JP2936392B2 - Quartz crucible for pulling silicon single crystal - Google Patents

Quartz crucible for pulling silicon single crystal

Info

Publication number
JP2936392B2
JP2936392B2 JP34649395A JP34649395A JP2936392B2 JP 2936392 B2 JP2936392 B2 JP 2936392B2 JP 34649395 A JP34649395 A JP 34649395A JP 34649395 A JP34649395 A JP 34649395A JP 2936392 B2 JP2936392 B2 JP 2936392B2
Authority
JP
Japan
Prior art keywords
infrared transmittance
quartz crucible
crucible
single crystal
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34649395A
Other languages
Japanese (ja)
Other versions
JPH09157082A (en
Inventor
正徳 福井
義行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Quartz Corp
Original Assignee
Mitsubishi Materials Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Quartz Corp filed Critical Mitsubishi Materials Quartz Corp
Priority to JP34649395A priority Critical patent/JP2936392B2/en
Publication of JPH09157082A publication Critical patent/JPH09157082A/en
Application granted granted Critical
Publication of JP2936392B2 publication Critical patent/JP2936392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体等に使用する
シリコン単結晶を溶融シリコンから引上げる際に使用さ
れるシリコン単結晶引上げ用の石英ルツボに関する。
The present invention relates to a quartz crucible for pulling a silicon single crystal used for pulling a silicon single crystal used for a semiconductor or the like from molten silicon.

【0002】[0002]

【従来技術】半導体用シリコン単結晶は、従来、原料の
多結晶シリコンをその溶融温度(約1420℃)に加熱し、
シリコン溶液からシリコン単結晶を引上げる方法によっ
て製造されており、この多結晶シリコンを加熱溶融する
ために石英製ガラスルツボが用いられている。
2. Description of the Related Art Conventionally, silicon single crystals for semiconductors have been prepared by heating polycrystalline silicon as a raw material to its melting temperature (about 1420 ° C.).
It is manufactured by a method of pulling a silicon single crystal from a silicon solution, and a quartz glass crucible is used to heat and melt the polycrystalline silicon.

【0003】この単結晶シリコンの引上げにおいては、
上記石英ルツボの品質が単結晶シリコンに大きな影響を
与えることが知られている。特にシリコン融液と接する
ルツボ壁体の内表面付近に気泡が内在すると、引上げ中
に内部気泡が熱膨脹してルツボ内表面を部分的に剥離さ
せ、気泡や剥離した石英小片がシリコン単結晶に混入し
て多結晶化させ、単結晶化歩留り(単結晶化率)を低下
させてしまう。
In pulling this single crystal silicon,
It is known that the quality of the above-mentioned quartz crucible greatly affects single crystal silicon. In particular, if bubbles are present near the inner surface of the crucible wall in contact with the silicon melt, the internal bubbles will thermally expand during pulling, causing the inner surface of the crucible to partially exfoliate, and bubbles and exfoliated quartz chips will be mixed into the silicon single crystal. As a result, polycrystallization is performed, and the single crystal crystallization yield (single crystallization ratio) is reduced.

【0004】このような不都合を避けるため、壁体が実
質的に気泡を含まない透明石英からなるルツボが知られ
ているが、ルツボ全体を透明ガラス化したものは、熱伝
導率が高く温度コントロールが非常に難しいため高品質
の単結晶シリコンを得るのが難しい。また、ルツボの強
度に問題があり製造工程にも難点があるため製品価格も
高くなり、現状では実用上、殆ど使用されていない。
[0004] In order to avoid such inconvenience, a crucible whose wall is made of transparent quartz substantially containing no air bubbles is known. Is very difficult to obtain high quality single crystal silicon. Further, there is a problem in the strength of the crucible, and there is a problem in the manufacturing process, so that the product price is high. At present, it is hardly used in practical use.

【0005】現在、一般に用いられている石英ルツボ1
0は、図2に示すように、シリコン融液と接するルツボ
壁体の内側部分が実質的に気泡を含有しない透明ガラス
層11からなり、外側部分は多くの気泡を含む不透明ガ
ラス層12で構成された、全体として外観が不透明な石
英ルツボである。内側部分の気泡は、前述したように、
シリコン単結晶の引上時に悪影響を及ぼすので、出来る
だけ除去する必要があるが、外周部分の気泡は引上げに
は影響を与えず、むしろ加熱時の保温効果を得るには赤
外線を伝えにくい不透明層が適しており、また不透明層
は透明層よりも熱を拡散して伝えるために均一な温度分
布が得られる利点があることから、ルツボの外周側部分
は多数の気泡を含む不透明ガラス層によって形成されて
いる。
At present, a quartz crucible 1 generally used
0, as shown in FIG. 2, the inner portion of the crucible wall in contact with the silicon melt is formed of a transparent glass layer 11 substantially containing no bubbles, and the outer portion is formed of an opaque glass layer 12 containing many bubbles. This is a quartz crucible whose appearance is opaque as a whole. As mentioned above, the bubbles in the inner part
It is necessary to remove as much as possible because it has an adverse effect when pulling up the silicon single crystal.However, the bubbles in the outer peripheral portion do not affect the pulling up. The opaque layer is formed by an opaque glass layer containing many bubbles because the opaque layer has the advantage that a uniform temperature distribution can be obtained to diffuse and transfer heat over the transparent layer. Have been.

【0006】[0006]

【発明の解決課題】以上のように、従来の石英ルツボ
は、内周側部分が実質的に気泡を含有しない透明ガラス
層からなり、外周側部分が多数の気泡を含有する不透明
ガラス層から形成されているが、外周側部分の気泡量が
部位によって異なり不均一であるためにルツボの各部分
における赤外線透過率に差があり、また同様に、各々の
ルツボにおいても赤外線透過率に差があり、このため単
結晶引上時の加熱が不均一になり、これが単結晶化率を
低下させる原因の一つになっている。
As described above, in the conventional quartz crucible, the inner peripheral side portion is formed of a transparent glass layer containing substantially no air bubbles, and the outer peripheral side portion is formed of an opaque glass layer containing a large number of air bubbles. However, there is a difference in the infrared transmittance in each part of the crucible because the amount of air bubbles in the outer peripheral portion varies depending on the part and is uneven, and similarly, there is also a difference in the infrared transmittance in each crucible. For this reason, heating during the pulling of the single crystal becomes non-uniform, which is one of the causes for lowering the single crystallization ratio.

【0007】また、単結晶引上時に、石英ルツボを下部
側方から加熱してルツボ底部の加熱温度を高めようとす
る際、従来の石英ルツボでは、外周側の不透明ガラス層
がルツボ全体にほぼ同じ厚さで形成されているので、こ
のような部分的な加熱を効果的に行うことができない問
題がある。
When the quartz crucible is heated from the lower side to raise the heating temperature at the bottom of the crucible during pulling of the single crystal, the opaque glass layer on the outer peripheral side of the conventional quartz crucible substantially covers the entire crucible. Since they are formed with the same thickness, there is a problem that such partial heating cannot be performed effectively.

【0008】[0008]

【課題解決の手段】本発明者らは、石英ルツボの赤外線
透過率の差が一定範囲内であれば実質的な悪影響を生じ
ないが、これを越えると不均一加熱が著しくなることを
見出した。また、石英ルツボ湾曲部の平均赤外線透過率
を他の部分よりも一定量大きく設定することにより、石
英ルツボの下部側方からの部分加熱を良好に達成できる
ことを確認した。本発明は上記知見に基づき、従来のシ
リコン単結晶引上用石英ルツボにおける上記問題を解決
したものであって、本発明によれば、単結晶化率に優
れ、また部分加熱効果の良好な石英ルツボが提供され
る。
The present inventors have found that if the difference in the infrared transmittance of the quartz crucible is within a certain range, no substantial adverse effect is caused, but if it exceeds this, uneven heating becomes remarkable. . Further, it was confirmed that by setting the average infrared transmittance of the bent portion of the quartz crucible to be larger than the other portions by a fixed amount, partial heating from the lower side of the quartz crucible could be satisfactorily achieved. The present invention is based on the above findings, and solves the above-mentioned problems in a conventional silicon single crystal pulling quartz crucible.According to the present invention, a quartz having an excellent single crystallization rate and a good partial heating effect is provided. A crucible is provided.

【0009】すなわち、本発明によれば請求項1〜3に
記載する以下のシリコン単結晶引上用石英ルツボが提供
される。 (1)壁体の内表面側部分が実質的に気泡を含有しない
透明ガラス層からなり、壁体の外表面側部分が多数の気
泡を含む不透明ガラス層からなり、ルツボ側壁部から湾
曲部および底部を含む任意の部位の赤外線透過率が30
〜80%であり、これら各部分における任意の複数箇所
の赤外線透過率の差が30%以下であることを特徴とす
るシリコン単結晶引上げ用石英ルツボ。 (2)石英ルツボ湾曲部の平均赤外線透過率が40〜7
0%、その他の側壁部および底部における平均赤外線透
過率が30〜60%であって、かつ湾曲部の平均赤外線
透過率が側壁部および底部の平均赤外線透過率よりも大
きい上記(1) に記載する石英ルツボ。 (3)湾曲部の平均赤外線透過率が側壁部および底部の
平均赤外線透過率のいずれに対しても5〜25%大きい
上記(2) に記載する石英ルツボ。
That is, according to the present invention, the following quartz crucible for pulling a silicon single crystal is provided. (1) The inner surface side portion of the wall body is made of a transparent glass layer substantially free of bubbles, the outer surface side portion of the wall body is made of an opaque glass layer containing a large number of bubbles, Infrared transmittance of any part including the bottom is 30
A quartz crucible for pulling a silicon single crystal, wherein a difference between infrared transmittances at arbitrary plural places in each of these portions is 30% or less. (2) The average infrared transmittance of the bent portion of the quartz crucible is 40 to 7
The above (1), wherein the average infrared transmittance at the side wall and the bottom is 0 to 60%, and the average infrared transmittance at the curved portion is greater than the average infrared transmittance at the side wall and the bottom. Quartz crucible. (3) The quartz crucible as described in (2) above, wherein the average infrared transmittance of the curved portion is larger by 5 to 25% than the average infrared transmittance of both the side wall portion and the bottom portion.

【0010】[0010]

【発明の実施形態】以下に本発明を図面に示す実施例を
参照して詳細に説明する。石英ルツボの構造 図1は本発明に係る石英ルツボの使用例を示し、シリコ
ン単結晶引上げ時の断面模式図である。図示するよう
に、本発明の石英ルツボ10の外形は従来と同様に椀状
の中空形状をなし、カーボンサセプタ13に装着して使
用される。カーボンサセプタの外側にはヒータ30が設
置されており、該ヒータ30によって、石英ルツボ内部
に入れた多結晶シリコンを溶融し、この溶融シリコン2
からシリコン単結晶1を引上げる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in the drawings. Structure of Quartz Crucible FIG. 1 shows an example of use of a quartz crucible according to the present invention, and is a schematic cross-sectional view when pulling a silicon single crystal. As shown in the figure, the outer shape of the quartz crucible 10 of the present invention has a bowl-like hollow shape as in the prior art, and is mounted on the carbon susceptor 13 for use. A heater 30 is provided outside the carbon susceptor, and the heater 30 melts the polycrystalline silicon contained in the quartz crucible.
From the silicon single crystal 1.

【0011】石英ルツボ10の内表面側部分は実質的に
気泡を含有しない透明ガラス層11によって形成されて
おり、また、外表面側部分は多数の気泡を含む不透明ガ
ラス層12によって形成されている。なお、ここで実質
的に気泡を含有しないとは気泡含有率が0.3%未満で
あることを云い、多数の気泡を含むとは気泡含有率が
0.3%以上、好ましくは0.5%以上であることを云
う。気泡含有率は石英ルツボの一定断面積(W1)における
気泡占有面積(W2)の比(W2/W1) によって表すことができ
る。
The inner surface side portion of the quartz crucible 10 is formed by a transparent glass layer 11 containing substantially no bubbles, and the outer surface side portion is formed by an opaque glass layer 12 containing many bubbles. . Here, "contains substantially no bubbles" means that the bubble content is less than 0.3%, and "contains a large number of bubbles" means that the bubble content is 0.3% or more, preferably 0.5% or more. % Or more. The bubble content can be represented by the ratio (W2 / W1) of the bubble occupying area (W2) at a constant cross-sectional area (W1) of the quartz crucible.

【0012】石英ルツボの赤外線透過率は主に外表面の
不透明ガラス層に依存するが、本発明の石英ルツボはル
ツボ側壁部23から湾曲部22および底部21を含む任
意の部位の赤外線透過率が30〜80%、好ましくは4
0〜60%であり、さらに、これら各部分において、各
々任意の複数箇所の赤外線透過率の差が30%以下であ
る。
Although the infrared transmittance of a quartz crucible mainly depends on the opaque glass layer on the outer surface, the quartz crucible of the present invention has an infrared transmittance of any portion including the curved portion 22 and the bottom portion 21 from the crucible side wall 23. 30-80%, preferably 4
0 to 60%, and further, in each of these portions, the difference between the infrared transmittances at arbitrary plural places is 30% or less.

【0013】ルツボ壁体の赤外線透過率が30%未満で
は加熱効果が著しく低下し、また、これが80%を越え
ると不透明ガラス層による熱の均一拡散が不十分になる
ので好ましくない。さらに、側壁部23、湾曲部22お
よび底部21の各部分における任意の複数箇所の赤外線
透過率の差が30%を上回ると上記各部位において不均
一な加熱が著しくなり、単結晶化率が低下する。なお、
赤外線透過率は気泡含有率、層厚あるいは外表面の粗さ
などによって制御することができる。
When the infrared transmittance of the crucible wall is less than 30%, the heating effect is remarkably reduced, and when it exceeds 80%, the uniform diffusion of heat by the opaque glass layer is not sufficient, which is not preferable. Furthermore, if the difference in the infrared transmittance at any of the plurality of portions of the side wall portion 23, the curved portion 22, and the bottom portion 21 exceeds 30%, uneven heating becomes remarkable at each of the portions, and the single crystallization rate decreases. I do. In addition,
The infrared transmittance can be controlled by the bubble content, the layer thickness or the roughness of the outer surface.

【0014】以上のように本発明の石英ルツボは側壁部
23、湾曲部22および底部21の各々の部位において
赤外線透過率の最大値と最小値の差が30%以下に限定
されている。本発明の石英ルツボは赤外線透過率の差を
上記範囲に維持しつつ、さらに好ましくは、湾曲部の赤
外線透過率をそれ以外の側壁部および底部の赤外線透過
率よりも大きく形成される。
As described above, in the quartz crucible of the present invention, the difference between the maximum value and the minimum value of the infrared transmittance at each of the side wall portion 23, the curved portion 22 and the bottom portion 21 is limited to 30% or less. The quartz crucible of the present invention is preferably formed such that the infrared transmittance of the curved portion is larger than the infrared transmittance of the other side walls and the bottom while maintaining the difference in the infrared transmittance within the above range.

【0015】具体的には、湾曲部22の平均赤外線透過
率が40〜70%であり、側壁部23の平均赤外線透過
率および底部21の平均赤外線透過率が30〜60%で
あって、かつ湾曲部の平均赤外線透過率が側壁部の平均
赤外線透過率および底部の平均赤外線透過率よりも5〜
25%大きく、好ましくは10〜20%大きく形成され
る。ここで、平均赤外線透過率とは、側壁部、湾曲部お
よび底部の各々の部位において任意の複数箇所の赤外線
透過率の平均値を云う。
Specifically, the average infrared transmittance of the curved portion 22 is 40 to 70%, the average infrared transmittance of the side wall portion 23 and the average infrared transmittance of the bottom portion 21 are 30 to 60%, and The average infrared transmittance of the curved portion is 5 to more than the average infrared transmittance of the side wall portion and the average infrared transmittance of the bottom portion.
It is formed 25% larger, preferably 10-20% larger. Here, the average infrared transmittance refers to the average value of the infrared transmittance at an arbitrary plurality of locations at each of the side wall portion, the curved portion, and the bottom portion.

【0016】湾曲部の平均赤外線透過率が40%以下で
は、他の部分の赤外線透過率が低くなり過ぎ、また、こ
れが70%を越えると不透明層部分における熱の分散が
次第に不十分になる。また、湾曲部以外の側壁部および
底部の平均赤外線透過率が30%以下ではルツボ全体の
赤外線透過率が低くなり過ぎるうえ、湾曲部の赤外線透
過率との差が大き過ぎるので好ましくない。一方、これ
らの部分の平均赤外線透過率が60%を上回ると湾曲部
の平均赤外線透過率との差を10%よりも大きくできな
いので好ましくない。さらに、湾曲部の平均赤外線透過
率と側壁部および底部の平均赤外線透過率の差が5%未
満では、その効果が不十分であり、一方、その差が25
%を上回ると加熱が不均一になり過ぎるので適当ではな
い。
If the average infrared transmittance of the curved portion is 40% or less, the infrared transmittance of the other portions becomes too low, and if it exceeds 70%, the heat dispersion in the opaque layer portion becomes gradually insufficient. On the other hand, if the average infrared transmittance of the side wall portion and the bottom portion other than the curved portion is 30% or less, the infrared transmittance of the entire crucible becomes too low, and the difference from the infrared transmittance of the curved portion is too large. On the other hand, if the average infrared transmittance of these portions exceeds 60%, the difference from the average infrared transmittance of the curved portion cannot be made larger than 10%, which is not preferable. Further, when the difference between the average infrared transmittance of the curved portion and the average infrared transmittance of the side wall portion and the bottom portion is less than 5%, the effect is insufficient, while the difference is 25%.
% Is not appropriate because heating becomes too uneven.

【0017】単結晶引上げの際、ルツボの内壁はシリコ
ン融液中に徐々に溶け込んでいく。石英中の酸素はシリ
コン融液に移行した後、大部分は融液面から発散してし
まうが、一部は単結晶に取り込まれることとなる。そこ
で、酸素濃度の高いシリコン単結晶を引上げる場合に
は、図3に示すようにルツボ10の位置をヒータ30に
対して高く保つことにより、ルツボ上部は単結晶引上げ
温度を保ちながらルツボ下部の湾曲部22を局部的に高
温にし、その部分のルツボ内表面(透明層)11をシリ
コン融液中に多く溶かす方法が実施されている。
When a single crystal is pulled, the inner wall of the crucible gradually dissolves into the silicon melt. After the oxygen in the quartz migrates to the silicon melt, most of the oxygen diverges from the melt surface, but part of the oxygen is taken into the single crystal. Therefore, when pulling a silicon single crystal having a high oxygen concentration, the position of the crucible 10 is kept high with respect to the heater 30 as shown in FIG. A method of locally raising the temperature of the curved portion 22 and dissolving a large amount of the crucible inner surface (transparent layer) 11 in the silicon melt is implemented.

【0018】不透明ガラス層の層厚がほぼ均一な従来の
石英ルツボでは、このような湾曲部の局部的な加熱は、
湾曲部に対する外部ヒータの位置が側壁部よりも相対的
に離れているため不十分になるが、湾曲部の平均赤外線
透過率を側壁部や底部よりも高めた本発明の石英ルツボ
では、湾曲部の局部加熱を十分に行うことができる。こ
の結果、湾曲部の内表面温度が上がり、ルツボ内表面が
溶解してシリコン単結晶の酸素濃度をより高くすること
ができる。なお、湾曲部の平均赤外線透過率を高くする
には、例えば、その部分の不透明層を薄く形成し、或い
は、その部分の気泡量を少なくすれば良い。
In a conventional quartz crucible in which the thickness of the opaque glass layer is almost uniform, such local heating of the curved portion is caused by:
Although the position of the external heater with respect to the curved portion is relatively far from the side wall portion, it is insufficient, but in the quartz crucible of the present invention in which the average infrared transmittance of the curved portion is higher than that of the side wall portion or the bottom portion, Can be sufficiently heated. As a result, the inner surface temperature of the curved portion increases, and the inner surface of the crucible is melted, so that the oxygen concentration of the silicon single crystal can be further increased. In order to increase the average infrared transmittance of the curved portion, for example, the opaque layer in that portion may be formed thin, or the amount of bubbles in that portion may be reduced.

【0019】上記石英ルツボの製造方法 上記石英ルツボは回転モールド法によって製造すること
ができる。回転モールド法による製造は、回転した中空
モールドの内表面に原料の石英粉を堆積させ、アーク放
電などの加熱手段により石英粉を加熱してガラス化し、
一方、この加熱時にモールド側から石英粉層の内部気泡
を吸引除去して透明ガラス化し、減圧吸引時間や加熱溶
融時間などを制御して気泡含有量を調整し、外表面側部
分は多数の気泡を含む不透明ガラスのまま保つ。
Method for Manufacturing the Quartz Crucible The quartz crucible can be manufactured by a rotary molding method. In the production by the rotary molding method, raw material quartz powder is deposited on the inner surface of the rotated hollow mold, and the quartz powder is heated and vitrified by heating means such as arc discharge.
On the other hand, at the time of this heating, the bubbles inside the quartz powder layer are removed by suction from the mold side to form a transparent glass, and the bubble content is adjusted by controlling the vacuum suction time and the heating / melting time, etc. Keep the opaque glass containing.

【0020】上記製造方法において、ルツボ湾曲部の赤
外線透過率が高いルツボを製造するためには、湾曲部に
他部より薄く原料石英粉を堆積させることにより湾曲部
における不透明層の薄い、従って赤外線透過率の大きな
ルツボを形成することができる。また、湾曲部の減圧力
を独立して調整できるモールドを用い、減圧時に湾曲部
の減圧を他の部分より強くすることにより湾曲部の透明
層を厚くし、不透明層を薄く形成することもできる。あ
るいは、湾曲部の不透明層を形成時する際に僅かに減圧
して不透明層中の気泡含有率を減らすことにより赤外線
透過率を高めることもできる。
In the above manufacturing method, in order to manufacture a crucible having a high infrared transmittance at the crucible curved portion, the raw material quartz powder is deposited thinner on the curved portion than at the other portions, so that the opaque layer in the curved portion is thin, and hence the infrared ray is not irradiated. A crucible with high transmittance can be formed. Also, by using a mold that can independently adjust the decompression force of the curved portion, the pressure of the curved portion is reduced more than the other portions during decompression, so that the transparent layer of the curved portion can be made thicker and the opaque layer can be made thinner. . Alternatively, the infrared transmittance can be increased by reducing the bubble content in the opaque layer by slightly reducing the pressure when forming the opaque layer of the curved portion.

【0021】また、ルツボの表面粗さによっても赤外線
透過率が異なる。この表面粗さは原料の石英粉粒度によ
り調整することができる。粒度が粗い場合には透過率は
低下し、粒度が小さい場合には透過率は上昇する。粗さ
の調整により赤外線の10〜20%がルツボ外表面で遮
られる。従って、湾曲部に他の部分よりも微細な原料石
英粉を用いることにより赤外線透過率を高めることがで
きる。
Further, the infrared transmittance varies depending on the surface roughness of the crucible. This surface roughness can be adjusted by the particle size of the raw material quartz powder. When the particle size is coarse, the transmittance decreases, and when the particle size is small, the transmittance increases. By adjusting the roughness, 10 to 20% of infrared rays are blocked by the outer surface of the crucible. Therefore, infrared transmittance can be increased by using a raw material quartz powder finer than the other parts in the curved part.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と共に示す。
なお、本例において、赤外線透過率は、波長0.5〜
3.5μm、ピーク波長1.0μmの赤外線ランプより
30cmの位置に受熱面積1cm2 の赤外線パワーメーター
を設置し、受熱面直前に測定用ルツボ片を挿入し、赤外
線受熱量を測定し、ルツボ片を挿入しないで測定した受
熱量を100%として算出した。平均赤外線透過率は上
記方法で測定した各測定値を部位別に平均した値であ
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
In addition, in this example, the infrared transmittance is 0.5 to wavelength.
An infrared power meter having a heat receiving area of 1 cm 2 was installed at a position 30 cm from the infrared lamp having a peak wavelength of 3.5 μm and a peak wavelength of 1.0 μm, a crucible piece for measurement was inserted immediately before the heat receiving surface, and the amount of infrared heat received was measured. Was calculated assuming that the amount of heat received measured without inserting was 100%. The average infrared transmittance is a value obtained by averaging the measured values measured by the above method for each part.

【0023】実施例1 本発明の石英ルツボを回転モールド法によって以下のよ
うに製造した。なお、原料の石英粉の粒度は、粒子径1
00〜400μm(中心粒子径210μm)のものを用
いた。まず、回転するモールドの内周面に石英粉を厚さ
22mmに堆積させた。次に、モールド内周面側からアー
ク放電を行い、上記石英層の表面を溶融してガラス化
し、同時にモールド側から減圧し、モールドに設けた通
気孔を通じて石英内部の空気を外周部側に吸引し、通気
孔を通じて外部に排除することにより石英層表面部分の
気泡を除去して透明ガラス層を形成した。その後、減圧
を停止し、さらに加熱を続けて気泡が残留する不透明ガ
ラス層を形成した。得られた石英ルツボの透明層および
不透明層の層厚、ルツボ全体の平均赤外線透過率、側壁
部、湾曲部および底部の各部分における赤外線透過率と
その最大値と最小値の差を表1に示した。この石英ルツ
ボを用いてシリコン単結晶の引上を行った。この結果
(単結晶化率)を表1に併せて示した。
Example 1 A quartz crucible of the present invention was produced by a rotary molding method as follows. The particle size of the raw material quartz powder has a particle size of 1
Those having a size of from 00 to 400 μm (center particle diameter 210 μm) were used. First, quartz powder was deposited to a thickness of 22 mm on the inner peripheral surface of the rotating mold. Next, arc discharge is performed from the inner peripheral surface side of the mold, and the surface of the quartz layer is melted and vitrified. At the same time, pressure is reduced from the mold side, and the air inside the quartz is sucked to the outer peripheral side through the ventilation holes provided in the mold. Then, air bubbles were removed from the surface of the quartz layer by removing the gas through the air holes to form a transparent glass layer. Thereafter, the depressurization was stopped and heating was continued to form an opaque glass layer in which bubbles remained. Table 1 shows the obtained thicknesses of the transparent layer and the opaque layer of the quartz crucible, the average infrared transmittance of the entire crucible, the infrared transmittance in the side wall, the curved portion, and the bottom portion, and the difference between the maximum value and the minimum value. Indicated. Using this quartz crucible, a silicon single crystal was pulled. The results (single crystallization ratio) are also shown in Table 1.

【0024】実施例2〜5 原料石英粉の堆積厚さ、加熱条件および減圧条件等を変
えた以外は実施例1と同様にして、表1に示す構造の石
英ルツボを製造し、この石英ルツボを用いて実施例1と
同一条件でシリコン単結晶の引上を行った。この結果を
表1に併せて示した。
Examples 2 to 5 Quartz crucibles having the structure shown in Table 1 were produced in the same manner as in Example 1 except that the deposition thickness of the raw material quartz powder, heating conditions, pressure reduction conditions, and the like were changed. Was used to pull up a silicon single crystal under the same conditions as in Example 1. The results are shown in Table 1.

【0025】比較例1〜5 原料石英粉の堆積厚さ、加熱条件および減圧条件等を変
えた以外は実施例1と同様にして、表1に示す構造の石
英ルツボを製造し、この石英ルツボを用いて実施例1と
同一条件でシリコン単結晶の引上を行った。この結果を
表1に併せて示した。
Comparative Examples 1 to 5 Quartz crucibles having the structure shown in Table 1 were manufactured in the same manner as in Example 1 except that the deposition thickness of the raw material quartz powder, heating conditions, pressure reduction conditions, and the like were changed. Was used to pull up a silicon single crystal under the same conditions as in Example 1. The results are shown in Table 1.

【0026】表1に示すように、石英ルツボの任意の部
位での赤外線透過率が30%未満のもの(比較例2)あ
るいは赤外線透過率が80%を越えるもの(比較例1)
は何れも単結晶化率が低く、また赤外線透過率が上記範
囲内であっても、その差が30%を越えるもの(比較例
3、4)は単結晶化率が低い。一方、本発明の実施例に
示す試料は何れも優れた単結晶化率を達成している。さ
らに、本発明の石英ルツボにおいて、湾曲部の平均赤外
線透過率を他の部分よりも高くしたものは、引上げたシ
リコン単結晶の酸素濃度が高い。
As shown in Table 1, a quartz crucible having an infrared transmittance at an arbitrary portion of less than 30% (Comparative Example 2) or an infrared transmittance exceeding 80% (Comparative Example 1)
All have low single crystallization ratios, and those having a difference of more than 30% (Comparative Examples 3 and 4) have a low single crystallization ratio even when the infrared transmittance is within the above range. On the other hand, all the samples shown in the examples of the present invention have achieved an excellent single crystallization ratio. Further, in the quartz crucible of the present invention, when the average infrared transmittance of the curved portion is higher than that of other portions, the oxygen concentration of the pulled silicon single crystal is high.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上のように、ルツボ全体の赤外線透過
率を一定範囲に調整した本発明の石英ルツボは、単結晶
引上時の加熱が均一であり単結晶化率が高い。また、湾
曲部の赤外線透過率を他に部分よりも所定量高めたもの
は、優れた単結晶化率と共に酸素含有量の高いシリコン
単結晶が得られる。
As described above, the quartz crucible of the present invention in which the infrared transmittance of the whole crucible is adjusted to a certain range has a uniform heating when pulling a single crystal and a high single crystallization rate. In addition, a silicon single crystal having a high oxygen content as well as an excellent single crystallization rate can be obtained by increasing the infrared transmittance of the curved portion by a predetermined amount as compared with the other portions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る石英ルツボを用いたシリコン単
結晶引上げ装置の一例を示す断面模式図。
FIG. 1 is a schematic cross-sectional view showing an example of a silicon single crystal pulling apparatus using a quartz crucible according to the present invention.

【図2】 従来の石英ルツボの断面模式図。FIG. 2 is a schematic cross-sectional view of a conventional quartz crucible.

【図3】 従来の石英ルツボを用いたシリコン単結晶引
上げ装置を示す断面模式図。
FIG. 3 is a schematic sectional view showing a conventional silicon single crystal pulling apparatus using a quartz crucible.

【符号の説明】[Explanation of symbols]

1…引上げ中のシリコン単結晶, 2…溶融シリコン,
10…石英ルツボ,11…透明ガラス層, 12…不
透明ガラス層, 13…カーボンサセプタ,21…底
部, 22…湾曲部, 23…側壁部, 30…ヒータ
1 ... silicon single crystal being pulled, 2 ... molten silicon,
DESCRIPTION OF SYMBOLS 10 ... quartz crucible, 11 ... transparent glass layer, 12 ... opaque glass layer, 13 ... carbon susceptor, 21 ... bottom part, 22 ... curved part, 23 ... side wall part, 30 ... heater

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 壁体の内表面側部分が実質的に気泡を含
有しない透明ガラス層からなり、壁体の外表面側部分が
多数の気泡を含む不透明ガラス層からなり、ルツボ側壁
部から湾曲部および底部を含む任意の部位の赤外線透過
率が30〜80%であり、これら各部分における任意の
複数箇所の赤外線透過率の差が30%以下であることを
特徴とするシリコン単結晶引上げ用石英ルツボ。
1. An inner surface side portion of a wall is made of a transparent glass layer substantially free of air bubbles, and an outer surface side portion of the wall is made of an opaque glass layer containing many air bubbles, and curved from a crucible side wall. A silicon single crystal for pulling a silicon single crystal, wherein an infrared transmittance at an arbitrary portion including a portion and a bottom portion is 30 to 80%, and a difference between infrared transmittances at arbitrary portions at each of these portions is 30% or less. Quartz crucible.
【請求項2】 石英ルツボ湾曲部の平均赤外線透過率が
40〜70%、その他の側壁部および底部における平均
赤外線透過率が30〜60%であって、かつ湾曲部の平
均赤外線透過率が側壁部および底部の平均赤外線透過率
よりも大きい請求項1に記載する石英ルツボ。
2. The average infrared transmittance of the bent portion of the quartz crucible is 40 to 70%, the average infrared transmittance of the other side wall portion and the bottom portion is 30 to 60%, and the average infrared transmittance of the bent portion is the side wall. The quartz crucible according to claim 1, wherein the quartz crucible is larger than the average infrared transmittance of the part and the bottom.
【請求項3】 湾曲部の平均赤外線透過率が側壁部およ
び底部の平均赤外線透過率のいずれに対しても5〜25
%大きい請求項2に記載する石英ルツボ。
3. The average infrared transmittance of the curved portion is 5 to 25 with respect to the average infrared transmittance of both the side wall portion and the bottom portion.
The quartz crucible according to claim 2, which is larger by%.
JP34649395A 1995-12-12 1995-12-12 Quartz crucible for pulling silicon single crystal Expired - Lifetime JP2936392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34649395A JP2936392B2 (en) 1995-12-12 1995-12-12 Quartz crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34649395A JP2936392B2 (en) 1995-12-12 1995-12-12 Quartz crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JPH09157082A JPH09157082A (en) 1997-06-17
JP2936392B2 true JP2936392B2 (en) 1999-08-23

Family

ID=18383805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34649395A Expired - Lifetime JP2936392B2 (en) 1995-12-12 1995-12-12 Quartz crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP2936392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732388B (en) * 2018-12-27 2021-07-01 日商Sumco股份有限公司 Quartz glass crucible, manufacturing method of silicon single crystal using the same, method for measuring infrared transmittance of quartz glass crucible and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454059B2 (en) * 1999-01-29 2010-04-21 信越石英株式会社 Large diameter quartz glass crucible for pulling silicon single crystal
FR2853913B1 (en) * 2003-04-17 2006-09-29 Apollon Solar CUTTER FOR A DEVICE FOR MANUFACTURING A BLOCK OF CRYSTALLINE MATERIAL AND METHOD OF MANUFACTURE
JP5008695B2 (en) * 2008-06-30 2012-08-22 ジャパンスーパークォーツ株式会社 Silica glass crucible and silicon single crystal pulling method using quartz glass crucible
JP5069663B2 (en) 2008-10-31 2012-11-07 ジャパンスーパークォーツ株式会社 Quartz glass crucible with multilayer structure
JP5377930B2 (en) * 2008-10-31 2013-12-25 株式会社Sumco Method for producing quartz glass crucible for pulling silicon single crystal
JP5036735B2 (en) * 2009-01-05 2012-09-26 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP7196913B2 (en) 2018-05-17 2022-12-27 株式会社Sumco Method and apparatus for measuring transmittance of quartz crucible
JP7378966B2 (en) * 2019-06-06 2023-11-14 モメンティブ・テクノロジーズ・山形株式会社 Quartz glass crucible and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732388B (en) * 2018-12-27 2021-07-01 日商Sumco股份有限公司 Quartz glass crucible, manufacturing method of silicon single crystal using the same, method for measuring infrared transmittance of quartz glass crucible and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09157082A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
US6136092A (en) Quart crucible with large diameter for pulling single crystal and method of producing the same
US6841210B2 (en) Multilayer structured quartz glass crucible and method for producing the same
KR101081994B1 (en) Quartz glass crucible with multi-layered structure
EP2484813B1 (en) Composite crucible, method for producing same and use thereof
JPH05105577A (en) Quartz glass crucible for pulling up silicon single crystal and its production
EP2267192B1 (en) Method of pulling single crystal silicon using a vitreous silica crucible and method for manufacturing quartz glass crucible
US20020166341A1 (en) Technique for quartz crucible fabrication having reduced bubble content in the wall
JP2936392B2 (en) Quartz crucible for pulling silicon single crystal
KR101446518B1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
EP2400045B1 (en) Vitreous silica crucible and method of manufacturing the same, and use of the crucible in a method of manufacturing a silicon crystal
EP2264226A1 (en) Quartz glass crucible and process for producing the same
EP1024118A2 (en) Large diameter quartz glass crucible for pulling up single crystalline silicon
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP3136533B2 (en) Quartz crucible for pulling silicon single crystal
JP3215992B2 (en) Quartz crucible for pulling silicon single crystal
JP2002326889A (en) Crucible of quartz glass for pulling silicon single crystal
US5895527A (en) Single crystal pulling apparatus
JP2001233629A (en) Method of producing quartz glass crucible
JP3004563B2 (en) Seed crystal of silicon single crystal
JP2002284596A (en) Quartz glass crucible with inner surface partially coated with synthetic quartz
EP2141130B1 (en) Method for producing vitreous silica crucible
JPH0788269B2 (en) Crucible for pulling silicon single crystal
JP3154916B2 (en) Quartz glass crucible
JPH0692276B2 (en) Quartz crucible for pulling silicon single crystal
JP7280160B2 (en) Silica glass crucible

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term