JP5036735B2 - Silica glass crucible for pulling silicon single crystal and manufacturing method thereof - Google Patents

Silica glass crucible for pulling silicon single crystal and manufacturing method thereof Download PDF

Info

Publication number
JP5036735B2
JP5036735B2 JP2009000367A JP2009000367A JP5036735B2 JP 5036735 B2 JP5036735 B2 JP 5036735B2 JP 2009000367 A JP2009000367 A JP 2009000367A JP 2009000367 A JP2009000367 A JP 2009000367A JP 5036735 B2 JP5036735 B2 JP 5036735B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
quartz glass
silicon single
infrared transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000367A
Other languages
Japanese (ja)
Other versions
JP2010155765A (en
Inventor
正徳 福井
智司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Japan Super Quartz Corp
Original Assignee
Sumco Corp
Japan Super Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp, Japan Super Quartz Corp filed Critical Sumco Corp
Priority to JP2009000367A priority Critical patent/JP5036735B2/en
Publication of JP2010155765A publication Critical patent/JP2010155765A/en
Application granted granted Critical
Publication of JP5036735B2 publication Critical patent/JP5036735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法に関し、特に、石英ガラスルツボの光学特性に関するものである。   The present invention relates to a quartz glass crucible for pulling a silicon single crystal and a method for manufacturing the same, and more particularly to optical characteristics of the quartz glass crucible.

シリコン単結晶の製造には石英ガラスルツボが使用される。チョクラルスキー法(CZ法)では、ポリシリコンを石英ガラスルツボに入れて加熱溶融し、このシリコン融液に種結晶を浸漬し、ルツボを回転させながら種結晶を徐々に引き上げて単結晶を成長させる。半導体デバイス用の高純度なシリコン単結晶を製造するためには、石英ガラスルツボに含まれる不純物の溶出によってシリコン単結晶が汚染されないことが求められ、また石英ガラスルツボには十分な耐熱強度も必要である。   A quartz glass crucible is used for manufacturing a silicon single crystal. In the Czochralski method (CZ method), polysilicon is heated and melted in a quartz glass crucible, the seed crystal is immersed in this silicon melt, and the seed crystal is gradually pulled up while rotating the crucible to grow a single crystal. Let In order to produce a high-purity silicon single crystal for semiconductor devices, it is required that the silicon single crystal is not contaminated by the elution of impurities contained in the quartz glass crucible, and the quartz glass crucible must have sufficient heat resistance. It is.

石英ガラスルツボの原料には天然石英と合成石英があり、一般に天然石英は合成石英よりも純度は低いが耐熱強度に優れており、合成石英は天然石英よりも耐熱強度は劣るが純度が高い。そこで、ルツボの外層を天然石英で形成して高温下でのルツボの強度を高める一方、シリコン融液に接触するルツボの内層を合成石英で形成して不純物の混入を防止するようにした二層構造の石英ガラスルツボが一般に使用されている(特許文献1参照)。また、シリコン融液中の酸素溶解量を制御するため、ルツボの直胴部の内表面を合成石英で構成し、外層を構成する天然石英をルツボの底部にて露出させた石英ガラスルツボも提案されている。(特許文献2参照)。   The raw material of the quartz glass crucible includes natural quartz and synthetic quartz. Generally, natural quartz is lower in purity than synthetic quartz but has excellent heat resistance, and synthetic quartz is inferior in heat resistance but higher in purity than natural quartz. Therefore, the outer layer of the crucible is made of natural quartz to increase the strength of the crucible at high temperatures, while the inner layer of the crucible that contacts the silicon melt is made of synthetic quartz to prevent impurities from entering. A quartz glass crucible having a structure is generally used (see Patent Document 1). In addition, in order to control the amount of dissolved oxygen in the silicon melt, we also propose a quartz glass crucible in which the inner surface of the straight body of the crucible is made of synthetic quartz and the natural quartz that forms the outer layer is exposed at the bottom of the crucible. Has been. (See Patent Document 2).

ところで、近年のシリコンインゴッドの大型化により、ルツボ内に装填されるシリコンの重量が大きくなっているため、シリコン融液中に含まれる気泡がシリコン融液中から抜けにくくなっており、育成中のシリコン単結晶にこの気泡が取り込まれ、結晶内に空洞欠陥(ボイド又はエアポケットとも呼ばれる)が形成される問題が目立つようになってきた。空洞欠陥の原因は、石英ガラスルツボの内表面に付着したアルゴン(Ar)ガスや、石英ガラスルツボとシリコン融液との反応によって生じる一酸化ケイ素(SiO)ガスと考えられている。気泡に起因する空洞欠陥は概ね球状であり、その大きさ(直径)は300〜500μmが大部分を占めるが、150μm以下の小さな空洞欠陥や1mm以上の非常に大きな空洞欠陥が形成されることもある。このように、気泡に起因する空洞欠陥は、COP(Crystal Originated Particle)のようなGrown-in欠陥とは明らかに異なる特徴を有している。現在、このような空洞欠陥の有無を非破壊検査することはできず、インゴッドからウェハーを切り出して初めて検出可能であり、空洞欠陥はウェハーの表面又は内部に貫通又は非貫通の穴(ピンホール)として表れる。   By the way, due to the recent increase in the size of silicon ingots, the weight of silicon loaded in the crucible has increased, and bubbles contained in the silicon melt are difficult to escape from the silicon melt. The problem that a bubble defect (also referred to as a void or an air pocket) is formed in the crystal due to the bubbles being taken into the silicon single crystal has become conspicuous. The cause of the cavity defect is considered to be argon (Ar) gas adhering to the inner surface of the quartz glass crucible or silicon monoxide (SiO) gas generated by the reaction between the quartz glass crucible and the silicon melt. Cavity defects caused by bubbles are generally spherical, and the size (diameter) occupies most of 300 to 500 μm. However, small cavity defects of 150 μm or less and very large cavity defects of 1 mm or more may be formed. is there. As described above, the cavity defect due to the bubbles has characteristics that are clearly different from the Grown-in defect such as COP (Crystal Originated Particle). At present, it is not possible to non-destructively inspect for the presence of such a cavity defect, but it can only be detected by cutting the wafer from the ingot, and the cavity defect is a hole that penetrates or does not penetrate through the surface or inside of the wafer (pin hole). Appears as

近年、ウェハー中のピンホールが最新の高集積な半導体デバイスに対して与える影響は極めて大きい。ピンホールの影響は、その大きさ、個数、発生位置、半導体デバイスの種類によっても異なるが、ピンホールはCOPと比較して非常に大きいサイズであるため、ピンホールが存在する空間にはデバイスを全く形成できない。特に、ウェハー中のピンホールの個数が多い場合には歩留まりが著しく低下するため、ウェハー自体を廃棄せざるを得ない。したがって、ウェハー中にピンホールが含まれる確率を限りなくゼロに近づける必要がある。   In recent years, the influence of pinholes in a wafer on the latest highly integrated semiconductor devices has been extremely large. The effect of pinholes varies depending on the size, number, location, and type of semiconductor device, but pinholes are very large compared to COPs. It cannot be formed at all. In particular, when the number of pinholes in the wafer is large, the yield is remarkably lowered, and the wafer itself must be discarded. Therefore, it is necessary to make the probability that pinholes are included in the wafer as close to zero as possible.

この問題を解決するため、例えば特許文献3及び4では、ポリシリコンの融解時の炉内圧を調整する方法が提案されている。また特許文献5では、ルツボに振動を与えてルツボ内表面に付着した気泡を減少させてからシリコン単結晶の育成を開始する方法が提案されている。   In order to solve this problem, for example, Patent Documents 3 and 4 propose a method of adjusting the furnace pressure during the melting of polysilicon. Patent Document 5 proposes a method of starting the growth of a silicon single crystal after applying vibration to the crucible to reduce bubbles adhering to the inner surface of the crucible.

特開平1−261293号公報JP-A-1-261293 特開2002−284596号公報JP 2002-284596 A 特開平5−9097号公報JP-A-5-9097 特開2000−169287号公報JP 2000-169287 A 特開2007−210803号公報JP 2007-210803 A

しかしながら、気泡に起因する空洞欠陥のない高品質なシリコン単結晶を製造するためには、上記のようなルツボ内での気泡の発生を防止するための環境や気泡を除去するための工程だけでは十分でなく、ルツボそのものが気泡を発生しにくい性質を有することが求められている。   However, in order to produce a high-quality silicon single crystal free from void defects caused by bubbles, the environment for preventing the generation of bubbles in the crucible as described above and the process for removing bubbles alone are not sufficient. It is not sufficient, and the crucible itself is required to have the property of not generating bubbles.

本発明は上記課題を解決するものであり、シリコン単結晶中に気泡が取り込まれることによる空洞欠陥の発生を防止することが可能なシリコン単結晶引き上げ用石英ガラスルツボを提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a quartz glass crucible for pulling up a silicon single crystal capable of preventing generation of cavity defects due to air bubbles being taken into the silicon single crystal. .

また、本発明は、気泡に起因する空洞欠陥のない高品質なシリコン単結晶を製造することが可能な石英ガラスルツボの製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for producing a quartz glass crucible capable of producing a high-quality silicon single crystal free from void defects caused by bubbles.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、石英ガラスルツボとシリコン融液との反応によるSiOガスの発生にはルツボ底部の温度が大きく関与していることが判明した。すなわち、ルツボ底部の温度が高温になるほどルツボを構成する石英とシリコン融液との反応が活発となり、SiOガスが発生しやすくなることから、ルツボ底部の温度上昇を抑えれば気泡の発生を抑制できることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that the temperature at the bottom of the crucible is greatly involved in the generation of SiO gas by the reaction between the quartz glass crucible and the silicon melt. In other words, the higher the temperature at the bottom of the crucible, the more active the reaction between the quartz constituting the crucible and the silicon melt and the easier generation of SiO gas. I found out that I can do it.

本発明はこのような技術的知見に基づきなされたものであって、本発明によるシリコン単結晶引き上げ用石英ガラスルツボは、直胴部及び底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、底部の中心から一定範囲内の領域の赤外線透過率が直胴部の赤外線透過率よりも高く、底部の赤外線透過率が50〜80%であり、底部と直胴部との赤外線透過率の差が10〜30%であることを特徴とする。   The present invention has been made on the basis of such technical knowledge, the quartz glass crucible for pulling a silicon single crystal according to the present invention is a quartz glass crucible for pulling a silicon single crystal having a straight body part and a bottom part, The infrared transmittance of a region within a certain range from the center of the bottom is higher than the infrared transmittance of the straight body, the infrared transmittance of the bottom is 50 to 80%, and the difference in infrared transmittance between the bottom and the straight body Is 10 to 30%.

また、本発明によるシリコン単結晶引き上げ用石英ガラスルツボの製造方法は、回転しているモールドの内表面に石英粉を堆積させる工程と、石英粉を溶融することにより石英ガラスルツボを成形する工程とを備え、石英ガラスルツボを成形する工程は、石英粉内部の気体を吸引する工程を含み、気体を吸引する工程は、底部における気体の吸引時間を直胴部よりも長くし、又は底部における気体の吸引圧力を直胴部よりも高くすることにより、底部の赤外線透過率が直胴部の赤外線透過率よりも高くなるように制御する工程を含むことを特徴とする。   The method for producing a quartz glass crucible for pulling a silicon single crystal according to the present invention includes a step of depositing quartz powder on the inner surface of a rotating mold, and a step of forming a quartz glass crucible by melting the quartz powder. The step of forming the quartz glass crucible includes a step of sucking the gas inside the quartz powder, and the step of sucking the gas makes the gas suction time at the bottom longer than that of the straight body, or the gas at the bottom And a step of controlling the infrared transmittance of the bottom portion to be higher than the infrared transmittance of the straight barrel portion by increasing the suction pressure of the straight barrel portion.

本発明によれば、熱作用が大きく透過力の強い赤外線の透過率をルツボ底部において高くしているので、SiOガスの気泡の発生を抑制することができる。特に、ルツボの赤外線透過率が50〜80%であり、さらにルツボ底部と直胴部との赤外線透過率の差が10〜30%であることから、シリコン単結晶の製造歩留まりを低下させることなく、ルツボ底部の冷却効果を確保することができる。よって、SiOガスの気泡がシリコン単結晶中に取り込まれることによる空洞欠陥の発生を防止することができる。   According to the present invention, since the infrared transmittance having a large thermal action and a strong transmission power is increased at the bottom of the crucible, generation of SiO gas bubbles can be suppressed. In particular, the infrared transmittance of the crucible is 50 to 80%, and the difference in infrared transmittance between the bottom portion of the crucible and the straight body portion is 10 to 30%, so that the production yield of the silicon single crystal is not lowered. The cooling effect at the bottom of the crucible can be ensured. Therefore, it is possible to prevent the occurrence of cavity defects due to the incorporation of SiO gas bubbles into the silicon single crystal.

本発明において、赤外線透過率が高いルツボ底部の中心から一定範囲内の領域は、シリコン単結晶の投影面を含むことが好ましい。シリコン単結晶の投影面に対応する領域でSiOガスの気泡が発生すると、極めて高い確率でシリコン単結晶に取り込まれてしまうが、シリコン単結晶の投影面において赤外線透過率が高ければ、気泡の発生を確実に防止することができるからである。特に、ルツボ底部の中心から一定範囲内の領域の直径は、ルツボ口径Rに対して0.45R以上0.8R以下であることが好ましい。赤外線透過率の高い領域がルツボ口径に対して上記条件を満たしていれば、耐熱強度不足等によって単結晶収率を低下させることなく、気泡の発生を確実に防止することができる。 In the present invention, it is preferable that the region within a certain range from the center of the bottom of the crucible having a high infrared transmittance includes a projection surface of a silicon single crystal. If a bubble of SiO gas is generated in a region corresponding to the projection surface of the silicon single crystal, it is taken into the silicon single crystal with a very high probability. However, if the infrared transmittance is high on the projection surface of the silicon single crystal, bubbles are generated. It is because it can prevent reliably. In particular, the diameter of the area within a predetermined range from the center of the crucible bottom is preferably 0.45R is 0 or more 0.8 R 0 or less with respect to the crucible diameter R 0. If the region having a high infrared transmittance satisfies the above conditions with respect to the crucible diameter, the generation of bubbles can be reliably prevented without lowering the yield of the single crystal due to insufficient heat resistance.

このように、本発明によれば、シリコン単結晶中にSiOガスの気泡が取り込まれることによる空洞欠陥の発生を防止することができ、高品質のシリコン単結晶を製造することが可能な石英ガラスルツボを提供することができる。   Thus, according to the present invention, quartz glass that can prevent the generation of cavity defects due to the incorporation of SiO gas bubbles into the silicon single crystal and can produce a high-quality silicon single crystal. A crucible can be provided.

また、本発明によれば、空洞欠陥のない高品質なシリコン単結晶を製造することが可能な石英ガラスルツボの製造方法を提供することができる。   In addition, according to the present invention, it is possible to provide a method for producing a quartz glass crucible capable of producing a high-quality silicon single crystal having no cavity defect.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の好ましい実施の形態によるシリコン単結晶引き上げ用石英ガラスルツボの構造を示す略断面図である。   FIG. 1 is a schematic sectional view showing the structure of a quartz glass crucible for pulling a silicon single crystal according to a preferred embodiment of the present invention.

図1に示すように、本実施形態による石英ガラスルツボ10は二層構造であって、ルツボの外層を構成する不透明石英ガラス層11と、ルツボの内層を構成する透明石英ガラス層12を有している。   As shown in FIG. 1, the quartz glass crucible 10 according to the present embodiment has a two-layer structure, and has an opaque quartz glass layer 11 constituting an outer layer of the crucible and a transparent quartz glass layer 12 constituting an inner layer of the crucible. ing.

不透明石英ガラス層11は、多数の微小な気泡を含む非晶質シリカガラス層であり、ルツボの直胴部10Aから底部10Bにわたる全体に設けられている。不透明石英ガラス層11の原料としては天然石英を用いることが好ましい。天然石英は合成石英に比べて高温における粘性が高いことから、ルツボ全体の耐熱強度を高めることができる。また、天然石英は合成石英よりも安価であり、コスト面でも有利である。不透明石英ガラス層11は全体が必ず天然石英からなる必要はなく、透明石英ガラス層12との境界付近における原料が合成石英であってもかまわない。不透明石英ガラス層11の気泡含有率は0.7〜2%であることが好ましく、気泡の平均直径は100μm程度であることが好ましい。ここで、気泡含有率は、単位面積(W)に対する気泡占有面積(W)の比(W/W)として定義される。 The opaque quartz glass layer 11 is an amorphous silica glass layer containing a large number of minute bubbles, and is provided over the entire length of the crucible from the straight body portion 10A to the bottom portion 10B. Natural quartz is preferably used as a raw material for the opaque quartz glass layer 11. Since natural quartz has a higher viscosity at high temperatures than synthetic quartz, the heat resistance of the entire crucible can be increased. Natural quartz is cheaper than synthetic quartz and is advantageous in terms of cost. The opaque quartz glass layer 11 is not necessarily made entirely of natural quartz, and the raw material in the vicinity of the boundary with the transparent quartz glass layer 12 may be synthetic quartz. The bubble content of the opaque quartz glass layer 11 is preferably 0.7 to 2%, and the average diameter of the bubbles is preferably about 100 μm. Here, the bubble content is defined as the ratio (W 2 / W 1 ) of the bubble occupation area (W 2 ) to the unit area (W 1 ).

透明石英ガラス層12は、実質的に気泡を含まない非晶質シリカガラス層であり、ルツボの直胴部10Aから底部10Bにわたる全体に設けられている。透明石英ガラス層12によれば、剥離する石英片の増加を防止することができ、シリコン単結晶収率を高めることができる。透明石英ガラス層12の原料としては合成石英を用いることが好ましい。ルツボの内層に合成石英を用いた場合には、シリコン融液中への不純物の溶出を防止することができ、シリコン単結晶収率を高めることができる。透明石英ガラス層12は全体が必ず天然石英からなる必要はなく、透明石英ガラス層12との境界付近における原料が天然石英であってもかまわない。ここで、「実質的に気泡を含まない」とは、気泡含有率が0.1%以下であり、気泡の平均直径が100μm以下であることをいう。   The transparent quartz glass layer 12 is an amorphous silica glass layer substantially free of bubbles, and is provided over the entire length of the crucible from the straight body portion 10A to the bottom portion 10B. According to the transparent quartz glass layer 12, it is possible to prevent an increase in the number of quartz pieces to be peeled off, and to increase the silicon single crystal yield. It is preferable to use synthetic quartz as a raw material for the transparent quartz glass layer 12. When synthetic quartz is used for the inner layer of the crucible, the elution of impurities into the silicon melt can be prevented, and the silicon single crystal yield can be increased. The transparent quartz glass layer 12 does not necessarily need to be made of natural quartz as a whole, and the raw material in the vicinity of the boundary with the transparent quartz glass layer 12 may be natural quartz. Here, “substantially free of bubbles” means that the bubble content is 0.1% or less and the average diameter of the bubbles is 100 μm or less.

ルツボの直胴部10Aは、ルツボの中心軸(Z軸)と平行な円筒状の部分であって、ルツボの開口から略真下に延びている。但し、直胴部10AはZ軸に対して完全に平行である必要はなく、開口に向かって徐々に広がるように傾斜していてもよい。また、直胴部10Aは直線的であってもよく、緩やかに湾曲していてもよい。   The crucible straight body 10A is a cylindrical portion parallel to the central axis (Z-axis) of the crucible, and extends substantially directly from the opening of the crucible. However, the straight body portion 10A does not need to be completely parallel to the Z axis, and may be inclined so as to gradually spread toward the opening. Further, the straight body portion 10A may be linear or may be gently curved.

ルツボの底部10Bは、ルツボのZ軸との交点を含む略円盤状の部分であり、底部10Bと直胴部10Aとの間には湾曲部10Cが形成されている。ルツボ底部10Bの形状はいわゆる丸底であってもよく、平底であってもよい。また、湾曲部10Cの曲率や角度も任意に設定することができる。ルツボ底部10Bが丸底の場合には、底部10Bも適度な曲率を有するため、底部10Bと湾曲部10Cとの曲率差は平底に比べて非常に小さい。ルツボ底部10Bが平底の場合には、底部10Bが平坦或いは極めて緩やかな湾曲面をなし、湾曲部10Cの曲率は非常に大きい。なお、底部10Bは、Z軸と直交するXY平面に対するルツボ壁面の接線傾斜角が30度以下となる領域として定義される。   The bottom portion 10B of the crucible is a substantially disc-shaped portion including an intersection with the Z axis of the crucible, and a curved portion 10C is formed between the bottom portion 10B and the straight body portion 10A. The shape of the crucible bottom 10B may be a so-called round bottom or a flat bottom. Further, the curvature and angle of the bending portion 10C can be arbitrarily set. When the crucible bottom portion 10B has a round bottom, the bottom portion 10B also has an appropriate curvature, so that the difference in curvature between the bottom portion 10B and the curved portion 10C is very small compared to the flat bottom. When the crucible bottom portion 10B is a flat bottom, the bottom portion 10B has a flat or extremely gentle curved surface, and the curvature of the curved portion 10C is very large. The bottom portion 10B is defined as a region where the tangential inclination angle of the crucible wall surface with respect to the XY plane orthogonal to the Z axis is 30 degrees or less.

ルツボの底部10Bの中心から一定範囲内の領域には、周囲よりも赤外線透過率の高い領域(高透過率領域)が設けられている。この高透過率領域10Xは、底部10Bの温度上昇を抑制し、SiOガスの発生を防止する役割を果たす。ルツボ内表面の温度が上昇すると、ルツボとシリコン融液との反応によってSiOガスが発生する。しかし、底部10Bの赤外線透過率が高く、熱が逃げやすい構造となっているため、底部10Bの温度上昇が抑制される。したがって、シリコン融液との急激な反応によるSiOガスの発生(突沸現象)を防止することができ、シリコン単結晶の引き上げ中に底部10Bから発生するSiOガスを抑制することができる。   In a region within a certain range from the center of the bottom 10B of the crucible, a region (high transmittance region) having a higher infrared transmittance than the surroundings is provided. The high transmittance region 10X serves to suppress the temperature rise of the bottom 10B and prevent the generation of SiO gas. When the temperature of the inner surface of the crucible rises, SiO gas is generated by the reaction between the crucible and the silicon melt. However, since the infrared transmittance of the bottom portion 10B is high and the heat easily escapes, the temperature rise of the bottom portion 10B is suppressed. Accordingly, generation of SiO gas (bumping phenomenon) due to a rapid reaction with the silicon melt can be prevented, and SiO gas generated from the bottom 10B during pulling of the silicon single crystal can be suppressed.

透明石英ガラス層12が実質的に気泡を含まない透明な層であるのに対し、不透明石英ガラス層11は多数の微小な気泡を含む不透明な層であるため、不透明石英ガラス層11の赤外線透過率は透明石英ガラス層12に比べて非常に低い。そのため、ルツボ底部10Bの赤外線透過率は不透明石英ガラス層11が支配的であるが、透明石英ガラス層12の赤外線透過率も無視できない。底部10Bの赤外線透過率を高くするためには、底部10Bにおける不透明石英ガラス層11と透明石英ガラス層12の厚さの比を変更することにより行ってもよく、底部10Bにおける不透明石英ガラス層11の気泡含有率を低くすることにより行ってもよい。こうした赤外線透過率の制御は、アーク溶融工程において真空引き時間や圧力を変更することにより行うことができる。さらにまた、原料となる石英粉の粒径を調整することにより行ってもよい。   The transparent quartz glass layer 12 is a transparent layer substantially free of bubbles, whereas the opaque quartz glass layer 11 is an opaque layer containing a large number of minute bubbles. The rate is very low compared to the transparent quartz glass layer 12. Therefore, the infrared transmittance of the crucible bottom 10B is dominated by the opaque quartz glass layer 11, but the infrared transmittance of the transparent quartz glass layer 12 cannot be ignored. In order to increase the infrared transmittance of the bottom portion 10B, the ratio of the thickness of the opaque quartz glass layer 11 and the transparent quartz glass layer 12 in the bottom portion 10B may be changed, or the opaque quartz glass layer 11 in the bottom portion 10B. You may carry out by making the bubble content rate of low. Such infrared transmittance can be controlled by changing the evacuation time and pressure in the arc melting step. Furthermore, it may be performed by adjusting the particle size of the quartz powder as a raw material.

高透過率領域10Xの赤外線透過率は50〜80%であることが必要である。高透過率領域10Xの赤外線透過率が50%未満ではルツボ底部10Bの冷却効果が不十分であり、80%を超えるとシリコン融液量が少なくなった際の融液温度制御が困難となり、結晶の乱れや酸素濃度の制御不能による歩留まりの低下を招くからである。さらに、高透過率領域10Xとそれ以外の領域との赤外線透過率の差は10〜30%であることが必要である。ルツボ底部10Bとルツボ直胴部10Aとの赤外線透過率の差が10%未満ではルツボ直胴部10Aとルツボ底部10Bの温度差をつけにくく、赤外線透過率の差が30%を超えるとルツボ直胴部10Aとルツボ底部10Bとの間の温度差が大きくなるため、シリコン単結晶の引き上げ時の温度制御が困難となり、結晶乱れによる歩留低下を招くからである。   The infrared transmittance of the high transmittance region 10X needs to be 50 to 80%. If the infrared transmittance of the high transmittance region 10X is less than 50%, the cooling effect of the crucible bottom 10B is insufficient, and if it exceeds 80%, it becomes difficult to control the melt temperature when the amount of silicon melt decreases. This is because the yield is lowered due to the disturbance of oxygen and the inability to control the oxygen concentration. Furthermore, the difference in infrared transmittance between the high transmittance region 10X and the other regions needs to be 10 to 30%. If the difference in infrared transmittance between the crucible bottom 10B and the crucible straight body 10A is less than 10%, it is difficult to create a temperature difference between the crucible straight body 10A and the crucible bottom 10B, and if the difference in infrared transmittance exceeds 30%, the crucible straight This is because the temperature difference between the body portion 10A and the crucible bottom portion 10B becomes large, making it difficult to control the temperature at the time of pulling up the silicon single crystal, leading to a decrease in yield due to crystal disorder.

尚、赤外線透過率の差とは、赤外線透過率100%を基準としたときの差をいう。よって、高透過率領域10Xの赤外線透過率が50%の場合には、それ以外の領域の赤外線透過率は20〜40%となり、高透過率領域10Xの赤外線透過率が80%の場合には、それ以外の領域の赤外線透過率は50〜70%となる。   Note that the difference in infrared transmittance refers to a difference when the infrared transmittance is 100% as a reference. Therefore, when the infrared transmittance of the high transmittance region 10X is 50%, the infrared transmittance of other regions is 20 to 40%, and when the infrared transmittance of the high transmittance region 10X is 80%. In other regions, the infrared transmittance is 50 to 70%.

一方、石英ガラスルツボ10の直胴部10A及び湾曲部10Cの赤外線透過率は底部10Bよりも低い。そのため、直胴部10Aや湾曲部10Cは高温となり、SiOガスが発生しやすいが、直胴部10A及び湾曲部10Cから発生するSiOガスの気泡がシリコン単結晶中に取り込まれる可能性は極めて低い。これは、シリコン融液中におけるSiOガスの上昇速度が30〜60cm/secであるのに対し、シリコン融液の対流速度が数mm/secしかなく、発生したSiOガスの気泡は対流によって流されることなくシリコン融液中をほぼ垂直に上昇するからである。   On the other hand, the infrared transmittance of the straight barrel portion 10A and the curved portion 10C of the quartz glass crucible 10 is lower than that of the bottom portion 10B. Therefore, although the straight body portion 10A and the curved portion 10C become high temperature and SiO gas is likely to be generated, the possibility that SiO gas bubbles generated from the straight body portion 10A and the curved portion 10C are taken into the silicon single crystal is extremely low. . This is because the rising speed of the SiO gas in the silicon melt is 30 to 60 cm / sec, whereas the convection speed of the silicon melt is only a few mm / sec, and the generated SiO gas bubbles are caused to flow by convection. This is because it rises almost vertically in the silicon melt.

したがって、直胴部10A及び湾曲部10Cの赤外線透過率が低いことは、空洞欠陥の原因とはならない。むしろ、直胴部10Aや湾曲部10Cの赤外線透過率を底部10Bと同様に高くした場合には、本来の目的であるシリコン融液の温度制御が困難となり、シリコン単結晶収率を低下させる原因となる。このような観点から、本実施形態においては、直胴部10A及び湾曲部10Cの赤外線透過率を低く設定している。但し、本発明において、直胴部10A及び湾曲部10Cの両方の赤外線透過率を低く設定することは必須でなく、少なくとも直胴部10Aの赤外線透過率を低く設定すれば足りる。   Accordingly, the low infrared transmittance of the straight body portion 10A and the curved portion 10C does not cause a cavity defect. Rather, when the infrared transmittance of the straight body portion 10A and the curved portion 10C is increased in the same manner as the bottom portion 10B, it is difficult to control the temperature of the silicon melt, which is the original purpose, and the cause of lowering the silicon single crystal yield It becomes. From such a viewpoint, in the present embodiment, the infrared transmittance of the straight body portion 10A and the curved portion 10C is set low. However, in the present invention, it is not essential to set the infrared transmittance of both the straight body portion 10A and the curved portion 10C to be low, and it is sufficient to set at least the infrared transmittance of the straight body portion 10A.

特に限定されるものではないが、ルツボの肉厚は8〜30mm程度であることが好ましい。ルツボの肉厚は均一であってもよく、底部中心から外側に向かうにつれて徐々に厚くなるように形成されていてもよい。また、直胴部10Aと底部10Bの厚さが異なっていてもよい。   Although not particularly limited, the thickness of the crucible is preferably about 8 to 30 mm. The thickness of the crucible may be uniform or may be formed so as to gradually increase from the bottom center toward the outside. Further, the thickness of the straight body portion 10A and the bottom portion 10B may be different.

一方、透明石英ガラス層12の厚さは1.0mm以上であることが好ましい。シリコン単結晶の引き上げでは、通常、ルツボ内表面が0.3〜1.0mm程度溶損するが、透明石英ガラス層12が1.0mm未満である場合には、シリコン単結晶の引き上げ中に溶損しきって不透明石英ガラス層11が露出するおそれがあるからである。透明石英ガラス層12の厚さは均一であっても良く、底部中心から外側に向かうにつれて徐々に厚くなるように形成されていていてもよい。   On the other hand, the thickness of the transparent quartz glass layer 12 is preferably 1.0 mm or more. In the pulling of the silicon single crystal, the inner surface of the crucible usually melts by about 0.3 to 1.0 mm. However, when the transparent quartz glass layer 12 is less than 1.0 mm, the melting damage occurs during the pulling of the silicon single crystal. This is because the opaque quartz glass layer 11 may be exposed. The thickness of the transparent quartz glass layer 12 may be uniform, or may be formed so as to gradually increase from the bottom center toward the outside.

図2は、石英ガラスルツボとシリコン単結晶との位置関係を示す略断面図である。   FIG. 2 is a schematic cross-sectional view showing the positional relationship between the quartz glass crucible and the silicon single crystal.

ルツボ底部10Bの高透過率領域10XをZ軸方向から見た形状は、Z軸との交点を中心とする円形であり、その直径Rは、引き上げられるシリコン単結晶21の直径Rの1.5倍以上1.8倍以下であることがより好ましい。1.5倍未満ではシリコン単結晶直径Rsの投影面の温度を十分に下げることができないのでSiOガスの抑制が不十分であり、1.8倍を超えるとシリコン融液が少なくなった際に引き上げ温度の制御が困難となるため、結晶乱れによる歩留り低下を招くからである。 The shape of the high transmittance region 10X of the crucible bottom 10B viewed from the Z-axis direction is a circle centered on the intersection with the Z-axis, and its diameter R 1 is 1 of the diameter R S of the silicon single crystal 21 to be pulled up. More preferably, it is 5 times or more and 1.8 times or less. If it is less than 1.5 times, the temperature of the projection surface of the silicon single crystal diameter Rs cannot be lowered sufficiently, so that the suppression of SiO gas is insufficient, and if it exceeds 1.8 times, the silicon melt is reduced. This is because it becomes difficult to control the pulling temperature, which leads to a decrease in yield due to crystal disorder.

シリコン単結晶21の直径Rは、石英ガラスルツボ10の形状及びサイズから一義的に定まるものではないが、石英ガラスルツボ10の口径Rに大きく依存する。ルツボの口径Rがシリコン単結晶の直径Rに対して小さすぎると単結晶の酸素濃度や酸素面内分布などといった結晶品質の制御が困難となり、逆に大きすぎると装置や部材を大きくする必要があるのでコスト高になるからである。そのため、シリコン単結晶21の直径Rは、0.45R〜0.8Rに設定されることが通例である。 The diameter R S of the silicon single crystal 21 is not uniquely determined from the shape and size of the quartz glass crucible 10, but greatly depends on the diameter R 0 of the quartz glass crucible 10. If the crucible diameter R 0 is too small relative to the silicon single crystal diameter R S , it becomes difficult to control the crystal quality such as oxygen concentration and oxygen in-plane distribution of the single crystal. This is because it is necessary to increase the cost. Therefore, the diameter R S of the silicon single crystal 21, it is customary to set to 0.45R 0 ~0.8R 0.

このような点を考慮すれば、ルツボ底部10Bの高透過率領域10Xの直径Rは、石英ガラスルツボ10の口径Rに対して、0.45R以上0.8R以下であることが好ましい。ルツボ底部10Bの高透過率領域10Xの直径Rが0.45Rよりも小さい場合には、シリコン単結晶21の投影面21Sの温度を十分に下げることができず、透明石英ガラス層12から発生したSiOガスの気泡がシリコン単結晶21に取り込まれる可能性が高まるからである。一方、ルツボ底部10Bの高透過率領域10Xの直径Rが0.8Rよりも大きい場合には、シリコン単結晶21の投影面21Sを確実にカバーすることができるものの、シリコン融液が少なくなった際に引き上げ温度の制御が困難となり、シリコン単結晶収率を低下させる原因となるからである。 Considering such points, the diameter R 1 of the high transmittance region 10X of the crucible bottom 10B is 0.45R 0 or more and 0.8R 0 or less with respect to the diameter R 0 of the quartz glass crucible 10. preferable. When the diameter R 1 of the high transmittance region 10X of the crucible bottom portion 10B is smaller than 0.45R 0 , the temperature of the projection surface 21S of the silicon single crystal 21 cannot be lowered sufficiently, and the transparent quartz glass layer 12 This is because the generated SiO gas bubbles are more likely to be taken into the silicon single crystal 21. On the other hand, when the diameter R 1 of the high transmission region 10X of the crucible bottom part 10B is greater than 0.8 R 0, although it is possible to reliably cover the projection plane 21S of the silicon single crystal 21, less silicon melt This is because it becomes difficult to control the pulling temperature when it becomes, causing a decrease in the yield of the silicon single crystal.

ルツボ底部10Bの高透過率領域10Xの直径Rについて具体的に説明すると、例えば直径32インチ(口径R≒800mm)の石英ガラスルツボの場合、ルツボの底部10Bに形成される高透過率領域10Xの直径Rの下限は0.45R=360mm、上限は0.8R=640mmとなる。通常、32インチルツボは直径約300mmのシリコン単結晶の引き上げに使用され、この場合の高透過率領域10Xの直径Rは450mm以上540mm以下であることが好ましいが、この値は360〜640mmという上記範囲に収まっている。このように、ルツボ底部10Bの高透過率領域10Xの直径Rが0.45R以上0.8R以下であれば、単結晶収率をほとんど低下させることなく、引き上げ途中のシリコン単結晶に取り込まれる可能性のあるSiOガスの気泡の発生を効果的に抑制することができる。 Specifically described diameter R 1 of the high transmission region 10X of the crucible bottom part 10B, for example, in the case of the quartz glass crucible having a diameter of 32 inches (diameter R 0 ≒ 800mm), high transmittance region formed in the bottom portion 10B of the crucible The lower limit of the 10X diameter R 1 is 0.45 R 0 = 360 mm, and the upper limit is 0.8 R 0 = 640 mm. Usually, a 32-inch crucible is used for pulling up a silicon single crystal having a diameter of about 300 mm. In this case, the diameter R 1 of the high transmittance region 10X is preferably 450 mm or more and 540 mm or less, but this value is 360 to 640 mm. It is within the above range. Thus, if the diameter R 1 of the high transmittance region 10X of the crucible bottom portion 10B is 0.45R 0 or more and 0.8R 0 or less, the single crystal yield is hardly reduced, and the silicon single crystal being pulled up can be formed. Generation | occurrence | production of the bubble of SiO gas which may be taken in can be suppressed effectively.

上述したように、SiOガスの気泡はほぼ垂直に浮上するが、引き上げ途中のシリコン単結晶21の投影面21Sよりも外側(高透過率領域10Xの外側)で発生した気泡が何らかの原因で水平方向に僅かにシフトしながら浮上し、その結果、シリコン単結晶21に取り込まることも考えられる。しかし、そのような気泡の位置はシリコン単結晶21の外周付近であり、シリコン単結晶21の外周付近は不要な部分として後に研削されるため、たとえ気泡が取り込まれたとしても問題はない。   As described above, the bubbles of the SiO gas rise almost vertically, but the bubbles generated outside the projection surface 21S of the silicon single crystal 21 being pulled up (outside the high transmittance region 10X) are horizontal for some reason. As a result, the silicon single crystal 21 may be taken in. However, since the position of such bubbles is near the outer periphery of the silicon single crystal 21 and the vicinity of the outer periphery of the silicon single crystal 21 is ground as an unnecessary portion later, there is no problem even if bubbles are taken in.

以上説明したように、本実施形態の石英ガラスルツボ10によれば、ルツボ底部10Bに赤外線の高透過率領域10Xを形成したので、ルツボ底部の温度上昇を抑制することができる。したがって、シリコン単結晶の引き上げ工程中においてルツボ底部から発生するSiOガスを抑制することができ、シリコン単結晶内の空洞欠陥の発生を防止することができる。   As described above, according to the quartz glass crucible 10 of the present embodiment, since the infrared high transmittance region 10X is formed on the crucible bottom 10B, it is possible to suppress the temperature rise at the crucible bottom. Therefore, SiO gas generated from the bottom of the crucible during the pulling process of the silicon single crystal can be suppressed, and the generation of cavity defects in the silicon single crystal can be prevented.

次に、図3のフローチャートを参照しながら、石英ガラスルツボ10の製造方法について説明する。   Next, a method for manufacturing the quartz glass crucible 10 will be described with reference to the flowchart of FIG.

石英ガラスルツボ10は回転モールド法によって製造することができる。回転モールド法では、回転しているカーボンモールドの内表面に天然石英粉を所定の厚さにて堆積させ(ステップS11)、次いで天然石英粉による層の内表面に合成石英粉を所定の厚さにて堆積させる(ステップS12)。   The quartz glass crucible 10 can be manufactured by a rotational mold method. In the rotary mold method, natural quartz powder is deposited on the inner surface of the rotating carbon mold with a predetermined thickness (step S11), and then synthetic quartz powder is deposited on the inner surface of the layer made of natural quartz powder with a predetermined thickness. (Step S12).

その後、モールドの内側からアーク放電を行い、石英粉の内表面全体を1720℃以上に加熱・溶融する(ステップS13)。また、この加熱と同時にモールド側から減圧し、モールドに設けた通気口を通じて石英内部の気体を外層側に吸引し、通気口を通じて外部に排出することにより、ルツボ内表面の気泡を部分的に除去し、実質的に気泡のない透明石英ガラス層12を形成する(ステップS14)。その後、直胴部及び湾曲部において減圧を停止し、さらに加熱を続けて気泡を残留させることにより、多数の微小な気泡を含む不透明石英ガラス層11を形成する(ステップS15)。   Thereafter, arc discharge is performed from the inside of the mold, and the entire inner surface of the quartz powder is heated and melted to 1720 ° C. or higher (step S13). Simultaneously with this heating, pressure is reduced from the mold side, the gas inside the quartz is sucked to the outer layer side through the vent provided in the mold, and exhausted to the outside through the vent, thereby partially removing bubbles on the inner surface of the crucible. Then, the transparent quartz glass layer 12 substantially free of bubbles is formed (step S14). Thereafter, the decompression is stopped at the straight body portion and the curved portion, and further, heating is continued to leave bubbles, thereby forming the opaque quartz glass layer 11 including a large number of minute bubbles (step S15).

本実施形態においては、ルツボ底部10Bの高透過率領域10Xを形成するため、直胴部10A及び湾曲部10Cにおいては減圧を停止するが、ルツボ底部10Bにおいて減圧を継続し、不透明石英ガラス層11においても気泡の少ない領域を形成する(ステップS15)。或いは、最初の減圧時に直胴部10A及び湾曲部10Cにおいては減圧時の圧力を相対的に低くくし、底部10Bにおける減圧時の圧力を相対的に高くすることにより、底部10Bの赤外線透過率を高めてもよい。これにより、周囲よりも気泡が少なく透明度の高い高透過率領域10Xを形成することができる。以上により、外層を構成する不透明石英ガラス層11と、内層を構成する透明石英ガラス層12とを備えた石英ガラスルツボが完成する。   In this embodiment, in order to form the high transmittance region 10X of the crucible bottom portion 10B, the decompression is stopped at the straight barrel portion 10A and the curved portion 10C, but the decompression is continued at the crucible bottom portion 10B, and the opaque quartz glass layer 11 In step S15, a region with few bubbles is formed. Alternatively, at the time of the first decompression, the pressure at the time of decompression is relatively low in the straight body portion 10A and the curved portion 10C, and the pressure at the time of decompression at the bottom portion 10B is relatively high, thereby increasing the infrared transmittance of the bottom portion 10B. May be raised. Thereby, it is possible to form the high transmittance region 10X with less bubbles than the surroundings and high transparency. As described above, a quartz glass crucible including the opaque quartz glass layer 11 constituting the outer layer and the transparent quartz glass layer 12 constituting the inner layer is completed.

石英ガラスルツボ10はいわゆる溶射法によっても製造することができる。具体的には、カーボンモールドの内表面全体に不透明石英ガラス層11の原料となる天然石英粉を所定の厚さにて堆積し、モールドの内側からアーク放電を行うことによって、天然石英粉を1720℃以上に加熱・溶融し、不透明石英ガラス層11を形成する。その後、不透明石英ガラス層11の内表面に合成石英粉をアーク溶射し、透明石英ガラス層12を形成することにより、石英ガラスルツボが完成する。   The quartz glass crucible 10 can also be manufactured by a so-called thermal spraying method. Specifically, natural quartz powder that is a raw material for the opaque quartz glass layer 11 is deposited on the entire inner surface of the carbon mold with a predetermined thickness, and arc discharge is performed from the inside of the mold, whereby 1720 natural quartz powder is obtained. The opaque quartz glass layer 11 is formed by heating and melting at a temperature equal to or higher than 0 ° C. Thereafter, a synthetic quartz powder is arc sprayed on the inner surface of the opaque quartz glass layer 11 to form a transparent quartz glass layer 12, thereby completing a quartz glass crucible.

以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変更を加えることが可能であり、それらも本発明に包含されるものであることは言うまでもない。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, these are also included in the present invention.

例えば、上記実施形態においては、天然石英粉及び合成石英粉を原料とする石英ガラスルツボを例に挙げて説明したが、本発明は天然石英粉のみを原料とする石英ガラスルツボにも適用可能である。   For example, in the above embodiment, a quartz glass crucible using natural quartz powder and synthetic quartz powder as an example has been described as an example. However, the present invention can also be applied to a quartz glass crucible using only natural quartz powder as a raw material. is there.

図1に示した石英ガラスルツボ10と同じ構造を有し、ルツボ底部及び直胴部の赤外線透過率が異なる石英ガラスルツボの実施例サンプルA1〜A4、比較例サンプルB1〜B4をそれぞれ用意した。各サンプルの赤外線透過率は、波長0.5〜3.5μm、ピーク波長1.0μmの赤外線ランプより30cmの位置に受熱面積1cmの赤外線パワーメーターを設置し、受熱面の直前にサンプルを配置し、赤外線受熱量を測定し、ルツボ片を挿入しないで測定した受熱量を100%として算出した。各ルツボサンプルA1〜A4,B1〜B4のサイズは、直径32インチ(口径800mm)、ルツボの高さ500mm、ルツボ内表面から外表面までの厚さは、直銅部17mm、湾曲部25mmm、底部14mmとした。また、高透過率領域10Xの直径R=500mmとした。 Example samples A1 to A4 and comparative example samples B1 to B4 of quartz glass crucibles having the same structure as the quartz glass crucible 10 shown in FIG. 1 and having different infrared transmittances at the bottom of the crucible and the straight barrel part were prepared. The infrared transmittance of each sample is as follows. An infrared power meter with a heat receiving area of 1 cm 2 is installed at a position 30 cm from an infrared lamp having a wavelength of 0.5 to 3.5 μm and a peak wavelength of 1.0 μm, and the sample is placed immediately before the heat receiving surface. The amount of heat received by infrared rays was measured, and the amount of heat received measured without inserting the crucible piece was calculated as 100%. The size of each crucible sample A1 to A4, B1 to B4 is 32 inches in diameter (diameter 800 mm), the height of the crucible is 500 mm, and the thickness from the inner surface to the outer surface of the crucible is 17 mm straight copper, 25 mm curved, bottom 14 mm. Further, the diameter R 1 of the high transmittance region 10X was set to 500 mm.

次に、これらの石英ガラスルツボのサンプルA1〜A4,B1〜B4にポリシリコン砕片400kgを充填した後、石英ガラスルツボを単結晶引き上げ装置に装填し、ルツボ内のポリシリコンを炉内で融解し、直径約320mmのシリコン単結晶インゴッドの引き上げを行った。   Next, after 400 kg of polysilicon fragments are filled in the quartz glass crucible samples A1 to A4 and B1 to B4, the quartz glass crucible is loaded into a single crystal pulling apparatus, and the polysilicon in the crucible is melted in the furnace. The silicon single crystal ingot having a diameter of about 320 mm was pulled up.

その後、得られたシリコン単結晶インゴッドから厚さ1mm程度のウェハーをワイヤソーにより切り出し、表面が鏡面研磨されたポリッシュドウェハーを作製した。そして、このポリッシュドウェハーのピンホール発生率を測定した。ピンホール発生率の測定にはパーティクル測定装置を使用し、ポリッシュドウェハーの表面のピンホールの数を測定した。また、得られたシリコン単結晶インゴッドの単結晶収率も求めた。ピンホール発生率は、1本のシリコン単結晶から得られる多数のウェハー中に含まれるピンホールの総数をそのウェハーの枚数で割った値である。その測定結果を表1に示す。   Thereafter, a wafer having a thickness of about 1 mm was cut out from the obtained silicon single crystal ingot with a wire saw to produce a polished wafer having a mirror-polished surface. And the pinhole incidence of this polished wafer was measured. A particle measuring device was used to measure the pinhole occurrence rate, and the number of pinholes on the surface of the polished wafer was measured. Moreover, the single crystal yield of the obtained silicon single crystal ingot was also determined. The pinhole generation rate is a value obtained by dividing the total number of pinholes contained in a large number of wafers obtained from one silicon single crystal by the number of wafers. The measurement results are shown in Table 1.

Figure 0005036735
Figure 0005036735

表1に示すように、ルツボ底部の赤外線透過率が50〜80%の範囲にあるサンプルA1〜A4では、ピンホール発生率が0.03%となり、単結晶収率は90%以上となった。   As shown in Table 1, in Samples A1 to A4 where the infrared transmittance at the bottom of the crucible is in the range of 50 to 80%, the pinhole generation rate was 0.03%, and the single crystal yield was 90% or more. .

これに対し、ルツボ底部の赤外線透過率が40%であるサンプルB3では、単結晶収率は90%であったが、ピンホール発生率が3.30%と大幅に増加した。また、ルツボ底部の赤外線透過率が85%であるサンプルB4では、ピンホール発生率は0.07%であったが、単結晶収率が51%と大幅に低下した。   On the other hand, in the sample B3 having an infrared transmittance of 40% at the bottom of the crucible, the single crystal yield was 90%, but the pinhole generation rate was greatly increased to 3.30%. Further, in sample B4 having an infrared transmittance of 85% at the bottom of the crucible, the pinhole generation rate was 0.07%, but the single crystal yield was significantly reduced to 51%.

また、ルツボ底部の赤外線透過率が80%であり、底部と直胴部との赤外線透過率の差が40%であるサンプルB1では、ピンホール発生率は0.05%であったが、単結晶収率が47%と大幅に低下した。さらに、ルツボ底部の赤外線透過率が70%であり、底部と直胴部との赤外線透過率の差が5%であるサンプルB2では、単結晶収率は93%となったが、ピンホール発生率が2.00%と大幅に増加した。以上より、赤外線透過率が50〜80%の範囲にあったとしても、底部と直胴部との赤外線透過率の差が10〜30%の範囲になければ、高品質なシリコン単結晶を得ることができないことが分かった。   In addition, in sample B1 in which the infrared transmittance at the bottom of the crucible is 80% and the difference in infrared transmittance between the bottom and the straight barrel is 40%, the pinhole occurrence rate was 0.05%. The crystal yield was greatly reduced to 47%. Furthermore, in Sample B2, where the infrared transmittance at the bottom of the crucible is 70% and the difference in infrared transmittance between the bottom and the straight body is 5%, the single crystal yield was 93%, but pinholes were generated. The rate increased significantly to 2.00%. As described above, even if the infrared transmittance is in the range of 50 to 80%, if the difference in infrared transmittance between the bottom portion and the straight body portion is not in the range of 10 to 30%, a high-quality silicon single crystal is obtained. I found it impossible.

本発明の好ましい実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの構造を示す略断面図である。It is a schematic sectional drawing which shows the structure of the quartz glass crucible for silicon single crystal pulling by preferable embodiment of this invention. 石英ガラスルツボとシリコン単結晶との位置関係を示す略断面図である。It is a schematic sectional drawing which shows the positional relationship of a quartz glass crucible and a silicon single crystal. 本発明の好ましい実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the quartz glass crucible for silicon single crystal pulling by preferable embodiment of this invention.

10 石英ガラスルツボ
10A ルツボの直胴部
10B ルツボの底部
10C ルツボの湾曲部
10X 高透過率領域
11 不透明石英ガラス層
12 透明石英ガラス層
21 シリコン単結晶
21S シリコン単結晶の投影面
22 シリコン融液
10 quartz glass crucible 10A crucible straight body portion 10B crucible bottom portion 10C crucible curved portion 10X high transmittance region 11 opaque quartz glass layer 12 transparent quartz glass layer 21 silicon single crystal 21S silicon single crystal projection surface 22 silicon melt

Claims (4)

直胴部及び底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、
前記底部の中心から一定範囲内の領域の赤外線透過率が前記直胴部の赤外線透過率よりも高く、
波長0.5〜3.5μm、ピーク波長1.0μmの赤外線に対して、前記底部の赤外線透過率が50〜80%であり、前記底部と前記直胴部との赤外線透過率の差が10〜30%であることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボ。
A quartz glass crucible for pulling a silicon single crystal having a straight body part and a bottom part,
The infrared transmittance of a region within a certain range from the center of the bottom is higher than the infrared transmittance of the straight body portion,
For infrared rays having a wavelength of 0.5 to 3.5 μm and a peak wavelength of 1.0 μm, the infrared transmittance of the bottom portion is 50 to 80%, and the difference in infrared transmittance between the bottom portion and the straight body portion is 10%. A quartz glass crucible for pulling a silicon single crystal, characterized in that it is ˜30%.
前記底部の中心から一定範囲内の領域は、少なくとも前記シリコン単結晶の投影面を含むことを特徴とする請求項1に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   2. The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein a region within a certain range from the center of the bottom part includes at least a projection surface of the silicon single crystal. 前記底部の中心から一定範囲内の領域の直径は、ルツボ口径Rに対して0.45R以上0.8R以下であることを特徴とする請求項1又は2に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 Diameter area within a predetermined range from the center of the bottom, the silicon single crystal pulling according to claim 1 or 2, characterized in that 0.45R is 0 or more 0.8 R 0 or less with respect to the crucible diameter R 0 Quartz glass crucible for use. 回転しているモールドの内表面に石英粉を堆積させる工程と、
前記石英粉を溶融することにより石英ガラスルツボを成形する工程とを備え、
前記石英ガラスルツボを成形する工程は、前記石英粉内部の気体を吸引する工程を含み、
前記気体を吸引する工程は、底部における前記気体の吸引時間を直胴部よりも長くし、又は前記底部における前記気体の吸引圧力を前記直胴部よりも高くすることにより、波長0.5〜3.5μm、ピーク波長1.0μmの赤外線に対して、前記底部の赤外線透過率が前記直胴部の赤外線透過率よりも高くなるように制御する工程を含むことを特徴とするシリコン単結晶引き上げ用石英ガラスルツボの製造方法。
Depositing quartz powder on the inner surface of the rotating mold;
A step of forming a quartz glass crucible by melting the quartz powder,
The step of forming the quartz glass crucible includes a step of sucking a gas inside the quartz powder,
The step of sucking the gas, by the suction time of the gas at the bottom longer than the straight body portion, or be higher than the straight body portion of the suction pressure of the gas in the bottom, wavelength 0.5 A silicon single crystal pulling process including a step of controlling the infrared transmittance of the bottom portion to be higher than the infrared transmittance of the straight body portion with respect to an infrared ray of 3.5 μm and a peak wavelength of 1.0 μm Of manufacturing quartz glass crucibles for use.
JP2009000367A 2009-01-05 2009-01-05 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof Active JP5036735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000367A JP5036735B2 (en) 2009-01-05 2009-01-05 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000367A JP5036735B2 (en) 2009-01-05 2009-01-05 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010155765A JP2010155765A (en) 2010-07-15
JP5036735B2 true JP5036735B2 (en) 2012-09-26

Family

ID=42573974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000367A Active JP5036735B2 (en) 2009-01-05 2009-01-05 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5036735B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105165A1 (en) 2012-01-13 2013-07-18 信越石英株式会社 Silica vessel for pulling monocrystalline silicon and method for producing same
EP2703526A4 (en) 2012-03-23 2014-12-31 Shinetsu Quartz Prod A silica container for pulling up monocrystalline silicon and method for manufacturing same
JP6658421B2 (en) * 2016-09-14 2020-03-04 株式会社Sumco Method for producing silicon single crystal
JP7141844B2 (en) * 2018-04-06 2022-09-26 信越石英株式会社 Manufacturing method of quartz glass crucible
WO2023182348A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Method for manufacturing quartz member, method for forming silica coating, and method for smoothing surface of member made from quartz

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936392B2 (en) * 1995-12-12 1999-08-23 三菱マテリアルクォーツ株式会社 Quartz crucible for pulling silicon single crystal
JP3596435B2 (en) * 2000-06-30 2004-12-02 三菱住友シリコン株式会社 Modification method of quartz crucible
JP4726138B2 (en) * 2006-12-28 2011-07-20 ジャパンスーパークォーツ株式会社 Quartz glass crucible

Also Published As

Publication number Publication date
JP2010155765A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5072933B2 (en) Silica glass crucible for pulling silicon single crystal, method for producing the same, and method for producing silicon single crystal
JP5459804B2 (en) Method for producing silica glass crucible for pulling silicon single crystal
JP4987029B2 (en) Silica glass crucible for pulling silicon single crystals
JP5069663B2 (en) Quartz glass crucible with multilayer structure
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP6973554B2 (en) Quartz glass crucible
JP5058138B2 (en) Silica glass crucible for pulling silicon single crystals
JP5036735B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5042971B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP2010275151A (en) Silica glass crucible
JP5052493B2 (en) Method for producing silicon single crystal
JP5473878B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP5043048B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
CN113348275B (en) Quartz glass crucible and method for producing silicon single crystal using same
JP6451333B2 (en) Method for producing silicon single crystal
WO2021131321A1 (en) Quartz glass crucible and method for producing same
WO2020031481A1 (en) Quartz glass crucible

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250