き割れが生じ易くなる。C is effective for improving the high-temperature strength. C <0.
If the content is 05%, sufficient high-temperature strength cannot be obtained, and if C> 0.5%, the hardness of the portion where the surface is burned after the tube is formed becomes too high, and quenching cracks are easily generated by water cooling after the tube is formed.
【0019】Siは脱酸、Ac1 点の上昇、基体表面の
酸化スケールの緻密化に有効であるが、Si<0.05%
ではその効果が少なく、Si>1.0%では靱性の劣化や
スケール層が薄くなることによる潤滑性劣化を招く。Si is effective for deoxidation, raising the Ac 1 point, and densifying the oxide scale on the surface of the substrate, but Si <0.05%
However, if Si is more than 1.0%, the toughness deteriorates and the lubricity deteriorates due to the thinning of the scale layer.
【0020】MnはMoやWを多量に添加する場合、高
温でオーステナイト単相を確保する作用がある。Mn<
0.1%ではその作用が十分に得られず、Mn>2.0%で
はスケール中のMnがスケールの緻密性を低下させ、ま
たスケールの融点を高めて、潤滑性を劣化させる。When a large amount of Mo or W is added, Mn has an effect of securing an austenite single phase at a high temperature. Mn <
At 0.1%, the effect is not sufficiently obtained, and at Mn> 2.0%, Mn in the scale lowers the compactness of the scale and raises the melting point of the scale to deteriorate the lubricity.
【0021】Crは高温強度を確保すると共に酸化スケ
ール層を緻密化してその密着化を向上させるのに有効な
成分であるが、Cr>5.0%では耐酸化性が向上し過ぎ
て酸化スケール層が厚くならない。Cr is an effective component for securing high-temperature strength and improving the adhesion of the oxide scale layer by densification. However, when Cr> 5.0%, the oxidation resistance is excessively improved and the oxide scale is excessively improved. The layer does not thicken.
【0022】Niは製管後基体表面に生じた焼入れ硬化
層の靱性を改善すると共に、δ−フェライト相の析出を
抑制する効果がある。更にNiはスケール中に酸化され
ずに微細に分散してスケールの耐剥離性を大きく改善す
る。しかし、Ni>4.0%ではスケールの生成が抑制さ
れ、潤滑性がかえって劣化する。Ni has the effect of improving the toughness of the quenched and hardened layer formed on the surface of the substrate after pipe production, and of suppressing the precipitation of the δ-ferrite phase. Further, Ni is finely dispersed without being oxidized in the scale and greatly improves the peel resistance of the scale. However, when Ni> 4.0%, the formation of scale is suppressed, and the lubricity is rather deteriorated.
【0023】CoはNiと同様の効果を有し、3%まで
添加することができる。Co has the same effect as Ni and can be added up to 3%.
【0024】W,Moは高温強度を確保するのに有効な
元素である。ステンレス鋼などの高合金鋼の圧延に使用
する工具においては、合計量で1.5%以上添加するのが
望ましい。また、W+Mo≧1.5%かつ7W(%)+8
Ni(%)≦56を満足することにより、母材近傍にお
ける酸化スケール構造が粒界酸化型から粒内酸化型に変
わり、酸化スケールの耐剥離性が特に向上する。しか
し、合計量が10%を超えると高温でもフェライトが残
留するようになって逆に高温強度が低下し靱性も劣化す
る。W and Mo are effective elements for securing high-temperature strength. For tools used for rolling high-alloy steel such as stainless steel, it is desirable to add 1.5% or more in total. Also, W + Mo ≧ 1.5% and 7W (%) + 8
By satisfying Ni (%) ≦ 56, the oxide scale structure in the vicinity of the base material changes from the grain boundary oxidation type to the intragranular oxidation type, and the peeling resistance of the oxide scale is particularly improved. However, when the total amount exceeds 10%, the ferrite remains even at high temperatures, and conversely, the high-temperature strength decreases and the toughness also deteriorates.
【0025】Ti,Nbは組織の微細化、強度向上に有
効な元素である。しかしTi+Ni>0.5%では介在物
として析出して靱性を低下させる。Ti and Nb are effective elements for refining the structure and improving the strength. However, if Ti + Ni> 0.5%, it precipitates as inclusions and lowers toughness.
【0026】不純物については、Nは溶製時(凝固時)
の欠陥防止のために0.05%以下、P,Sは靱性および
鋳造時の割れ防止の点からそれぞれ0.035%以下、0.
030%以下に制限することが望ましい。As for impurities, N is used during melting (at the time of solidification).
0.05% or less, P and S are 0.035% or less and 0.05% or less, respectively, from the viewpoint of toughness and crack prevention during casting.
It is desirable to limit it to 030% or less.
【0027】ちなみに3Cr−1Ni鋼系プラグ材の主
要成分は、重量%でC:0.20〜0.40%、Si:0.3
〜1.0%、Mn:0.3〜1.0%、Cr:1.0〜4.0%、
Ni:0.5〜4.0%であり、他には高温強度を高めるた
めW,Moを合計量で1.5%未満添加したり、組織の微
細化、強度向上のためにTi,Bを添加する場合があ
る。The main components of the 3Cr-1Ni steel-based plug material are, by weight%, 0.20 to 0.40% C and 0.3% Si.
11.0%, Mn: 0.3 to 1.0%, Cr: 1.0 to 4.0%,
Ni: 0.5 to 4.0%, W and Mo are added in a total amount of less than 1.5% to increase the high-temperature strength, and Ti and B are added to refine the structure and improve the strength. May be added.
【0028】鋳造では、図1に示すように、工具基体の
外郭形状よりやや大きい内郭形状を有し上部にガス抜き
孔8を有する金型1を、注湯口に該当する部分にセラミ
ック7を埋めこんだ平たい金型2(定盤)の上に載せ、
その中に素材鋼4を、耐火物6で作られた湯道を通して
鋳込む。金型の材質としては通常ねずみ鋳鉄(JIS規
格でFC15など)または鋳鋼が用いられる。In the casting, as shown in FIG. 1, the mold 1 having an inner shape slightly larger than the outer shape of the tool base and having a gas vent hole 8 in the upper part, and the ceramic 7 in a portion corresponding to a pouring port are provided. Place it on the embedded flat mold 2 (platen),
Material steel 4 is cast therein through a runner made of refractory material 6. Gray cast iron (FC15 or the like in JIS) or cast steel is usually used as the material of the mold.
【0029】鋳込みに際しては、金型1の内面および金
型2の上面に硅酸ソーダなどをバインダーとした耐火物
系塗型剤3を塗布しておく。金型1には冷却能を高める
ために水冷ジャケットを取り付ける場合がある。この場
合の金型温度は100℃程度である。急冷による鋳型充
填能の低下を見込むこと、金型内に鋳込む溶鋼を出来る
限り層流として、静かに早く鋳込みを終えること、ガス
排出を促進することについては、従来の金型鋳造の場合
と同じである。型開きして得られた鋳造材5は、所定の
工具形状に外削されて鋼製基体となる。At the time of casting, a refractory coating agent 3 using sodium silicate or the like as a binder is applied to the inner surface of the mold 1 and the upper surface of the mold 2. The mold 1 may be provided with a water-cooling jacket in order to increase the cooling capacity. The mold temperature in this case is about 100 ° C. Expecting a decrease in mold filling capacity due to quenching, making the molten steel cast into the mold as laminar as possible, finishing the casting quietly and quickly, and promoting gas emission are the same as those in the conventional mold casting. Is the same. The cast material 5 obtained by opening the mold is externally cut into a predetermined tool shape to form a steel base.
【0030】工具がピアサープラグの場合、その形状は
先の尖った砲弾形である。そのため、従来と同様な鋳込
みでは、先端部の冷却が速すぎて押湯効果が得られず、
凝固収縮によるキャビティなどの凝固欠陥が発生しやす
い。従って、先端部を下にして鋳込む、先端部における
塗型剤の膜厚を厚くして冷却能を下げるなど、押湯効果
を高める工夫が必要となる。また塗型剤の塗付作業にお
いても、一部分の膜厚が厚すぎると温度勾配ができ、押
湯が一部のみとなってキャビティが細長くなり、割れが
生じやすくなるので、入念な膜厚管理が必要である。If the tool is a piercer plug, its shape is a pointed bullet. Therefore, in the same casting as in the past, the cooling of the tip is too fast to obtain the feeder effect,
Solidification defects such as cavities due to solidification shrinkage are likely to occur. Therefore, it is necessary to devise ways to enhance the feeder effect, such as casting with the tip end down, increasing the thickness of the coating agent at the tip end to lower the cooling ability. Also, in the application of the mold wash, if the thickness of a part of the film is too thick, a temperature gradient will occur, and only a part of the feeder will make the cavity elongated and crack easily, so careful film thickness management is necessary.
【0031】金型鋳造により工具基体を作製すると、急
冷凝固により微細で偏析の少ない凝固組織が得られ、砂
型鋳造の場合よりも工具寿命が延びる。また、柱状晶が
表面から内部へ長く成長し、微細な結晶粒が内部まで続
くために、表層部から内層部へかけて同一組織となる。When a tool base is manufactured by die casting, a solidified structure with a small number of segregation is obtained by rapid solidification, and the tool life is extended as compared with the case of sand casting. Further, since columnar crystals grow long from the surface to the inside and fine crystal grains continue to the inside, the same structure is formed from the surface layer portion to the inner layer portion.
【0032】金型鋳造における急冷効果を明らかにする
ために、熱拡散を表わすフーリエの式における熱拡散率
αの値を、砂型鋳造の場合と比較して表1に示す。な
お、フーリエの式は数式1の通りである。また、金型鋳
造により作製した3Cr−1Ni鋼プラグの機械的性質
を、砂型鋳造により作製した場合と比較して表2に示
す。In order to clarify the quenching effect in die casting, Table 1 shows the value of the thermal diffusivity α in Fourier's equation representing thermal diffusion in comparison with the case of sand casting. The Fourier equation is as shown in Equation 1. In addition, Table 2 shows the mechanical properties of the 3Cr-1Ni steel plugs produced by die casting in comparison with those produced by sand casting.
【0033】表2からわかるように、金型鋳造により作
製したプラグは砂型鋳造により作成したプラグと比べて
表層部の機械的性質が良好であり、且つその機械的性質
が内層部まで維持され、表面から100mmのところに
おいても砂型材の表層部より格段に優れた性質を保有し
ている。As can be seen from Table 2, the plug made by die casting has better surface layer mechanical properties than the plug made by sand casting, and the mechanical properties are maintained up to the inner layer. Even at a distance of 100 mm from the surface, it has properties much better than the surface layer of the sand mold material.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【数1】 (Equation 1)
【0036】[0036]
【表2】 [Table 2]
【0037】鋼製基体の表面にスケール層を形成するた
めの熱処理では、熱処理雰囲気が生成するスケールの構
造に影響する。本発明法では、雰囲気中の酸素濃度を大
気酸素濃度以下に調整するのが望ましい。雰囲気中の酸
素濃度が大気酸素濃度よりも高いと熱処理中に酸化鉄が
急激に成長するため、厚いが緻密性の悪いポーラスなス
ケールとなって容易に剥離する。なお、一般的には上記
酸素濃度は1.0%以下が望ましく、必要に応じてCOガ
ス,H2 O(水蒸気)を混合する。In the heat treatment for forming the scale layer on the surface of the steel base, the heat treatment atmosphere affects the structure of the scale to be generated. In the method of the present invention, it is desirable that the oxygen concentration in the atmosphere be adjusted to the atmospheric oxygen concentration or less. If the oxygen concentration in the atmosphere is higher than the atmospheric oxygen concentration, the iron oxide grows rapidly during the heat treatment, so that it becomes a thick but poorly dense porous scale and easily peels off. In general, the oxygen concentration is desirably 1.0% or less, and CO gas and H 2 O (water vapor) are mixed as necessary.
【0038】熱処理温度は生成するスケールの構造と成
長速度に影響する。本発明法では、熱処理温度を800
〜1100℃とするのが望ましい。その理由は、800
℃未満であると酸化物生成能力が劣るため非常に長時間
の熱処理時間が必要となって実操業に適せず、また11
00℃を超えるとスケール成長が著しく速くなって不安
定でポーラスなスケールとなり、剥離を生じやすいから
である。The temperature of the heat treatment affects the structure of the formed scale and the growth rate. In the method of the present invention, the heat treatment temperature is 800
It is desirably set to 11100 ° C. The reason is 800
When the temperature is lower than 0 ° C., the oxide forming ability is inferior, so that a very long heat treatment time is required, which is not suitable for actual operation.
If the temperature exceeds 00 ° C., the scale growth becomes remarkably fast, the scale becomes unstable and porous, and peeling easily occurs.
【0039】熱処理時間は生成するスケールの厚さ、構
造に影響する。本発明法では、熱処理時間を4〜10h
rとするのが望ましい。その理由は、4hr未満では当
該成分系では十分なスケール厚さにならず、一方、10
hrを超えた場合にはスケール成長が過度になってスケ
ール厚が厚くなり過ぎるほか、スケールがポーラスにな
り剥離を生じやすくなるためである。The heat treatment time affects the thickness and structure of the formed scale. In the method of the present invention, the heat treatment time is 4 to 10 hours.
r is desirable. The reason is that if it is less than 4 hours, the component system will not have a sufficient scale thickness, while
If it exceeds hr, the scale growth becomes excessive and the scale thickness becomes too thick, and the scale becomes porous and peeling is liable to occur.
【0040】均熱後の冷却速度はスケールの緻密性に影
響する。本発明法では、均熱の後は50℃/hr以下の
冷却速度で800〜500℃まで徐冷することが望まし
い。冷却速度が50℃/hrを超えるとスケールの割れ
や剥離・脱落が発生する。特に望ましくは20〜30℃
/hr以下の冷却速度で徐冷するのが良い。そして、徐
冷の終了温度が800℃よりも高いとその後の急冷でス
ケールの剥離・脱落が発生し、一方、徐冷終了温度を5
00℃よりも低くすると冷却時間が長くなり過ぎて操作
上問題となる。The cooling rate after soaking affects the compactness of the scale. In the method of the present invention, after soaking, it is preferable to gradually cool to 800 to 500 ° C. at a cooling rate of 50 ° C./hr or less. If the cooling rate exceeds 50 ° C./hr, cracking of the scale and peeling-off occur. Particularly desirable is 20 to 30 ° C.
It is preferable to gradually cool at a cooling rate of / hr or less. If the end temperature of the slow cooling is higher than 800 ° C., peeling and falling off of the scale will occur in the subsequent rapid cooling.
If the temperature is lower than 00 ° C., the cooling time becomes too long, which causes a problem in operation.
【0041】このような熱処理、更には熱処理前のショ
ットブラスト処理を通じて、表面酸化スケール層の厚さ
は100μm以上となる。100μm未満ではスケール
の潤滑性、母材に対する耐熱性が得られず所望の穿孔用
工具寿命が得られない。また、酸化スケール層が500
μm超では厚くなりすぎスケール層がポーラスで剥離し
やすい。Through such heat treatment, and further through shot blasting before heat treatment, the thickness of the surface oxide scale layer becomes 100 μm or more. If it is less than 100 μm, the lubricity of the scale and the heat resistance to the base material cannot be obtained, and the desired tool life for drilling cannot be obtained. In addition, when the oxide scale layer is 500
If it exceeds μm, it becomes too thick and the scale layer is porous and easily peeled off.
【0042】スケール層は一般に2層に分かれる。外層
側はFeO主体の比較的ポーラスなスケールであり、内
層はスピネル・複合酸化物型の緻密なスケール層であ
る。内層スケールと母材との界面は、粒界酸化型または
粒内酸化型となる。The scale layer is generally divided into two layers. The outer layer is a relatively porous scale mainly composed of FeO, and the inner layer is a dense scale layer of a spinel / composite oxide type. The interface between the inner layer scale and the base material is of a grain boundary oxidation type or an intragranular oxidation type.
【0043】[0043]
【実施例】以下に本発明の実施例を示し、その効果を明
らかにする。Embodiments of the present invention will be described below to clarify the effects.
【0044】500kgの高周波誘導電気炉により、表
3に示した化学成分組成の鋼〜を溶製し、金型鋳造
および砂型鋳造により得た各インゴットを機械加工によ
り最大外径147mmのピアサープラグ用鋼製基体に仕
上げた。Using a 500 kg high frequency induction electric furnace, steels having the chemical composition shown in Table 3 were melted, and each ingot obtained by die casting and sand die casting was machined to form a piercer plug having a maximum outer diameter of 147 mm. Finished on a steel substrate.
【0045】次に、製造された鋼製基体に720℃×2
Hrの軟化処理を施し、ショットブラストにより表層ス
ケールをいったん除去したのち、スケール付け熱処理を
施した。この熱処理は、プタンガス燃焼雰囲気でCO=
1%にて所定の温度、時間、冷却速度、徐冷終了温度で
実施した。Next, the manufactured steel substrate was placed at 720 ° C. × 2
After a softening treatment of Hr was performed and the surface layer scale was once removed by shot blasting, heat treatment for scaling was performed. In this heat treatment, CO =
The test was performed at a predetermined temperature, time, cooling rate, and slow cooling end temperature at 1%.
【0046】そして、得られたピアサープラグにつき、
表面スケール層の厚さをプラグ中央部の断面ミクロ写真
より実測すると共に、スケール構造の特定を行った。ま
た、その機械的性質を調査した。更に、このようにして
作製されたピアサープラグを実機での穿孔試験に供して
その寿命を評価した。Then, for the obtained piercer plug,
The thickness of the surface scale layer was actually measured from a cross-sectional microphotograph of the center of the plug, and the scale structure was specified. The mechanical properties were also investigated. Further, the piercer plug thus produced was subjected to a piercing test on an actual machine to evaluate its life.
【0047】[0047]
【表3】 [Table 3]
【0048】穿孔試験では、被圧延材として鋼のピア
サープラグに対しては外径187mmのS45Cビレッ
トを用い、鋼のピアサープラグに対しては外径18
7mmのSUS420ビレットおよびSUS304ビレ
ットを用いた。圧延条件はS45Cの場合はビレット長
3380mm、シェル長10500mmとし、SUS4
20およびSUS304の場合はビレット長2100m
m、シェル長6500mmとした。鋼〜のピアサー
プラグについての熱処理条件および酸化スケール厚さを
表4に示し、機械的性質および穿孔パス回数を表5に示
す。In the drilling test, an S45C billet having an outer diameter of 187 mm was used for a steel piercer plug as a material to be rolled, and an outer diameter of 18 mm was used for a steel piercer plug.
7 mm SUS420 and SUS304 billets were used. The rolling conditions were as follows: In the case of S45C, the billet length was 3380 mm and the shell length was 10500 mm.
Billet length 2100m for 20 and SUS304
m, and the shell length was 6500 mm. Table 4 shows the heat treatment conditions and the oxide scale thickness for the steel to piercer plugs, and Table 5 shows the mechanical properties and the number of drilling passes.
【0049】[0049]
【表4】 [Table 4]
【0050】[0050]
【表5】 [Table 5]
【0051】鋼は3Cr−1Ni鋼である。鋼製基体
が金型鋳造材の場合、内層スケールが緻密化し、且つ基
体の機械的性質が常温、高温とも向上したことにより、
穿孔回数は砂型鋳造の場合の122回から205回に大
幅増大した。The steel is a 3Cr-1Ni steel. When the steel substrate is a die casting material, the inner layer scale becomes denser, and the mechanical properties of the substrate are improved both at room temperature and high temperature.
The number of perforations increased significantly from 122 in sand casting to 205.
【0052】鋼はMoとWの合計量を1.5%以上に高
めたMo−W添加鋼で、合金鋼穿孔用に3Cr−1Ni
鋼より高温強度を向上させたものである。砂型鋳造材の
場合の穿孔回数は、SUS420の穿孔圧延で4回、S
US304の穿孔圧延で2回であった。しかし、金型鋳
造材とすることにより、高温での機械的性質が更に向上
し、且つ内層スケールが更に厚くなったため、それぞれ
6回、3回に穿孔回数が増大した。The steel is Mo-W added steel in which the total amount of Mo and W is increased to 1.5% or more, and 3Cr-1Ni is used for drilling alloy steel.
High temperature strength is improved over steel. The number of piercings in the case of a sand casting material was four times in SUS420 piercing and rolling,
The piercing and rolling in US 304 was twice. However, the use of the mold casting material further improved the mechanical properties at high temperatures and further increased the thickness of the inner layer scale, so that the number of perforations increased to six and three times, respectively.
【0053】鋼もMoとWの合計量を1.5%以上に高
めたMo−W添加鋼であるが、高温での機械的性質を更
に高め且つスケール厚さを厚くしたものである。そのた
め、砂型鋳造材の場合でも、SUS420、SUS30
4の各穿孔で穿孔回数がそれぞれ10回、6回に増大し
たが、金型鋳造材の場合は高温での機械的性質が更に向
上し、且つ内層スケールが更に厚くなったため、それぞ
れ15回、8回まで穿孔回数が増大した。[0053] The steel is also a Mo-W added steel in which the total amount of Mo and W is increased to 1.5% or more, but the mechanical properties at high temperature are further enhanced and the scale thickness is increased. Therefore, even in the case of a sand casting material, SUS420, SUS30
The number of perforations was increased to 10 and 6 in each perforation of No. 4, however, in the case of the die casting material, the mechanical properties at high temperatures were further improved, and the inner layer scale was further thickened. The number of perforations increased to eight.
【0054】このように、工具基体を金型鋳造により作
製することにより、従来の砂型鋳造で作製した場合と比
べて工具寿命が1.5倍以上に延びる。また、工具基体を
砂型鋳造で作製した場合はその工具の再使用回数が1〜
2回であったが、金型鋳造で作製した場合はいずれも2
回以上の再使用が可能であった。As described above, by manufacturing the tool base by die casting, the tool life is extended 1.5 times or more as compared with the case of manufacturing by the conventional sand die casting. When the tool base is made by sand casting, the number of re-uses of the tool is 1 to
It was 2 times, but when it was manufactured by die casting,
It could be reused more than once.
【0055】[0055]
【発明の効果】以上に説明した通り、本発明の熱間製管
工具の製造方法は、金型鋳造にて鋼製基体を作製するこ
とにより、その機械的性質を向上させ且つその表面に生
成される酸化スケールを改善して、工具寿命を大幅に延
長すると共に、その工具の繰り返し使用を可能にするの
で、工具原単位の向上、製管コストの低減に大きな効果
を発揮する。As described above, the method for manufacturing a hot pipe making tool according to the present invention improves the mechanical properties of the steel base by producing the steel base by die casting, and forms the steel base on the surface. By improving the oxidation scale to be used, the tool life can be greatly extended, and the tool can be used repeatedly, which is very effective in improving the tool unit consumption and reducing the cost of pipe production.
【図1】金型鋳造の状況を例示する模式図である。FIG. 1 is a schematic view illustrating the state of die casting.
1,2 金型 3 塗型剤 4 素材鋼(溶湯) 5 鋳造材(仕上げ切削前の鋼製基体) 6 湯道耐火物 7 耐火セラミック 8 ガス抜き孔 1, 2 Mold 3 Coating agent 4 Material steel (Molten metal) 5 Casting material (Steel substrate before finish cutting) 6 Runner refractory 7 Refractory ceramic 8 Gas vent hole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 一男 埼玉県川越市新宿町5丁目13番地1 新 報國製鉄株式會社内 (56)参考文献 特開 平4−74848(JP,A) 特開 平4−270003(JP,A) 特開 昭63−290695(JP,A) (58)調査した分野(Int.Cl.6,DB名) B21B 25/00 B22C 9/22 B22D 25/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Kawaguchi 5-13-1, Shinjuku-cho, Kawagoe-shi, Saitama In-house Shinpokoku Steel Corporation (56) References JP-A-4-74848 (JP, A) JP-A Heisei 4-270003 (JP, A) JP-A-63-290695 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B21B 25/00 B22C 9/22 B22D 25/02
Claims (1)
て使用する酸化スケール型の熱間製管工具の製造方法に
おいて、前記鋼製基体を金型鋳造により作製することを
特徴とする熱間製管工具の製造方法。1. A method for manufacturing an oxide scale type hot pipe forming tool using an oxide scale formed on a surface of a steel base, wherein the steel base is manufactured by die casting. A method of manufacturing a pipe making tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12942795A JP2952382B2 (en) | 1995-04-27 | 1995-04-27 | Manufacturing method of hot pipe making tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12942795A JP2952382B2 (en) | 1995-04-27 | 1995-04-27 | Manufacturing method of hot pipe making tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08300014A JPH08300014A (en) | 1996-11-19 |
JP2952382B2 true JP2952382B2 (en) | 1999-09-27 |
Family
ID=15009231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12942795A Expired - Lifetime JP2952382B2 (en) | 1995-04-27 | 1995-04-27 | Manufacturing method of hot pipe making tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2952382B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050975A1 (en) | 2012-09-28 | 2014-04-03 | 新報国製鉄株式会社 | Piercer plug material for producing seamless steel tube, and method for producing said material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6385195B2 (en) | 2014-08-19 | 2018-09-05 | 新報国製鉄株式会社 | Piercer plug for seamless pipe manufacturing |
CN117987746B (en) * | 2024-03-27 | 2024-10-15 | 南通市嘉业机械制造有限公司 | Wear-resistant seamless steel pipe perforating plug and preparation method thereof |
-
1995
- 1995-04-27 JP JP12942795A patent/JP2952382B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050975A1 (en) | 2012-09-28 | 2014-04-03 | 新報国製鉄株式会社 | Piercer plug material for producing seamless steel tube, and method for producing said material |
Also Published As
Publication number | Publication date |
---|---|
JPH08300014A (en) | 1996-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20230059827A (en) | Wire rod for 5,000 MPa class diamond wire and its production method | |
US5419973A (en) | Composite roll for rolling and process for producing the same | |
JP4264755B2 (en) | Hot working tool steel, hot working tool and plug for seamless pipe manufacturing | |
JP2683861B2 (en) | Hot pipe making tool and method of manufacturing the same | |
WO2021223632A1 (en) | Rare earth-containing heat-resistant alloy steel and slab continuous casting production process therefor | |
CN103974787B (en) | Drilling/rolling instrument | |
JPH11310825A (en) | Method of manufacturing work roll for cold rolling | |
KR100409193B1 (en) | High strength, low thermal expansion alloy wire and manufacturing method thereof | |
JP3292122B2 (en) | Seamless steel pipe manufacturing tools | |
JP2952382B2 (en) | Manufacturing method of hot pipe making tool | |
JP3711959B2 (en) | Heat resistant low alloy steel pipe and method for producing the same | |
JPH10291008A (en) | Hot pipe making tool and method of manufacturing the same | |
JP2003129184A (en) | Drilling rolling tool | |
JPH0426739A (en) | Steel for hot pipe making tools and hot pipe making tools | |
JP4197364B2 (en) | Plug mill plug for seamless steel pipe manufacturing | |
JP4258580B2 (en) | Seamless steel pipe manufacturing tool and method for manufacturing the same | |
CN112522624A (en) | High manganese austenitic wear-resistant steel and manufacturing method thereof | |
JPH08206709A (en) | Hot pipe making tool and its manufacturing method | |
CN115058646B (en) | High-strength low-temperature-resistant corrosion-resistant steel for vehicle-mounted gas cylinder and manufacturing method thereof | |
JP2000017341A (en) | Hardening method of work roll for cold rolling | |
JP3679221B2 (en) | Composite roll for iron making rolling mill with excellent wear resistance and method for producing the same | |
JPH11199962A (en) | Composite rolling for rolling | |
JPH0890015A (en) | Cooling method of plug for rolling seamless steel tube | |
CN116287995A (en) | Production method for improving frame segregation of large-section rectangular bearing steel | |
JPH05202444A (en) | Steel plate excellent in toughness at low temperature and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |