JP4258580B2 - Seamless steel pipe manufacturing tool and method for manufacturing the same - Google Patents

Seamless steel pipe manufacturing tool and method for manufacturing the same Download PDF

Info

Publication number
JP4258580B2
JP4258580B2 JP36890998A JP36890998A JP4258580B2 JP 4258580 B2 JP4258580 B2 JP 4258580B2 JP 36890998 A JP36890998 A JP 36890998A JP 36890998 A JP36890998 A JP 36890998A JP 4258580 B2 JP4258580 B2 JP 4258580B2
Authority
JP
Japan
Prior art keywords
scale
plug
oxide scale
manufacturing
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36890998A
Other languages
Japanese (ja)
Other versions
JP2000190008A (en
Inventor
修治 山本
正春 岡
弘一 古庄
健一 高久
精二 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP36890998A priority Critical patent/JP4258580B2/en
Publication of JP2000190008A publication Critical patent/JP2000190008A/en
Application granted granted Critical
Publication of JP4258580B2 publication Critical patent/JP4258580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、継目無鋼管を製造する際の穿孔圧延機及び延伸圧延機に使用する継目無鋼管製造用工具、特にプラグおよび該プラグの製造方法に関する。
【0002】
【従来の技術】
熱間圧延における継目無鋼管製造の代表的な方法はプラグミル法及びマンドレルミル法である。一般には製造外径7”(177.8mm)以上ではプラグミル法が、それより小さい外径の場合マンドレルミル法が使われている。
【0003】
図1に圧延工程を示した。なお、図1(a)はマンドレルミル方式を示し、図1(b)はプラグミル法を示す。図1に示すように、素材1は加熱炉2において所定の温度まで加熱されその後穿孔機3により中空素管4を得る。穿孔機としては、プレスロールピアサー、図示していないマンネスマンピアサーなどがある。その後マンドレルミル法では延伸連続圧延機であるマンドレルミル7によって延伸圧延された後、再加熱炉8により所定の温度に加熱され仕上げ圧延機であるストレッチレデューサー9で所定の外径に圧延成形され仕上管10となる。また、マンドレルミル7の前に肉厚を減じると共に長さを伸ばすエロンゲータミル5、外径を絞るホローシェルレデューサー6が設置される場合もある。一方プラグミル法においては、中空素管4はエロンゲータミル5により肉厚を減じると共に長さを伸ばす延伸圧延が行われ、次いでプラグミル11により減肉延伸されリーラーミル12により内外面を平滑に仕上げる。その後再加熱炉8により所定の温度に加熱されサイザーミル13により所定の外径に圧延成形され仕上管10となる。
【0004】
穿孔機やエロンゲータミル等に使用されるプラグは一般に3%Cr−1%Ni系低合金鋼材質が使用され、断熱性を確保するために熱処理により表層にFeO、Fe34等の酸化スケールを形成させる処理が施される。このようなプラグで炭素鋼に比べて変形抵抗が高く、表面に酸化スケールが生じにくいステンレス鋼を圧延すると、プラグの酸化スケールの消耗が速く、酸化スケールがなくなるとプラグと被圧延材のメタル−メタル接触によりプラグが溶損し、その結果として管内面に焼付疵が発生する。
【0005】
そこで、特開昭63−282241号公報においては、Cr含有量を低減し、地鉄との界面近傍の酸化スケールをプラグ表面に強固に溶着されるようなFeO主体の酸化スケールとし、さらにMo、W、Nb、Ni、Co、Vを適量添加して高温強度と表面酸化スケールの地鉄への密着性を高めたプラグが提案されている。また、特開平7−60314号公報においては、表面に厚さ250〜1000μmの内部酸化型スケール層を形成したプラグが提案されている。これらプラグは13%Crステンレス鋼の穿孔においては、3%Cr−1%Ni系低合金鋼材質からなるプラグに対して3倍以上の寿命延長効果が認められる。しかしながら、13%Crステンレス鋼よりさらに変形抵抗の高いSUS304、SUS316等のオーステナイト系ステンレス鋼の穿孔においては、それらプラグの寿命は2倍程度であった。
【0006】
【発明が解決しようとする課題】
本発明は、上述したような事情を鑑みてなされたものであって、ステンレス継目無鋼管を製造する際に、寿命の長い工具およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、オーステナイト系ステンレス鋼圧延時においてもプラグ表面に形成された酸化スケールが早期に摩滅したり、剥ぎ取られたりしないようにするため、鋭意研究を重ねた結果、高温硬度の高いFeCr24を主体とした酸化スケール中に、金属片を介在させることで、酸化スケールが地鉄より剥離しにくく、かつ摩滅しにくくなることを見出した。
【0008】
従来より用いられている3%Cr−1%Ni系ではFeO主体のスケールであり、スケール中に金属片がほとんど存在しない。FeOを主体としたスケールは潤滑性に優れるものの、スケールと地鉄との密着性が十分でないため、13%Cr鋼等のステンレス鋼を圧延すると、スケールが早期に剥離及び摩滅する。
【0009】
特開平7−60314号公報においては、Niが濃縮した金属片が分散された厚い酸化スケールが提案されているが、酸化スケールがFeOを主体としたものであるため、酸化スケールの高温硬度が不十分であり摩滅が速く、オーステナイト系ステンレス鋼の穿孔においては、プラグ寿命は3%Cr−1%Ni系プラグの2倍程度であった。
【0010】
本発明においては、厚いFeCr24を形成させるため、Cr含有量を所定の範囲に調整し、FeCr24を主体とした酸化スケール中にNiが濃化した金属片を介在させるため、適量のNiを添加した。このような鋼材を1250℃で8時間加熱して生成した酸化スケールを図2に示す。空隙が極めて少なく、金属片を多数含んだFeCr24を主体とした厚い酸化スケールとなっている。即ち、図2(a)は、酸化スケールの断面を示す顕微鏡写真であり、そして、図2(b)は、図2(a)のI部の拡大顕微鏡写真で、図2(c)は、図2(a)のII部の拡大顕微鏡写真である。
【0011】
図2(b)に示すように、酸化スケールの表面側は、島状に存在する金属片15(白い粒状部分)と、これに隣接した酸化物16(灰色の枝状に連なった部分)が存在し、残りは空隙(黒い部分)となっている。空隙は酸化スケールの下側になるほど減少していて、図2(c)に示すように、酸化スケールの下側は、金属スケールの殆どは枝状に連なった金属片15(白い部分)と、これに隣接する酸化物16(黒い部分)とから構成されている。
【0012】
また、図3の酸化スケールと地鉄界面の断面の顕微鏡写真に示すように、酸化スケール中の金属片の一部が地鉄と繋がっているため、酸化スケールが剥離しにくい状態になっている。
【0013】
このような酸化スケールを生成したプラグによりプラグ寿命が向上するが、さらにプラグ寿命を向上させることが可能な重要な知見を見出した。本発明者らは、金属片を多数含有し、FeCr24を主体とした酸化スケールを表面に形成したプラグにおいて、寿命にバラツキガみられたため、その原因を検討した。その結果、比較的寿命の短かったプラグにおいては、プラグ熱処理時のオーステナイト粒界にあたる位置でスケールが割れて欠け落ちていることを突き止めた。本発明の目的を達成するためには、Cr及びNiを添加することになるが、このような鋼においては、酸素の拡散が容易なオーステナイト粒界が酸化されて、続いて粒内が酸化される。オーステナイト粒径が大きいと単位体積に占める粒界面積の割合が小さくなるため、粒界での酸化が粒内での酸化に対して激しく、圧延時に荷重を受けると、金属片が多数存在する粒内に対して、金属片がほとんど存在しない粒界の強度が弱く、粒界でのスケールが割れて欠け落ちることがある。そこで、オーステナイト粒径を小さくすれば、粒界及び粒内での酸化が同等になり、均一で緻密なスケールを得ることで、酸化スケールの割れ及び剥離が防止できると発想した。Crを13%、Niを5%含み、Tiの量を変えることで加熱時のオーステナイト粒径を300〜1000μm、20〜200μmとした鋼片を1280℃で4時間加熱した後のスケールを図4に示した。加熱時のオーステナイト粒径を小さくすることで、緻密なスケールを得ることが可能である。加熱時のスケールを緻密なものとするため、加熱時のオーステナイト粒径が200μm以下となるようにすることが好ましい。
【0014】
本発明は以上に述べた知見を組み合わせて構成したものであって、その要旨とするところは下記の通りである。
【0015】
すなわち、重量%で、C:0.01〜0.1%、Si≦0.5%、Mn:0.2〜1.0%、Cr:11.0〜15.0%、Ni:3.0〜7.0%、Mo:1.0〜4.0%を含有するか、或いは更にTi:0.01〜0.1%を含むと共に、残部がFe及び不可避的不純物である鋼を、所定の形状に仕上げた後、1200〜1300℃の温度範囲で4〜12時間加熱することにより、表面に金属片を含み、任意に切断した断面全体に対する空隙の面積率が皆無或は20%以下であり、かつ厚さ300μm以上のスケール層を形成させることを特徴とする継目無鋼管製造用工具の製造方法である。
【0016】
【発明の実施の形態】
以下に本発明について詳細に説明する。
【0017】
まず、鋼成分の限定理由について述べる。
【0018】
C:0.01〜0.1%
Cは高温強度向上に有効な成分であるが、その含有量が0.01%未満ではその効果が小さい。一方、0.1%を超えると圧延後の冷却で焼き割れが生じやすくなるため、その範囲を0.01〜0.1%とした。
【0019】
Si:0.5%以下
Siは脱酸剤として添加され残存したもので、鋼中に0.5%を超えて含有されると靭性が低下するため、0.5%以下とした。
【0020】
Mn:0.2〜1.0%
Mnは、高温強度向上に有効であるが、0.2%未満ではその効果が小さく、1.0%を超えて添加すると多量の介在物を形成し靭性が劣化するため、その範囲を0.2〜1.0%とした。
Cr:11.0〜15.0%
Crは、FeCr24の厚さと関係があり本発明においては重要な元素である。Cr量が13%でFeCr24の厚さが最大になり、11%未満及び15%を超えると十分な厚さのFeCr24が得られない。従って、限定範囲を11〜15%とした。好ましくは12.5〜14%である。
【0021】
Ni:3.0〜7.0%
Niは、酸化されにくい元素であり、酸化スケール中に金属片を介在させるための重要な元素である。3.0%以下では顕著な効果は期待できず、7.0%を超えると効果が飽和するため、その限定範囲を3.0〜7.0%とした。
【0022】
Mo:1.0〜4.0%
Moは、降温強度の向上に有効な元素であるが、1.0%未満ではその効果が小さく、4.0%を超えて含有するとδフェライトを生成しやすくなり、地鉄表面が割れやすくなるため、その限定範囲を1.0〜4.0%とした。
【0023】
Ti:0.01〜0.1%
Tiは加熱時のオーステナイト粒径に影響を与え、加熱時のオーステナイト粒径を200μm以下にするため、必要に応じて0.01%以上とする。一方、0.1%を超えると粗大な酸化物や窒化物を形成して靭性を低下させるので、その限定範囲を0.01〜0.1%とした。
【0024】
続いて、熱処理条件の限定理由について述べる。
【0025】
本発明では熱処理温度を1200℃〜1300℃の範囲に規定したが、1200℃未満では酸化物生成能力が劣るためであり、1300℃を超えるとスケール中に空隙が多くなるためである。また、熱処理時間を4時間〜12時間と規定したが、4時間未満では十分な厚さのスケールが得られないためであり、12時間を超えると空隙の少ない緻密なスケールの生成量が飽和するためである。
【0026】
次に、プラグ表面に形成する酸化スケールの厚さを限定した理由を以下に述べる。
【0027】
本発明により形成される酸化スケールの形態は図2に示した通りであり、2層に分類される。同図中にIで示した範囲の表層側の酸化スケールは空隙が多く、金属片の小さいものであるため、圧延中に容易に剥離しやすく、プラグの耐久性向上への寄与が小さい。一方、同図中にIIで示した範囲の地鉄側の酸化スケールは空隙が少なく、金属片の多いものであるため、圧延中に剥離し難く、この酸化スケールの厚さがプラグの寿命上重要となる。
【0028】
この、空隙が少なく、金属片の多いIIで示した範囲の酸化スケールが300μm未満では、十分な断熱効果が得られないばかりか、摩滅により十分な耐久性が得られないため、300μm以上とした。IIで示した範囲の酸化スケールの厚さの上限は特に規定しないが、本発明の成分において生じる最大厚さは800μm程度である。
【0029】
ここで、前記のIIで示した範囲のスケールの望ましい空隙、金属片、酸化物の割合について説明する。IIで示した範囲のスケールは、空隙が少ないほど良く、任意に切断した断面全体に対する空隙の面積率が皆無或は20%以下であることとする。
【0030】
また、金属片の割合は、任意に切断した断面全体に対して、金属片の面積率が30%以上であることが望ましい。なお、スケール中の金属片の面積率が70%を超えると、焼き付きが生じる場合があるため、上限を70%とするのが望ましい。
【0031】
そして、任意に切断した断面全体に対して、前記空隙の面積率と前記金属片の面積率を除いた部分が酸化物の面積率である。
【0032】
酸化スケール中の空隙、金属片および酸化物の面積率が上記範囲外であると、酸化スケールは領域Iで示したもののようになり、圧延中に容易に剥離しやすくなり、望ましくない。
【0033】
【実施例】
以下、本発明の実施例を説明する。
【0034】
高周波誘導加熱炉にて鋳造した表1に示す鋼を、所定のプラグ形状に機械加工した後、表1に示す条件にて熱処理を行った。
【0035】
熱処理後のプラグを切断し、空隙が少なく金属片を多数含む地鉄側の酸化スケール(図2中にIIで示した範囲)の厚さを測定した。
【0036】
辺長80mm、長さ1000mmのオーステナイト系ステンレス鋼SUS316Lの角材を1150℃に加熱後、上述のようにして得られたプラグを用い、プレスロールピアサーにて外径93mm、肉厚23.5mm、長さ1240mmに穿孔した。試験結果を表1に示す。
【0037】
本発明(No.1〜10)のプラグではオーステナイト系ステンレス鋼を7〜15本穿孔可能であった。
【0038】
なお、本発明のプラグの任意に切断した断面全体に対する空隙の面積率は実質皆無または20%以下、金属片の面積率は30〜70%の範囲にあり、残部が酸化物であった。
【0039】
一方、比較例No.11ではC重量が本発明の範囲外であるため、穿孔後の冷却過程にて、プラグ母材に割れが発生した。比較例No.12では、Cr重量が本発明の下限値未満であるため、酸化スケールがFeOを主体としたものとなり早期に摩滅した。比較例No.13では、Cr重量が本発明の上限を超えているため、酸化スケールの厚さが不十分であり早期に摩滅した。比較例No.14ではNiが本発明の下限値未満であるため、スケール中に存在する金属片の量が少なく、スケールが早期に摩滅した。比較例No.15ではMo重量が本発明の範囲外であるため、δフェライトが生じ、プラグ母材がδフェライト、マルテンサイトの2相組織になり割れが発生した。比較例No.16〜No.18では、熱処理条件が本発明の範囲外であるため、スケールの厚さが不十分で早期に摩滅した。比較例No.19は従来より用いられている3%Cr−1%Ni系低合金鋼材質を使用したプラグであり、酸化スケール中に金属片がほとんど存在しないFeOを主体としたスケールであるため早期に摩滅した。
【0040】
【表1】

Figure 0004258580
【0041】
【発明の効果】
本発明によれば、ステンレス鋼の圧延において、プラグ寿命が延長できるため、工具使用量(工具原単位)の低減が図れるほか、プラグ交換のための設備休止時間を短縮することが可能であり、工業上の効果が大きい。
【図面の簡単な説明】
【図1】マンドレルミル方式、プラグミル方式による継目無鋼管製造工程を示す図である。
【図2】酸化スケールの断面を示す顕微鏡写真である。
【図3】酸化スケール/地鉄界面の酸化スケールの断面を示す顕微鏡写真である。
【図4】酸化スケールの形態に及ぼすオーステナイト粒径の影響の説明を示す顕微鏡写真である。
【符号の説明】
1 穿孔機における被圧延材
2 加熱炉
3 穿孔機
4 穿孔機出側の中空素管
5 エロンゲータ
6 ホローシェルレデューサー
7 マンドレルミル
8 再加熱炉
9 ストレッチレデューサー
10 仕上管
11 プラグミル
12 リーラーミル
13 サイザーミル
14 空隙
15 金属片
16 酸化物
17 酸化スケール
18 地鉄[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tool for producing a seamless steel pipe used for a piercing mill and a drawing mill when producing a seamless steel pipe, and more particularly to a plug and a method for producing the plug.
[0002]
[Prior art]
Typical methods for producing seamless steel pipes in hot rolling are a plug mill method and a mandrel mill method. Generally, the plug mill method is used for a manufacturing outer diameter of 7 ″ (177.8 mm) or more, and the mandrel mill method is used for an outer diameter smaller than that.
[0003]
FIG. 1 shows the rolling process. 1A shows a mandrel mill method, and FIG. 1B shows a plug mill method. As shown in FIG. 1, the material 1 is heated to a predetermined temperature in a heating furnace 2, and then a hollow shell 4 is obtained by a punching machine 3. Examples of the punching machine include a press roll piercer and a Mannesmann piercer (not shown). Thereafter, in the mandrel mill method, after being drawn and rolled by a mandrel mill 7 which is a continuous drawing rolling mill, it is heated to a predetermined temperature by a reheating furnace 8 and rolled and formed to a predetermined outer diameter by a stretch reducer 9 which is a finishing rolling mill. Tube 10 is formed. In addition, an elongator mill 5 that reduces the wall thickness and extends the length and a hollow shell reducer 6 that narrows the outer diameter may be installed in front of the mandrel mill 7. On the other hand, in the plug mill method, the hollow raw tube 4 is subjected to stretching and rolling to reduce the wall thickness and length by the elongator mill 5, and then thinned and stretched by the plug mill 11 to finish the inner and outer surfaces smoothly by the reeler mill 12. Thereafter, it is heated to a predetermined temperature by the reheating furnace 8 and rolled to a predetermined outer diameter by the sizer mill 13 to form a finished pipe 10.
[0004]
Plug used in the drilling machine and elongation Tamil etc. is generally 3% Cr-1% Ni-based low alloy steel material is used, the oxidation of FeO, Fe 3 O 4 or the like on the surface layer by heat treatment in order to ensure the thermal insulation A process for forming a scale is performed. When stainless steel is rolled with such a plug, which has higher deformation resistance than carbon steel and oxidation scale is unlikely to form on the surface, the consumption of oxidized scale on the plug is fast. The metal contact causes the plug to melt, and as a result, seizure occurs on the inner surface of the tube.
[0005]
Therefore, in Japanese Patent Application Laid-Open No. 63-282241, the Cr content is reduced, and the oxide scale near the interface with the ground iron is used as the FeO-based oxide scale that is firmly welded to the plug surface. There has been proposed a plug in which an appropriate amount of W, Nb, Ni, Co, V is added to improve the high temperature strength and the adhesion of the surface oxide scale to the ground iron. Japanese Patent Laid-Open No. 7-60314 proposes a plug in which an internal oxide type scale layer having a thickness of 250 to 1000 μm is formed on the surface. These plugs, when drilled with 13% Cr stainless steel, have a life extension effect that is more than three times that of plugs made of 3% Cr-1% Ni-based low alloy steel. However, in the drilling of austenitic stainless steels such as SUS304 and SUS316, which have higher deformation resistance than 13% Cr stainless steel, the life of these plugs was about twice.
[0006]
[Problems to be solved by the invention]
This invention is made | formed in view of the above situations, Comprising: When manufacturing a stainless steel seamless steel pipe, it aims at providing a long tool and its manufacturing method.
[0007]
[Means for Solving the Problems]
The present inventors have conducted extensive research to prevent the oxide scale formed on the plug surface from being worn out or stripped early even when austenitic stainless steel is rolled. It has been found that, by interposing a metal piece in an oxide scale mainly composed of FeCr 2 O 4 , the oxide scale is hardly peeled off from the ground iron and is not easily worn away.
[0008]
Conventionally used 3% Cr-1% Ni system is a scale mainly composed of FeO, and there are almost no metal pieces in the scale. Although scales mainly composed of FeO are excellent in lubricity, since the adhesion between the scales and the ground iron is not sufficient, when the stainless steel such as 13% Cr steel is rolled, the scales peel and wear out at an early stage.
[0009]
JP-A-7-60314 proposes a thick oxide scale in which metal pieces enriched with Ni are dispersed. However, since the oxide scale is mainly composed of FeO, the high-temperature hardness of the oxide scale is inadequate. It was sufficient and fast to wear, and in the drilling of austenitic stainless steel, the plug life was about twice that of the 3% Cr-1% Ni plug.
[0010]
In the present invention, in order to form a thick FeCr 2 O 4 , the Cr content is adjusted to a predetermined range, and a Ni-enriched metal piece is interposed in an oxide scale mainly composed of FeCr 2 O 4 . An appropriate amount of Ni was added. FIG. 2 shows an oxide scale produced by heating such a steel material at 1250 ° C. for 8 hours. It has a thick oxide scale mainly composed of FeCr 2 O 4 containing very few voids and containing many metal pieces. That is, FIG. 2 (a) is a photomicrograph showing a cross section of the oxide scale, and FIG. 2 (b) is an enlarged photomicrograph of part I of FIG. 2 (a), and FIG. It is an enlarged micrograph of the II section of Drawing 2 (a).
[0011]
As shown in FIG. 2B, on the surface side of the oxide scale, an island-like metal piece 15 (white granular portion) and an oxide 16 adjacent thereto (portion connected in a gray branch shape) are formed. It exists and the rest is a void (black part). As shown in FIG. 2 (c), the voids are reduced toward the lower side of the oxide scale. As shown in FIG. 2C, the lower side of the oxide scale has a metal piece 15 (white portion) in which most of the metal scale is continuous in a branch shape. It is comprised from the oxide 16 (black part) adjacent to this.
[0012]
Moreover, as shown in the micrograph of the cross section of the oxide scale and the ground iron interface in FIG. 3, a part of the metal pieces in the oxide scale is connected to the ground iron, so that the oxide scale is difficult to peel off. .
[0013]
Although the plug life is improved by the plug having such an oxide scale, the present inventors have found an important finding that can further improve the plug life. The inventors of the present invention have examined the cause of the plug, which contains a large number of metal pieces and has an oxide scale mainly composed of FeCr 2 O 4 on the surface, and the life of the plug is uneven. As a result, in the plug having a relatively short life, it was found that the scale was cracked and chipped off at a position corresponding to the austenite grain boundary during the plug heat treatment. In order to achieve the object of the present invention, Cr and Ni are added. In such steel, austenite grain boundaries where oxygen can be easily diffused are oxidized, and then the inside of the grains is oxidized. The When the austenite grain size is large, the ratio of the grain interfacial area to the unit volume is small. Therefore, the oxidation at the grain boundary is intense with respect to the oxidation within the grain, and when a load is applied during rolling, a grain with many metal pieces is present. On the other hand, the strength of the grain boundary where there is almost no metal piece is weak, and the scale at the grain boundary may break and chip off. Thus, it was thought that if the austenite grain size is reduced, the oxidation at the grain boundaries and within the grains becomes equivalent, and cracking and peeling of the oxide scale can be prevented by obtaining a uniform and dense scale. Fig. 4 shows the scale after heating a steel slab containing 13% Cr and 5% Ni and changing the amount of Ti to an austenite grain size during heating of 300 to 1000 µm and 20 to 200 µm at 1280 ° C for 4 hours. It was shown to. It is possible to obtain a dense scale by reducing the austenite grain size during heating. In order to make the scale during heating dense, it is preferable that the austenite grain size during heating be 200 μm or less.
[0014]
The present invention is configured by combining the above-described findings, and the gist thereof is as follows.
[0015]
That is, in Weight%, C: 0.01~0.1%, Si ≦ 0.5%, Mn: 0.2~1.0%, Cr: 11.0~15.0%, Ni: 3 A steel containing 0.0 to 7.0%, Mo: 1.0 to 4.0%, or further containing Ti: 0.01 to 0.1 %, with the balance being Fe and inevitable impurities. After finishing into a predetermined shape, heating is performed in a temperature range of 1200 to 1300 ° C. for 4 to 12 hours, so that the surface area includes a metal piece, and there is no void area ratio relative to the entire cut section or 20%. It is the following, It is a manufacturing method of the tool for seamless steel pipe manufacture characterized by forming a scale layer 300 micrometers or more in thickness.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0017]
First, the reasons for limiting the steel components will be described.
[0018]
C: 0.01 to 0.1%
C is an effective component for improving high-temperature strength, but its effect is small when its content is less than 0.01%. On the other hand, if it exceeds 0.1%, it becomes easy to cause burning cracks by cooling after rolling, so the range was made 0.01 to 0.1%.
[0019]
Si: 0.5% or less Si was added and remained as a deoxidizer, and if contained in steel in an amount exceeding 0.5%, the toughness deteriorates, so the content was made 0.5% or less.
[0020]
Mn: 0.2 to 1.0%
Mn is effective for improving the high-temperature strength, but if it is less than 0.2%, the effect is small, and if added over 1.0%, a large amount of inclusions are formed and the toughness deteriorates. It was set to 2-1.0%.
Cr: 11.0-15.0%
Cr is related to the thickness of FeCr 2 O 4 and is an important element in the present invention. When the Cr content is 13%, the thickness of FeCr 2 O 4 becomes maximum, and when it is less than 11% and exceeds 15%, a sufficient thickness of FeCr 2 O 4 cannot be obtained. Therefore, the limited range is set to 11 to 15%. Preferably it is 12.5-14%.
[0021]
Ni: 3.0-7.0%
Ni is an element that is not easily oxidized, and is an important element for interposing a metal piece in the oxide scale. If 3.0% or less, a remarkable effect cannot be expected, and if it exceeds 7.0%, the effect is saturated. Therefore, the limited range is set to 3.0 to 7.0%.
[0022]
Mo: 1.0-4.0%
Mo is an effective element for improving the temperature drop strength. However, if it is less than 1.0%, its effect is small, and if it exceeds 4.0%, δ ferrite is likely to be generated, and the surface of the iron base is likely to crack. Therefore, the limited range is set to 1.0 to 4.0%.
[0023]
Ti: 0.01 to 0.1%
Ti affects the austenite grain size at the time of heating, and in order to make the austenite grain size at the time of heating 200 μm or less, if necessary, the content is made 0.01% or more. On the other hand, if it exceeds 0.1%, coarse oxides and nitrides are formed and the toughness is lowered, so the limiting range was made 0.01 to 0.1%.
[0024]
Next, the reason for limiting the heat treatment conditions will be described.
[0025]
In the present invention, the heat treatment temperature is defined in the range of 1200 ° C. to 1300 ° C., but if it is less than 1200 ° C., the oxide generation ability is inferior, and if it exceeds 1300 ° C., voids increase in the scale. Further, the heat treatment time is defined as 4 hours to 12 hours, but a scale having a sufficient thickness cannot be obtained if the heat treatment time is less than 4 hours. If the heat treatment time exceeds 12 hours, the production amount of a dense scale with few voids is saturated. Because.
[0026]
Next, the reason for limiting the thickness of the oxide scale formed on the plug surface will be described below.
[0027]
The form of the oxide scale formed by the present invention is as shown in FIG. 2 and is classified into two layers. Since the oxide scale on the surface layer side in the range indicated by I in the same figure has many voids and small metal pieces, it easily peels off during rolling and contributes little to improving the durability of the plug. On the other hand, the oxide scale on the side of the iron bar in the range indicated by II in the same figure has few voids and many metal pieces, so that it is difficult to peel off during rolling, and the thickness of this oxide scale increases the life of the plug. It becomes important.
[0028]
If the oxide scale in the range indicated by II with a small number of voids and a large number of metal pieces is less than 300 μm, a sufficient heat insulation effect cannot be obtained, and sufficient durability cannot be obtained due to abrasion, so that the thickness is set to 300 μm or more. . Although the upper limit of the thickness of the oxide scale in the range indicated by II is not particularly defined, the maximum thickness generated in the component of the present invention is about 800 μm.
[0029]
Here, a desirable ratio of voids, metal pieces, and oxides in the scale in the range shown in II will be described. The scale in the range indicated by II is better as the number of voids is smaller, and the area ratio of voids relative to the entire section cut arbitrarily is zero or 20% or less .
[0030]
Moreover, as for the ratio of a metal piece, it is desirable that the area ratio of a metal piece is 30% or more with respect to the whole cut | disconnected cross section. Note that if the area ratio of the metal pieces in the scale exceeds 70%, seizure may occur, so the upper limit is desirably 70%.
[0031]
And the part except the area ratio of the said space | gap and the area ratio of the said metal piece is the area ratio of an oxide with respect to the whole cross section cut | disconnected arbitrarily.
[0032]
When the area ratio of the voids, metal pieces and oxides in the oxide scale is outside the above range, the oxide scale is as shown in the region I, and is easily peeled off during rolling, which is not desirable.
[0033]
【Example】
Examples of the present invention will be described below.
[0034]
The steel shown in Table 1 cast in a high frequency induction heating furnace was machined into a predetermined plug shape, and then heat treated under the conditions shown in Table 1.
[0035]
The plug after the heat treatment was cut, and the thickness of the oxide scale (range indicated by II in FIG. 2) on the side iron side containing a large number of metal pieces with few voids was measured.
[0036]
An austenitic stainless steel SUS316L square member with a side length of 80 mm and a length of 1000 mm is heated to 1150 ° C., and the plug obtained as described above is used, and the outer diameter is 93 mm, the wall thickness is 23.5 mm, and the length is increased by a press roll piercer. Perforated to 1240 mm. The test results are shown in Table 1.
[0037]
In the plugs of the present invention (Nos. 1 to 10), 7 to 15 austenitic stainless steels could be drilled.
[0038]
It should be noted that the area ratio of voids with respect to the entire section of the plug of the present invention was virtually none or 20% or less, the area ratio of metal pieces was in the range of 30 to 70%, and the balance was oxide.
[0039]
On the other hand, Comparative Example No. In No. 11, the C weight was outside the range of the present invention, so that cracks occurred in the plug base material in the cooling process after drilling. Comparative Example No. In No. 12, since the Cr weight was less than the lower limit of the present invention, the oxide scale was composed mainly of FeO and was quickly worn out. Comparative Example No. In No. 13, since the Cr weight exceeded the upper limit of the present invention, the thickness of the oxide scale was insufficient and it was worn out early. Comparative Example No. In No. 14, since Ni was less than the lower limit of the present invention, the amount of metal pieces present in the scale was small, and the scale was worn out early. Comparative Example No. In No. 15, since the Mo weight was outside the range of the present invention, δ ferrite was generated, and the plug base material had a two-phase structure of δ ferrite and martensite, and cracking occurred. Comparative Example No. 16-No. In No. 18, since the heat treatment conditions were outside the range of the present invention, the thickness of the scale was insufficient, resulting in early wear. Comparative Example No. 19 is a plug that uses a 3% Cr-1% Ni-based low alloy steel material that has been used conventionally, and is a scale mainly composed of FeO in which almost no metal pieces are present in the oxide scale, so it was worn out early. .
[0040]
[Table 1]
Figure 0004258580
[0041]
【The invention's effect】
According to the present invention, since the plug life can be extended in the rolling of stainless steel, the amount of tool usage (tool basic unit) can be reduced, and the equipment downtime for plug replacement can be shortened. Great industrial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing a seamless steel pipe manufacturing process by a mandrel mill method and a plug mill method.
FIG. 2 is a photomicrograph showing a cross section of an oxide scale.
FIG. 3 is a photomicrograph showing a cross section of the oxide scale at the oxide scale / base metal interface.
FIG. 4 is a micrograph showing an explanation of the effect of austenite grain size on the morphology of oxide scale.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 To-be-rolled material in a punching machine 2 Heating furnace 3 Punching machine 4 Hollow raw pipe 5 on the exit side of the punching machine 5 Elongator 6 Hollow shell reducer 7 Mandrel mill 8 Reheating furnace 9 Stretch reducer 10 Finishing pipe 11 Plug mill 12 Reeler mill 13 Sizer mill 14 Gap 15 Metal piece 16 Oxide 17 Oxide scale 18

Claims (2)

重量%で、C:0.01〜0.1%、Si≦0.5%、Mn:0.2〜1.0%、Cr:11.0〜15.0%、Ni:3.0〜7.0%、Mo:1.0〜4.0%を含有し、残部がFe及び不可避的不純物である鋼を、所定の形状に仕上げた後、1200〜1300℃の温度範囲で4〜12時間加熱することにより、表面に金属片を含み、任意に切断した断面全体に対する空隙の面積率が皆無或は20%以下であり、かつ厚さ300μm以上のスケール層を形成させることを特徴とする継目無鋼管製造用工具の製造方法。% By weight, C: 0.01 to 0.1%, Si ≦ 0.5%, Mn: 0.2 to 1.0%, Cr: 11.0 to 15.0%, Ni: 3.0 to 7.0%, Mo: containing 1.0 to 4.0%, the balance being Fe and inevitable impurities steel, after finishing into a predetermined shape, 4-12 in the temperature range of 1200-1300 ℃ By heating for a period of time, a scale layer having a metal piece on the surface, an area ratio of voids to the entire section cut arbitrarily, or 20% or less, and a thickness of 300 μm or more is formed. A method of manufacturing a seamless steel pipe manufacturing tool. 重量%で、C:0.01〜0.1%、Si≦0.5%、Mn:0.2〜1.0%、Cr:11.0〜15.0%、Ni:3.0〜7.0%、Mo:1.0〜4.0%、Ti:0.01〜0.1%を含有し、残部がFe及び不可避的不純物である鋼を、所定の形状に仕上げた後、1200〜1300℃の温度範囲で4〜12時間加熱することにより、表面に金属片を含み、任意に切断した断面全体に対する空隙の面積率が皆無或は20%以下であり、かつ厚さ300μm以上のスケール層を形成させることを特徴とする継目無鋼管製造用工具の製造方法。% By weight, C: 0.01 to 0.1%, Si ≦ 0.5%, Mn: 0.2 to 1.0%, Cr: 11.0 to 15.0%, Ni: 3.0 to 7.0%, Mo: 1.0 to 4.0%, Ti: 0.01 to 0.1%, the remainder is Fe and inevitable impurities steel, after finishing into a predetermined shape, By heating for 4 to 12 hours in a temperature range of 1200 to 1300 ° C., the surface area includes a metal piece, the area ratio of voids with respect to the entire section that is arbitrarily cut is 20% or less, and the thickness is 300 μm or more A method for manufacturing a seamless steel pipe manufacturing tool, characterized by forming a scale layer of
JP36890998A 1998-12-25 1998-12-25 Seamless steel pipe manufacturing tool and method for manufacturing the same Expired - Fee Related JP4258580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36890998A JP4258580B2 (en) 1998-12-25 1998-12-25 Seamless steel pipe manufacturing tool and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36890998A JP4258580B2 (en) 1998-12-25 1998-12-25 Seamless steel pipe manufacturing tool and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000190008A JP2000190008A (en) 2000-07-11
JP4258580B2 true JP4258580B2 (en) 2009-04-30

Family

ID=18493067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36890998A Expired - Fee Related JP4258580B2 (en) 1998-12-25 1998-12-25 Seamless steel pipe manufacturing tool and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4258580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974787A (en) * 2011-11-30 2014-08-06 杰富意钢铁株式会社 Tool for piercing mill

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578893B2 (en) * 2010-03-12 2014-08-27 株式会社日立製作所 Member having sliding portion of steam turbine
JP7258678B2 (en) * 2019-07-08 2023-04-17 株式会社東芝 steel, turbine rotors and steam turbines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974787A (en) * 2011-11-30 2014-08-06 杰富意钢铁株式会社 Tool for piercing mill
CN103974787B (en) * 2011-11-30 2015-10-21 杰富意钢铁株式会社 Drilling/rolling instrument

Also Published As

Publication number Publication date
JP2000190008A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
CN107747068B (en) A kind of heat-resistance stainless steel seamless pipe and preparation method thereof
CN112662934A (en) Method for reducing bearing steel 100Cr6 carbide banded structure
EP1632583B1 (en) Tool steel for hot working, tool for hot working and plug for producing seamless pipe
CA2875456C (en) Piercing plug
JP2683861B2 (en) Hot pipe making tool and method of manufacturing the same
JP2940188B2 (en) Hot pipe making tool and method for producing the same
JP4258580B2 (en) Seamless steel pipe manufacturing tool and method for manufacturing the same
JP3292122B2 (en) Seamless steel pipe manufacturing tools
JP5458654B2 (en) Work roll for hot rolling mill and its manufacturing method
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP3797192B2 (en) Drilling and rolling tool
JP3755396B2 (en) Hot roll outer layer material and centrifugal cast hot roll composite roll with excellent crack resistance
JPH10291008A (en) Tool for hot making tube and its manufacture
JP4165058B2 (en) Drilling and rolling tool and manufacturing method thereof
JP2006297427A (en) Method for manufacturing forged sleeve roll for rolling wide flange shape
JPH03204106A (en) Plug for manufacturing hot seamless tube
JPH08206709A (en) Tool for hot tube making and manufacture thereof
JPH10137818A (en) Plug for piercing seamless steel tube
JPH0426739A (en) Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof
JPH0787930B2 (en) Seamless steel pipe manufacturing plug
JP3635531B2 (en) Seamless pipe manufacturing tool and method for manufacturing the same
JP2006207015A (en) Cast roll material for hot rolling and roll for hot rolling
JPH03126838A (en) Composite roll
JPS647147B2 (en)
JP2952382B2 (en) Manufacturing method of hot pipe making tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees